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Abstract

The empirical literature on systemic banking crises (SBCs) has shown that SBCs
are rare events that break out in the midst of credit intensive booms and bring about
particularly deep and long–lasting recessions. We attempt to explain these phenomena
within a dynamic general equilibrium model featuring a non–trivial banking sector. In the
model, banks are heterogeneous with respect to their intermediation skills, which gives
rise to an interbank market. Moral hazard and asymmetric information on this market
may generate sudden interbank market freezes, SBCs, credit crunches and, ultimately,
severe recessions. Simulations of a calibrated version of the model indicate that typical
SBCs break out in the midst of a credit boom generated by a sequence of positive supply
shocks rather than being the outcome of a big negative wealth shock. We also show that
the model can account for the relative severity of recessions with SBCs and their longer
duration.
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Non–Technical Summary

Recent empirical research on systemic banking crises (henceforth, SBCs) has highlighted
the existence of similar patterns across diverse episodes. SBCs are rare events. Recessions
that follow SBC episodes are deeper and longer lasting than other recessions. And, more
importantly for the purpose of this paper, SBCs follow credit intensive booms; “banking crises
are credit booms gone wrong” (Schularick and Taylor, 2012, p. 1032). Rare, large, adverse
financial shocks could possibly account for the first two properties. But they do not seem
in line with the fact that the occurrence of an SBC is not random but rather closely linked
to credit conditions. So, while most of the existing macro–economic literature on financial
crises has focused on understanding and modeling the propagation and the amplification of
adverse random shocks, the presence of the third stylized fact mentioned above calls for an
alternative approach.

In this paper we develop a simple macroeconomic model that accounts for the above three
stylized facts. The primary cause of systemic banking crises in the model is the accumulation
of assets by households in anticipation of future adverse shocks. The typical run of events
leading to a financial crisis is as follows. A sequence of favorable, non permanent, supply
shocks hits the economy. The resulting increase in the productivity of capital leads to a
demand–driven expansion of credit that pushes the corporate loan rate above steady state.
As productivity goes back to trend, firms reduce their demand for credit, whereas households
continue to accumulate assets, thus feeding the supply of credit by banks. The credit boom
then turns supply–driven and the corporate loan rate goes down, falling below steady state.
By giving banks incentives to take more risks or misbehave, too low a corporate loan rate
contributes to erode trust within the banking sector precisely at a time when banks increase
in size. Ultimately, the credit boom lowers the resilience of the banking sector to shocks,
making systemic crises more likely.

We calibrate the model on the business cycles in the US (post WWII) and the financial cycles
in fourteen OECD countries (1870–2008), and assess its quantitative properties. The model
reproduces the stylized facts associated with SBCs remarkably well. Most of the time the
model behaves like a standard financial accelerator model, but once in while —on average
every forty years— there is a banking crisis. The larger the credit boom, (i) the higher the
probability of an SBC, (ii) the sooner the SBC, and (iii) —once the SBC breaks out— the
deeper and the longer the recession. In our simulations, the recessions associated with SBCs
are significantly deeper (with a 45% larger output loss) than average recessions. Overall, our
results validate the role of supply–driven credit booms leading to credit busts. This result is
of particular importance from a policy making perspective as it implies that systemic banking
crises are predictable. We indeed use the model to compute the k–step ahead probability of
an SBC at any point in time. Fed with actual US data over the period 1960–2011, the model
yields remarkably realistic results. For example, the one–year ahead probability of a crisis is
essentially zero in the 60–70s. It jumps up twice during the sample period: in 1982–3, just
before the Savings & Loans crisis, and in 2007–9. Although very stylized, our model thus
also provides with a simple tool to detect financial imbalances and predict future crises.
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1 Introduction

Recent empirical research on systemic banking crises (henceforth, SBCs) has highlighted the

existence of similar patterns across diverse episodes (see Reinhart and Rogoff, 2009; Jordà

et al., 2011a,b; Claessens et al., 2011; Schularick and Taylor, 2012). SBCs are rare events.

Recessions that follow SBC episodes are deeper and longer lasting than other recessions

(see Section 2). And, more importantly for the purpose of this paper, SBCs follow credit

intensive booms; “banking crises are credit booms gone wrong” (Schularick and Taylor, 2012,

Borio and Drehmann, 2009, and Borio and Lowe, 2002; the notion that banking crises are

endogenous and follow prosperous times is also present in Minsky, 1977). Most of the existing

macro–economic literature on financial crises has focused on understanding and modeling

the propagation and the amplification of random adverse shocks. Indeed, rare, large enough,

adverse financial shocks can account for the first two properties (see e.g. Gertler and Kiyotaki,

2009). However, by implying that financial crises may break out at any time in the business

cycle, they do not seem in line with the fact that the occurrence of an SBC is closely linked

to credit conditions (Gorton, 2010, 2012). The third stylized fact therefore calls for an

alternative approach.

In this paper, financial crises result from the pro–cyclicality of bank balance sheets that

emanates from interbank market funding. During expansions, bank market funding and

credit supply increase, pushing down the rates of return on corporate and interbank loans.

The lower rates accentuate agency problems in the interbank market that lead to a reduction

on market funding and contractions. The larger the credit boom relative to the possibilities

for productive use of loans, the larger the fall in interest rates, and the higher the probability

of a bank run in —and therefore of a disastrous freeze of— the interbank market.1 As

in Shin (2008) and Hahm et al. (2011), the behavior of banks (credit in our case) during

good times sows the seeds of a financial crisis. In our model, banks are heterogeneous in

terms of —non–publicly observed— intermediation efficiency. They finance their activities

with funds obtained from depositors/shareholders or raised in the interbank market. There

exists the usual agency problem in this market as borrowing banks can always divert some

of the funds into low return assets that cannot be recovered by the lending banks. The

incentives for diversion are stronger for less productive banks and depend on the level of

interest rates in the economy. The lower the return on loans, the greater the incentive to

engage in fund diversion and hence the greater counterparty risk in the interbank market.

The typical run of events leading to a financial crisis is as follows. A sequence of favorable,

1Our representation of financial crises as market–based bank runs is in line with what happened during the
2007-8 financial crisis (see Uhlig, 2010). Shin (2010, Chap. 8), for example, depicts the demise of Northern
Rock —a UK bank— in 2007 as primarily originating from the sudden freezing of the short–term funding
market, what he refers to as a “modern bank run”. A traditional, deposit–based, run on the bank took place
as well, but it did so one month later, accounted for only 10% of the bank’s fall in total funding, and rapidly
stopped because, following the news of the run, the UK authorities pledged 100% deposit guarantees.
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non permanent, supply shocks hits the economy. The resulting increase in the productivity

of capital leads to a demand–driven expansion of credit that pushes interest rates up. The

more efficient banks expand their loan operations by drawing funds from the less efficient

banks and market funding in the banking sector as a whole increases. The economy booms.

But as the supply shocks run their course, the probability of imminent reversion to average

productivity increases. This slows down corporate demand for loans while at the same time

inducing households to accumulate savings in order to smooth consumption. Credit expansion

becomes supply–driven, putting downward pressure on interest rates. The rate of return on

interbank loans declines making the less efficient banks more prone to borrow themselves and

divert those funds. As the identity of these banks is not known, counterparty risk in the

interbank market goes up, interbank loans decline, and market finance recedes. The stronger

the credit expansion during the booming times, the larger the decline in interest rates and the

more acute the agency problem in the interbank market. We show that there is a threshold

value of interest rates below which the interbank market freezes, corporate credit collapses

and the economy tanks. This threshold can be alternatively expressed in terms of the level of

banking assets relative to the level of productivity (output) in the economy, that we call the

absorption capacity of the banking sector. Supply–driven, excessive credit creation places

the economy beyond its absorption capacity, triggering an SBC.

Our work differs from related work on financial crises in several important aspects. In contrast

to Shin (2008) and Hahm et al. (2011), whose models are static, ours is a full blown dynamic

stochastic general equilibrium (DSGE) model, and thus more suitable for quantitative analy-

sis. Unlike Bernanke et al. (1999), Jermann and Quadrini (2010), Gertler and Karadi (2011),

who study the linearized system dynamics around the steady state in models where adverse

shocks are amplified by financial market frictions our model analysis characterizes the full

equilibrium dynamics inclusive of important and critical non-linearities such as the freezing of

interbank markets. This is an important difference because near the steady state our model

features a traditional financial accelerator. But away from it (and the large departures from

the steady state are the endogenous outcome of a boom-bust endogenous cycle, rather than

a big shock) it gives rise to banking crises. Crises are rare but generate particularly large

output losses and inefficiencies due to the presence of pecuniary externalities. The models of

Bianchi (2009), Bianchi and Mendoza (2010), and Korinek (2010) also exhibit non–linearities

and pecuniary externalities but assume that the interest rate is exogenous, so they are at

best applicable to small open economies and emerging markets.2 Perhaps the models the

closest to ours are Brunnermeier and Sannikov (2012) and He and Krishnamurthy (2012).

These two models too feature a powerful non–linear amplification mechanism. As in other

2In these models non–linearities are due to occasionally binding constraints, whereas in our case they are
due to the economy switching from normal to crisis times. Gertler and Kiyotaki (2012) also develop a model
with bank runs and regime switches. While in their model bank runs are deposit–based and unexpected, in
ours they are market–based and, more importantly, agents are fully rational: they perfectly know and take
into account the probability that runs will occur in the future.
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DSGE models with financial frictions, financial crises are the outcomes of adverse exogenous

financial shocks (e.g. to banks’ net worth), whose size ultimately determines the size of the

crises. In our case, in contrast, shocks play only a secondary role because crises are related to

whether or not financial imbalances (e.g. credit boom, ballooning bank balance sheets) have

built up in the first place. That is, crises may break out endogenously, even in the absence of

negative shocks. Another important feature of our model is that it does not rely on financial

shocks to generate banking crises; the technology shock is indeed the only exogenous source

of uncertainty.3

We calibrate the model on the business cycles in the US (post–WWII) and the financial cycles

in fourteen OECD countries (1870-2008), and assess its quantitative properties. The model

reproduces the stylized facts associated with SBCs remarkably well. Most of the time bank

assets remain below the threshold for financial crises and the model behaves like a standard

financial accelerator model. But once in a while —on average every forty years— there is a

banking crisis. The typical banking crisis in our simulations is preceded with a credit boom

and brings about both a credit crunch and a recession. On the brink of an SBC, risk averse

households accumulate precautionary savings and inadvertently fuel a credit boom, which

brings credit creation even closer to the economy’s absorption capacity. Our findings are in

line with empirical evidence (see Schularick and Taylor, 2011, among others) and validate the

role of supply–driven credit booms leading to credit busts. The larger the credit boom, (i) the

higher the probability of an SBC, (ii) the sooner the SBC, and (iii) —once the SBC breaks

out— the deeper and the longer the recession. In our simulations, a recession associated

with SBCs is significantly deeper (with a 45% larger output loss) than the average recession.

We use the model to compute the k–step ahead probability of an SBC at any point in time.

Fed with actual US data of total factor productivity over the period 1960-2011, the model

produces remarkably realistic results. For example, the one–year ahead probability of a crisis

is essentially zero in the 60–70s. It jumps up twice during the sample period: in 1982–3, just

before the Savings & Loans crisis, and in 2007–9.

The paper proceeds as follows. Section 2 briefly documents key empirical facts about the

dynamics of systemic banking crises in 14 OECD countries for the period 1870–2008. Section

3 describes our theoretical framework, the micro-foundations of interbank market freezes and

the dynamic implications of such events. Section 4 discusses our calibration strategy and

presents our solution method. Section 5 analyses the quantitative implications of the model

as well as its performance against the facts documented in Section 2. A last section concludes.

3Another difference with many existing models concerns the modeling of the financial friction. In
Bianchi’s model, for example, the friction affects the firms and operates through excess credit demand (“over-
borrowing”), whereas in our model it operates through excess credit supply. Our model also differs from
Brunnermeier and Sannikov’s in that it is a discrete time model that we calibrate on US and OECD data,
which allows us to confront our model with the data.
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2 Key Facts on Systemic Banking Crises

Reinhart and Rogoff (2009), Claessens et al. (2011), Jordà et al. (2011a,b), and Schularick

and Taylor (2012) recently documented that SBCs share, despite their variety, a few common

regularities. Building upon this earlier work, we briefly describe in this section the key facts

on SBCs, against which we will later assess the quantitative properties of our model. To do

so we use the historical dataset assembled by Jordà et al. (2011a). This dataset comprises

yearly observations for real GDP per capita, total domestic currency loans of banks and

banking institutions to non–financial companies and households, banks’ total assets, the

dates of business cycle peaks, and the dates of banking crises from 1870 to 2008 for 14 OECD

developed countries.4 A banking crisis is defined as an event during which the financial

sector experiences bank runs, sharp increases in default rates accompanied by large losses of

capital that result in public intervention, bankruptcy, or the forced merger of major financial

institutions (see Laeven and Valencia, 2008). For the purpose of the present paper, we further

define as systemic those banking crises that are concomitant with a recession, i.e. that break

out between the peak and the trough of a given business cycle. Jordà et al. use the Bry-

Boschan algorithm to date peaks and troughs consistently across countries. We exclude war

times and only keep complete business cycles, from peak to peak. After trimming, our sample

covers 176 full–length business cycles. The main statistics are reported in Table 1.

Table 1: Statistics on recessions and banking crises

N. obs. N Frequency Magnitude Duration
(%) (%) (Years)

from peak to trough

All banking crises 1,736 78 4.49 – –
Systemic Banking Crises (SBC) 1,736 42 2.42 – –

All recessions 1,736 176 10.20 4.86 (5.91) 1.85
Recessions with SBC (A) 1,736 42 23.86 6.74 (6.61) 2.59
Recessions w/o SBC (B) 1,736 134 76.13 4.27 (5.61) 1.61
Test A 6=B, p-value (%) – – – 2.61 0.00

Note: the magnitudes reported into parentheses are calculated using the HP–filtered series of output,
and are thereby corrected for the underlying trend in output. Following Ravn and Uhlig (2002),
we set the parameter of the Hodrick–Prescott filter to 6.25.

Fact #1: Systemic Banking Crises are Rare Events. 78 banking crises can be iden-

tified in the sample, which comprises 1,736 observations. The frequency of crises is therefore

4.49%, which means that countries in our sample experience a crisis, on average, every 22

years. Half of those 78 banking crises were systemic. Hence, SBCs are rare events, which

occur on average every forty years. In contrast, recessions are much more frequent and occur

4The list of country comprises Australia, Canada, Denmark, France, Germany, Great Britain, Italy, Japan,
the Netherlands, Norway, Spain, Sweden, Switzerland and the United States of America.
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every ten years or so.

Fact #2: Financial recessions are deeper and last longer than other recessions.

While only one fourth of the recessions we identify involve a banking crisis, these “financial

recessions” are on average significantly deeper than other, regular recessions. For instance, we

find that the drop in real GDP per capita from peak to trough is 40% bigger during financial

recessions (6.74%) than during the average recession (4.86%) (60% deeper than recessions

without SBCs), or about 12% when the data are HP–filtered (see Table 1). On average,

systemic banking crises also last one year longer. The dynamics of financial recessions too is

different: they tend to be preceded by a faster increase in GDP and credit compared with

other recessions, as Figure 1 shows. Claessens et al. (2011) report similar patterns based on

a shorter data set that includes emerging countries.5

Figure 1: Financial versus normal recessions
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Note: The reported % deviations are the average % deviations around the Hodrick–Prescott trend
(calculated with a parameter of 6.25). Notice that the implied magnitude of financial recessions
in the left chart is about 4.3%, which is lower than that 6.61% reported earlier in Table 1. This
discrepancy reflects the fact that the statistics in Table 1 also take into account recessions of more
than 6 years. We find similar results when we consider the % deviations of output and credit from
their respective linear trends (see the companion technical appendix).

Fact #3: Systemic banking crises break out in the midst of credit intensive

booms. Systemic banking crises do not hit at random (Gorton, 1988). To illustrate this

point, Figure 2 reports the empirical distributions of GDP (left panel) and credit (right panel)

gaps, as measured by the percentage deviations from a Hodrick–Prescott trend, in the year

that precedes a typical systemic banking crisis (histogram). The red line corresponds to the

distribution in the full sample, which we use as benchmark. The figure shows that, before

a systemic banking crisis both GDP and credit are above trend, with average deviations of

5The cross-correlations between credit and output over the sample also show significant differences between
normal and crisis times. For example, during regular recessions the maximal correlation between (HP–filtered)
credit and output is reached contemporaneously, with corr(creditt,gdpt)=0.38. We find similar results for
periods outside recessions. In contrast, during financial recessions the maximal correlation is reached with one
lag on credit (corr(creditt−1,gdpt)=0.24), suggesting that in those periods credit leads output.
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1.8% and 3.8%, respectively. This suggests that crises break out at a particular point in the

business cycle, typically in good times, in the midst of a credit boom. A general pattern

extensively documented by Reinhart and Rogoff (2009, p. 157).

Figure 2: Distributions of GDP and credit gaps
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3 The Model

We consider a closed economy populated with one representative risk averse household, one

representative risk neutral competitive firm, and a mass one of heterogeneous, risk neutral,

and competitive banks.

3.1 The Representative Firm

The representative firm lives for one period. It produces a homogeneous good that can be

either consumed or invested by means of capital, kt, and labor, ht, according to a constant

returns to scale technology represented by the production function6 F (kt, ht; zt) where zt is

the level of total factor productivity (TFP), which is assumed to follow an AR(1) process of

the form

log zt = ρz log zt−1 + εt

where |ρz| < 1 and εt is an exogenous normally distributed TFP shock with zero mean and

standard deviation σz that is realized at the beginning of period t. Variations in productivity

are the only source of uncertainty and εt is realized at the beginning of period t, before the

firm decides on its production plan. Capital, kt, depreciates at rate δ ∈ (0, 1). The firm is

born with no resources and must borrow kt from the banks at a gross corporate loan rate Rt

at the beginning of the period to be able to achieve production. The corporate loan is repaid

at the end of the period. The firm also rents labor services from the household at rate wt.

6The production function is increasing in both inputs, concave and satisfies Inada conditions.
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The production plan is decided so as to maximize profits, which are given by

πt = F (kt, ht; zt) + (1− δ)kt −Rtkt − wtht. (1)

3.2 The Representative Household

The infinitely lived representative household supplies inelastically one unit of labor per pe-

riod7 and has preferences over the flow of consumption, ct, which are represented by the

utility function:

max
{at+τ+1,ct+τ}∞τ=0

Et
∞∑
τ=0

βτu (ct+τ ) , (2)

where u (ct) satisfies the usual regularity conditions,8 β ∈ (0, 1) is the psychological discount

factor, and Et (·) denotes the expectation operator which is taken over {εt+τ+1}+∞τ=0. The

household enters period t with assets, at, which she deposits in the banking sector and

from which she receives a state contingent gross return rt. There is no friction between the

household and the banking sector and —since Modigliani and Miller’s theorem applies—

we cannot say anything as to whether at is made of bank deposits or bank equity. (This

assumption will be relaxed in Section 6.2.9) The household earns unit wage wt from supplying

her labor and receives profits πt from the firm. This income is then used to purchase the

consumption good and transfer assets to the next period. Accordingly, the budget constraint

is given by

ct + at+1 = rtat + wt + πt. (3)

The saving decision is determined by the standard arbitrage condition

u′ (ct) = βEt
(
u′ (ct+1) rt+1

)
. (4)

Notice that, as will become clear shortly, there exists a positive wedge between banks’ gross

return on corporate loans (Rt) and the gross return on bank equity/assets (rt). This wedge

is due to inefficiencies in the banking sector.

3.3 The Banking Sector

The banking sector is at the core of the model and plays a non–trivial role because of two

specific features. First, banks are heterogeneous with respect to their intermediation technol-

ogy — some banks are more efficient than others, which potentially gives rise to an interbank

7This latter assumption is made for exposition purposes only and will be relaxed in the quantitative analysis
(see Sections 4 and 5).

8In particular, we have u′(c) > 0, u′′(c) < 0, u(0) =∞ and u′(∞) = 0
9To emphasize the fact that the household owns the banks and rt is state contingent, we will in the meantime

interchangeably refer to at as bank equity or deposits, and to rt as the gross return on bank equity/deposits.
Note also that we implicitly assume the existence of frictions between the household and the firm that prevent
the household from financing the firm directly —this assumption is standard in the macro–literature. In the
companion technical appendix of this paper, we also consider the case where the firm finances a fraction of its
investment directly through the market.
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market. It follows that banks have two types of activities. On the one hand they run tra-

ditional banking operations, which consist in collecting deposits/equity from households and

lending the funds to the firm. In Shin (2008) and Shin and Shin (2011)’s language, these

are “core” activities and, accordingly, bank deposits/equity are banks’ core liabilities. On

the other hand, banks also issue interbank claims (“non–core” assets/liabilities) so as to re–

allocate assets toward the most efficient banks.10 Second, the banking sector is subject to

both asymmetric information and moral hazard problems, which impair the functioning of

the interbank market.

3.3.1 Banks

There is a continuum of one–period,11 risk–neutral, competitive banks that raise deposits/equity

at from the household at the end of period t − 1. At the time they raise deposits/equity,

banks are identical and, in particular, have all the same size as they enter period t. At the

beginning of period t, each bank draws a random bank–specific intermediation skill. Banks

therefore become heterogeneous. Let p denote the bank with ability p, and assume that the

ps are distributed over the closed interval [0, 1] with cumulative distribution µ(p), satisfy-

ing µ(0) = 0, µ(1) = 1, µ′(p) > 0. Bank p must pay an intermediation, dead–weight, cost

(1− p)Rt per unit of loan at the end of the period, so that its net return on each loan is pRt.

This cost reflects the bank’s operational costs, for example, the cost of collecting corporate

loans or monitoring the firm.12 As an outside option, banks also have the possibility to invest

assets in their own project. This project does not involve any intermediation cost but yields

a lower, constant, and exogenous payoff γ per unit of good invested. Such an investment is

inefficient, i.e. γ < Rt.
13 While there are several ways to interpret this outside option, we

10“The relevant distinction between core– and non–core liabilities can be seen as having to do with whether
the claim is held by the ultimate domestic creditors (the domestic household sector). Repos and other claims
held by banks on other banks can be regarded as non–core liabilities which are more volatile”, Shin and Shin
(2011, p. 3).

11Banks that operate in period t are born at the end of period t − 1 and die at the end of period t.
We will assume in a moment that banks are heterogeneous and that their types are private information.
The assumption of one–period living banks is made to preserve this asymmetry of information over time.
An alternative and equivalent approach would be to allow banks to live infinitely and, in order to rule out
potential reputation effects, to assume that the types are randomly drawn afresh every period.

12This assumption is not crucial but convenient, because in this case bank heterogeneity is immaterial to the
representative firm, which always pays its debt irrespective of the bank it borrows from. One could consider
several alternative setups without loss of generality. For example, one could assume that there is a continuum
of firms and that banks have different monitoring skills, which determine the probability that the projects of
the firms they respectively lend to succeed. Typically, the firms borrowing from the skillful banks would then
be able to repay their loan in full, while those borrowing from inefficient banks would default. We do not use
this setup because we want to confine the inefficiencies within the banking sector and, by doing so, stay the
closest possible to the textbook neoclassical model, where firms do not default.

13Indeed, if γ were strictly above Rt then banks would not finance the firm and, because of an Inada
condition on the production function (limk→0 ∂Fk(k, h; z)/∂k = +∞), the marginal productivity of capital
would be infinite, hence a contradiction. And the case γ = Rt is ruled out by the existence of financial
intermediation costs (see below). Notice that, since in the absence of the storage technology unused goods
would depreciate at rate δ, the net return of storage is γ − (1− δ), which we assume is positive.
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will refer to it as a storage technology.14 An important aspect of this assumption is that the

funds invested in this outside option cannot be used to finance the firm. This is key for the

model to generate credit crunches.

Bank heterogeneity gives rise to an intra–periodic interbank market, where the least efficient

banks lend to the most efficient ones at gross rate ρt, with γ 6 ρt 6 Rt.
15 Unlike corporate

loans, interbank loans do not bear operational costs. Banks take the interbank rate ρt and the

corporate loan rate Rt as given. Given these rates, bank p decides whether, and how much,

it borrows or lends. Hereafter, we will refer to the banks that supply funds on the interbank

market as “lenders” and to those that borrow as “borrowers”. Let φt be the — endogenous

and publicly observable — amount borrowed per unit of deposit/equity by a borrower p,

with φt > 0. In the rest of the paper, we will refer to φt as the “market/interbank funding

ratio”, defined as the ratio of market funding (non–core liabilities) to traditional funding

(core liabilities). Then bank p’s gross return on equity/assets is

rt (p) ≡ max {pRt (1 + φt)− ρtφt, ρt} . (5)

It is equal to pRt (1 + φt)− ρtφt when bank p borrows φtat from other banks at cost ρt and

lends (1 + φt)at to the firm for return pRt. And it is equal to ρt when, instead, bank p does

not do financial intermediation and lends to other banks. Bank p chooses to be a borrower

when

pRt (1 + φt)− ρtφt > ρt ⇐⇒ p > pt ≡
ρt
Rt
. (PC)

Inequality (PC) is the participation constraint of bank p to the interbank market as borrower,

rather than as lender, and pins down the type of the marginal bank pt that is indifferent

between the two options. Banks with p < pt delegate financial intermediation to more

efficient banks with p > pt. In a frictionless world, all banks with p < 1 would lend to the

most efficient bank, so that pt = 1. This bank would have an infinite market funding ratio

(φt → +∞) and corner all assets; the economy would then reach the First Best allocation.

The presence of two frictions on the interbank market — moral hazard and asymmetric

information — prevents the economy from achieving First Best.

Moral Hazard: We assume that the proceeds of the storage technology are not traceable

and cannot be seized by creditors. This implies that interbank loan contracts are not enforce-

14One could assume that the return of this activity varies over time. This would not affect our results as
long as the return is not strictly positively correlated with the business cycle and the outside option can still
be used as an insurance against adverse aggregate shocks. To fix ideas, one can think of this outside option as
an intra–period home production activity or as a safe haven. One could also assume that the household has
access to this storage technology. This would not affect our results either. Indeed, since γ is the return that
even the worst bank (p = 0) can make in any state of the nature, the ex–post return on bank deposits/equity
is always above that of storage (i.e. γ < rt). Hence it would never be optimal for the household to use this
technology.

15The interbank rate is the same for all borrowers, otherwise those that promise the lowest returns would
not attract any lender. It has to be the case that ρt 6 Rt, otherwise no bank would be willing to borrow on
the interbank market. Likewise, we have ρt > γ, otherwise no banks would be willing to lend.
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able and that banks can walk away with the funds raised on the interbank market, without

paying the interbank loans. Following the current practice (e.g. Hart, 1995, Burkart and

Ellingsen, 2004), we refer to such opportunistic behavior as “cash diversion”. When a bank

diverts cash, the proceeds ultimately accrue to the shareholder — i.e. the household. The

so–diverted cash is stored until the end of the period, and yields the return γ.16 A bank that

diverts (1 + φt) at faces a diversion cost proportional to the size of the loan, and can only run

away with (1 + θφt) at, for a net payoff of γ (1 + θφt) at. Parameter θ ∈ [0, 1] reflects the cost

of diversion, which is zero when θ = 1 and maximal when θ = 0. From a corporate finance

literature viewpoint (e.g. Tirole, 2006), this is a standard moral hazard problem: (i) the gain

from diversion increases with φt, (ii) the opportunity cost of diversion increases with bank

efficiency p and (iii) with the corporate loan rate Rt. Features (i) and (ii) imply that effi-

cient banks with “skin in the game” are less inclined to run away than highly leveraged and

inefficient banks. Feature (iii) is similar to feature (ii), but in the “time–series” (as opposed

to “cross–sectional”) dimension; it implies that banks are more inclined to run away when

the return on corporate loans is low. This latter feature captures recent empirical evidence

that banks tend to take more credit risk in such a situation (Maddaloni and Peydro, 2011).

Asymmetric Information: Lenders do not observe borrowers’ skills —i.e. p is privately

known— and therefore do not know borrowers’ private incentives to divert cash. In this

context, the loan contracts signed on the interbank market are the same for all banks. Neither

φt nor ρt depends on p.17

By limiting the borrowing capacity of the most efficient bank (p = 1), moral hazard will

give less efficient banks room to borrow; hence the positive wedge between Rt and rt. Moral

hazard is not enough to generate market freezes, though. For this we also need uncertainty

about the quality –and therefore some adverse selection– of borrowers. Hence, both moral

hazard and information asymmetry will be necessary to generate SBCs in the model.

Lenders want to deter borrowers from diverting. They can do so by limiting the quantity

of funds that borrowers can borrow, so that even the most inefficient banks (i.e. those that

16Two comments are in order here. First, we will soon see that an incentive compatibility constraint will
make sure that no bank diverts cash in equilibrium. Hence, cash diversion will be an out–of–equilibrium
threat. Second, to be consistent, the return on cash diversion must not be strictly higher than γ. Otherwise,
the diversion technology would dominate storage and would then be the relevant outside option for the banks.

17To see this, consider a menu of debt contracts {ρt(p̃), φt(p̃)}p̃∈[0,1] intended for the borrowers of types p̃s,
and notice that lenders’ arbitrage across these contracts requires that ρt(p̃) = ρt ∀p̃ ∈ [0, 1]. It is easy to see
that such a menu of contracts cannot be revealing because any borrower p (i.e. with pRt > ρt) claiming being
of type p̃ would make profit rt (p̃ | p) = pRt + (pRt − ρt)φt (p̃) and pick the contract with the highest φt (p̃),
independent of its type. It is equally easy to see that there is no revealing menu of equity contracts either.
Indeed, consider a menu of equity contracts {ηt(p̃), φt(p̃)}p̃∈[0,1], where ηt(p̃) would be the share of retained
earnings. Then the net profit of bank p would be ηt(p̃) (1 + φt(p̃)) pRt and, in equilibrium, this bank would
pick the contract that yields the highest ηt(p̃) (1 + φt(p̃)), independently of its own p.
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should be lending) have no interest in demanding a loan and diverting it:

γ (1 + θφt) 6 ρt. (IC)

This incentive compatibility constraint sets a limit to φt, which can therefore also be inter-

preted as lenders’ funding tolerance, i.e. the limit market funding ratio above which a bank

refuses to lend or, in Holmström and Tirole’s language, the borrower’s pledgeable income.18

The program of bank p > pt thus consists in maximizing its return on equity rt(p) (see (5)

with respect to φt subject to constraint (IC). Proposition 1 below follows from the fact that,

by construction —see (PC), the net return on interbank borrowing is strictly positive for

borrowers.19

Proposition 1 (Optimal Interbank Funding Ratio) The IC constraint binds at the op-

timum of the borrowing bank p, which thus exhausts its borrowing capacity: φt = ρt−γ
γθ .

The positive relationship between φt and ρt is a critical feature of the interbank funding

ratio. When ρt increases, the net present value of corporate loans diminishes and only the

most efficient banks remain on the demand side of the market. Since these banks have little

private incentive to divert, lenders tolerate a higher interbank funding ratio (φt goes up).

This is due to the negative (positive) externality that the marginal bank exerts on the other

banks when she enters (leaves) the demand side of the market as, by having higher incentives

to run away, she then raises (reduces) lenders’ counterparty fears. In the limit case where

ρt = γ, there is no demand for interbank loan because borrowers cannot commit to repay.

The interbank funding ratio φt and the type of the marginal bank pt fully describe banks’

optimal decisions.

3.3.2 Interbank Market

The equilibrium of the interbank market is characterized by the gross return ρt that clears

the market. We look for an equilibrium where ρt > γ so that φt > 0 and trade takes place.

Since a mass µ (pt) of banks lend at, the aggregate supply of funds is equal to µ (pt) at. Since

a mass 1 − µ (pt) of banks borrow φtat, aggregate demand is equal to (1− µ (pt))φtat. The

market clears when (using relations (PC) and Proposition 1):

µ

(
ρt
Rt

)
︸ ︷︷ ︸
supply

=

extensive margin︷ ︸︸ ︷(
1− µ

(
ρt
Rt

))intensive margin︷ ︸︸ ︷
ρt − γ
γθ︸ ︷︷ ︸

demand

⇐⇒ Rt = Ψ(ρt) ≡
ρt

µ−1
(

ρt−γ
ρt−γ(1−θ)

) . (6)

18One could indeed recast the moral hazard problem into a setup à la Holmström and Tirole (1997), whereby
borrowers may misuse the funds and enjoy private benefits at the expense of their creditors. Stricto sensu, the
pledgeable income is the highest income that can be pledged without jeopardizing the borrower’s incentives,
i.e. ρt(ρt − γ)at/γθ.

19The proofs of all propositions are reported in Appendix A.
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Aggregate supply increases monotonically with ρt, whereas aggregate demand is driven by

two opposite forces. On the one hand, aggregate demand decreases with the interbank loan

rate because fewer borrowers demand funds when the cost of funds increases; this is the

“extensive margin” effect. On the other hand, a rise in ρt also exerts a positive effect on

aggregate demand because each borrower is then able to borrow more; this is the “intensive

margin” effect. At the aggregate level, this latter effect more than offsets the extensive margin

effect when the marginal bank’s externality affects a large mass of borrowers, i.e. when ρt is

small enough. It follows that the aggregate demand curve binds backward, increasing with

ρt for small values of ρt (see Figure 3). One can check that Ψ(ρt) goes to infinity as ρt

approaches γ, is greater than Rt when ρt approaches Rt, and reaches a minimum for some

value ρt = ρ > γ. Hence there exists a threshold R ≡ Ψ(ρ) for Rt below which there is no

equilibrium with trade.20 This threshold is the minimum corporate loan rate that is necessary

for the banks to accept to lend to each other. Figure 3 illustrates this point and depicts the

shifts in aggregate supply and demand as Rt falls from Rhigh (associated with equilibrium

E) to Rlow, with Rlow < R < Rhigh.

Figure 3: Interbank market clearing
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20Equivalently, one can also write the market clearing condition in terms of pt (since it is a multiple of ρt)
and then obtain condition γ (1− (θ − 1)µ (pt)) /pt (1− µ (pt)) = Rt. It is easy to see that the left hand side
expression is infinite for pt = 0, 1 and reaches a minimum R for some value pt = p ∈ (0, 1).
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Following the fall in the corporate loan rate, the supply curve shifts to the right while the

demand curve shifts to the left. Given the initial equilibrium rate ρt = ρE , demand falls

below supply. Market clearing then requires that ρt go down, which results in more banks

demanding funds (extensive margin). But since the banks that switch from the supply to the

demand side are less efficient and have a relatively higher private incentive to divert cash,

lenders require borrowers to deleverage. By construction, this intensive margin effect is the

strongest when Rt < R. It follows that, ultimately, aggregate demand decreases and excess

supply goes further up. The de–leveraging process feeds itself and goes on until the market

freezes, in point A, where ρt = γ.

In point E, where Rt > R, borrowers have enough incentives to finance the firm and an

interbank market equilibrium with trade exists; such a situation will be referred to as normal

times. This equilibrium is stable in the sense that, in this point, net aggregate demand is a

decreasing function of ρt and, following any small perturbation to ρt away from ρE , a standard

Walrasian tatônnement process brings ρt back to ρE . For usual cumulative distributions,

µ(p),21 another interbank market equilibrium with trade is also possible, in point U . However,

we rule it out because it is unstable.

In point A, where Rt < R, things are different: autarky prevails. Demand and supply are

both equal to zero, and the market clears because (i) borrowers have no pledgeable income

(φt = 0) and (ii) lenders are indifferent between interbank loans and storage. The marginal

bank is then bank pt = γ/Rt, which is indifferent between financing the firm and using the

storage technology. A mass µ(γ/Rt) of banks uses the storage technology, instead of lending

to the firm. In the rest of the paper, we will interpret such a situation as a systemic banking

crisis. This equilibrium is stable because net aggregate demand in this point decreases with

ρt. Due to strategic complementarities between lenders (see Cooper and John, 1988), the

autarkic equilibrium always exists, whatever the values of Rt. (Indeed, no bank has interest

in making a loan if no one else does it.) Hence, it also always coexists with the equilibrium

with trade whenever the latter exists. In order to rule out potential coordination failures

we assume that banks always coordinate on the equilibrium with trade, which is Pareto–

dominant, in this case.22 That is, the interbank market freezes only when there exists no

equilibrium with trade.

Based on relations (5) and (6), we can complete the description of the banking sector by

21Notably for the family distribution µ (p) = pλ (with λ > 0) that we will be using later in the calibration.
22For a discussion on the selection of the Pareto–dominant equilibrium in games with multiple Pareto–

rankable Nash equilibria, see Cooper et al. (1990).
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deriving the sector’s return on equity:

rt ≡
∫ 1

0
rt (p) dµ (p) =


Rt
∫ 1
pt
p dµ(p)
1−µ(pt)

, if an equilibrium with trade exists

Rt

(
γ
Rt
µ
(
γ
Rt

)
+
∫ 1
γ
Rt

pdµ (p)

)
, otherwise.

(7)

The interpretation of rt is clear. When the equilibrium with trade exists, inefficient banks

delegate financial intermediation to a mass 1−µ (pt) of efficient banks, each of which therefore

lending to the firm a multiple 1 +φt = 1/ (1− µ (pt)) of their initial assets against net return

pRt. In autarky, in contrast, a mass 1 − µ (γ/Rt) of the banks make corporate loans, while

the remainder use the storage technology. The banking sector is fully efficient when γ → 0,

i.e. when interbank loan contracts are fully enforceable, as in this case R → 0 and pt → 1

(the interbank market always exists and only the best bank does the intermediation), and

φt → +∞ (the best bank is infinitely leveraged). The same is true when limp↗1 µ(p) = 0,

since in this case there is a mass one of banks with p = 1 and banks are homogeneous and

all efficient.

3.3.3 Aggregate Supply of Corporate Loans

In normal times banks reallocate their assets through the interbank market, and all assets

at are ultimately channeled to the firm. In crisis times, in contrast, the interbank market

freezes and only the banks with p > γ/Rt lend to the firm. As a consequence, the banking

sector only supplies (1− µ (γ/Rt)) at as corporate loans. Denoting by kst banks’ aggregate

supply of corporate loans, one thus gets:

kst =


at , if an equilibrium with trade exists(

1− µ
(
γ
Rt

))
at , otherwise

. (8)

3.4 Recursive Decentralized General Equilibrium

A general equilibrium of the economy is defined as follows.

Definition 1 (Recursive decentralized general equilibrium) A decentralized recursive

general equilibrium is a sequence of prices Pt ≡ {Rt+i, rt+i, ρt+i, wt+i}∞i=0 and a sequence of

quantities Qt ≡ {ct+i, yt+i, kt+i, ht+i, at+i}∞i=0 such that for a given sequence of prices, Pt,

the sequence of quantities, Qt, solves the optimization problems of the agents, and for a

sequence of quantities, Qt, the sequence of prices, Pt, clears the markets.

In equilibrium, the household supplies one unit of labor, implying that the production level is

given by f(kt; zt) ≡ F (kt, 1; zt) and the marginal efficiency of capital is fk(kt; zt) ≡ ∂F (kt,1;zt)
∂kt

.
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The market clearing condition on the corporate loan market thus takes the form

f−1k (Rt + δ − 1; zt) =


at , if an equilibrium with trade exists (a)

at − µ
(
γ
Rt

)
at , otherwise. (b)

(9)

Relation (9) yields the equilibrium Rt as a function of the two state variables of the model,

at and zt. It also points to the two–way relationship that exists between the interbank loan

market and the retail corporate loan market. We indeed showed that the way the interbank

operates depends on whether or not Rt > R. Likewise, whether or not the interbank market

operates has an impact on the supply of corporate loans and, therefore, on Rt. To solve for the

general equilibrium we need to take into account these feedback effects. We proceed in two

steps. First, we solve (9a) for Rt under the conjecture that the interbank market equilibrium

with trade exists, and then check a posteriori whether indeed Rt > R. In the negative, the

interbank market equilibrium with trade cannot emerge, and the interbank market freezes.

In this case the equilibrium corporate loan rate is the Rt that solves (9b). Proposition 2

follows.

Proposition 2 (Interbank loan market freeze) The interbank loan market is at work if

and only if at 6 at ≡ f−1k (R+ δ − 1; zt), and freezes otherwise.

The threshold at is the maximum quantity of assets that the banking sector can reallocate

efficiently. Above this threshold counterparty fears on the interbank market are so widespread

that mistrust prevails and the interbank market freezes. In the rest of the paper we will refer

to at as the absorption capacity of the banking sector. Importantly, Proposition 2 suggests

that the ability of the banking sector to re–allocate assets internally ultimately depends on

the level of productivity in the real sector, zt. The more productive the real sector, the more

efficient the banking sector (∂at/∂zt > 0). The intuition and mechanics are clear. An increase

in total factor productivity raises the demand for capital and the equilibrium corporate loan

rate. By raising banks’ opportunity cost of storage and cash diversion, the increase in Rt also

reduces uncertainty about counterparties’ quality, making it less likely for the interbank loan

market to freeze. Given a level of assets at, there therefore exists a productivity threshold zt

below which the interbank market freezes (with zt ≡ f−1k (R + δ − 1; at) and ∂zt/∂at < 0).

Overall, our model captures the notion that banks’ core liabilities (equity/deposits at), which

are predetermined, are a stable source of funding whereas non–core liabilities are unstable

funding because they are subject to market runs. Proposition 3 below shows how disruptions

in the wholesale financial market spill over the retail loan market and trigger a credit crunch.

Proposition 3 (Credit crunch) An interbank market freeze is accompanied with a sudden

fall in the supply of corporate loans kst (i.e. given zt, limat↘at k
s
t < limat↗at k

s
t ), as well
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as by a sudden increase in the interest rate spread Rt/rt (i.e. given zt, limat↘at Rt/rt >

limat↗at Rt/rt). We will refer to such a situation as a credit crunch.

Panel (a) of Figure 4 illustrates Proposition 3. It depicts the equilibrium rates, Rt, rt, and ρt

as functions of at for a given level of productivity zt. The corporate loan rate monotonically

decreases with bank assets almost everywhere, but there is a break for at = at, when the

level of assets reaches the banking sector’s absorption capacity. Above this threshold, a

credit crunch occurs and the corporate loan rate suddenly jumps to R̃t ≡ limat↘at Rt, with

R̃t > R. Notice that, from a partial equilibrium perspective, R̃t is high enough to restore

banks’ incentives and reignite the interbank market. But this situation is not sustainable

as a rational expectation general equilibrium, since by issuing interbank claims banks would

be able to raise their supply of corporate loans and, ultimately, Rt would go down below

R. It follows that the autarkic equilibrium is the only interbank market equilibrium that is

consistent with the general equilibrium when at > at.
23 Panel (b) of Figure 4 depicts the

equilibrium rates as functions of zt for a given level of assets at and mirrors Panel (a). It

shows that a crisis breaks out as soon as zt falls below zt. Altogether, these two figures

suggest that a SBC may result either from the endogenous over–accumulation of assets by

the household (Panel (a)), or from an exogenous adverse productivity shock (Panel (b)). This

variety of banking crises is an important and novel feature of our model, which we will discuss

in detail in Sections 4.2 and 5.

Figure 4: Interest Rates

atat
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Market freeze
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(a) Interest Rates vs Assets
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(b) Interest Rates vs Technology Shock

Two regimes prevail in the economy. The first regime corresponds to normal times, where

the interbank market functions well and all the assets available in the economy are used to

23In other words, condition Rt > R is necessary but not sufficient to rule out interbank market freezes. In
a world with monopolistic banks (e.g. à la Stiglitz and Weiss, 1981), banks may have an interest in rationing
their supply of corporate loans so as to maintain Rt above R and keep access to the interbank market. They
cannot do this here because they are atomistic and price takers.
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finance the firm. The other regime corresponds to crisis times, where the interbank market

shuts down, preventing the efficient re-allocation of assets. In this case, bank inefficiencies

materialize themselves as a widening of the interest rate spread, which is due to the simul-

taneous increase in the corporate loan rate and the fall in the return on bank asset/equity.

Which regime prevails depends on the size of the banks relative to their absorption capacity

and on whether bank lending is “excessive”. In other words, credit booms may be bad. To tell

apart the bad from the good credit booms, we define the probability of a crisis at a n-period

horizon as the joint probability that the banking sector’s total assets exceed its absorption

capacity in t+ n (i.e. that at+n > at+n) and not before (i.e. at+i 6 at+i for i = 1, ..., n− 1).

Definition 2 (Probability of a crisis at a n− period horizon) Given the data gener-

ating process of productivity, the state of the nature at the end of period t (at+1, zt) and the

optimal asset accumulation rule at+i+1(at+i, zt+i), the probability that a systemic banking cri-

sis next breaks out in period t + n is P(at+1 6 at+1, . . . , at+n−1 6 at+n−1, at+n > at+n) =∫ +∞
εt+1

. . .
∫ +∞
εt+n−1

∫ εt+n
−∞ dG(εt+1, . . . , εt+n), where G (·) denotes the cumulative of the n-variate

Gaussian distribution, n > 1, and εt+i ≡ ln zt+i − ρz ln zt+i−1, where zt+i is the threshold of

productivity in period t+ i below which, given the level of financial assets at+i, a crisis breaks

out — i.e. zt+i ≡ f−1k (R+ δ − 1; at+i).

The crisis probability provides an early warning signal of banking crises. Of course, other

variables in the model could be used to construct more standard indicators, like the credit

to output ratio or the growth rate of credit. But these statistics do not contain as much

information about future crises as the crisis probability does, because the latter is fully

consistent with general equilibrium effects, agents’ rational expectations, and perceived risks.

For instance, the ex–ante anticipation of a market freeze leads the household to accumulate

assets faster so as to smooth consumption should the market indeed freeze. By doing so,

however, the household feeds a supply–driven credit boom, making the crisis more likely ex

post. Hence the high crisis probability ex ante.

4 Calibration and Solution of the Model

We assess quantitatively the ability of the model to account for the dynamics of the economy

before, during, and after a banking crisis. To do so, we extend the model to the presence

of endogenous labor supply decisions.24 The technology is assumed to be represented by

the standard constant–returns to scale Cobb–Douglas function, F (kt, ht; zt) ≡ ztkαt h1−αt with

α ∈ (0, 1). The household is assumed to be endowed with preferences over consumption and

24The equations characterizing the general equilibrium in this case are reported in Appendix B.
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leisure that are represented by the following Greenwood et al. (1988) utility function

Et
∞∑
τ=0

βτ
1

1− σ

(
ct+τ − ϑ

h1+υt+τ

1 + υ

)1−σ

.

It is well known that these preferences wipe out wealth effects in labor supply decisions, and

we chose this specification for practical reasons. By yielding a closed form solution for the

absorption capacity of banks

at = Γz
1+υ

υ(1−α)
t , with Γ ≡

(
1− α
ϑ

) 1
υ
(

α

R+ δ − 1

) υ+α
υ(1−α)

,

that remains independent of the consumption level, it indeed preserves the sequential charac-

ter of the resolution of the model. (As we will show later, this assumption plays against our

model as the absence of a wealth effect on labor will be one reason why our model overstates

the amplitude of banking crises compared with the data.) The absorption capacity now de-

pends in a fundamental way on υ, the (inverse of) labor supply elasticity. The larger labor

supply elasticity, the more elastic to productivity shocks the absorption capacity of banks.

The reason is that, in this case, positive productivity shocks entail a larger increase in hours

worked, hence a larger increase in the marginal productivity of capital, in the corporate loan

rate, and ultimately in the absorption capacity.

4.1 Calibration

The model is calibrated on a yearly basis, in line with Jordà et al. (2011a)’s database, which

we used to document the stylized facts on banking crises in Section 2. We use a rather

conventional calibration of the model (see Table 2). The discount factor, β, is set such

that the household discounts the future at a 3% rate per annum. The inverse labor supply

elasticity is set to υ = 1/3 which lies within the range of values that are commonly used

in the macro literature. The labor disutility parameter, ϑ, is set such that the household

would supply one unit of labor in the average steady state. The curvature parameter σ is

set to 4.5, which lies within the range of estimated values for this parameter.25 However,

given the importance of this parameter for the dynamics of precautionary savings, we will

assess the sensitivity of our results to changes in this parameter. The capital elasticity in

the production function is set to α = 0.3 and capital is assumed to depreciate at a 10% rate

per annum (δ = 0.1). The process for the technology shock is estimated using the annual

total factor productivity series produced by Fernald (2009) for the US over the post–WWII

period. We obtain a persistence parameter ρz = 0.9 and a standard deviation σz = 1.81%.

The remaining parameters pertain to the banking sector and include the return on storage γ,

the cost of diversion θ, and the distribution of banks µ(·). For tractability reasons we assume

25Mehra and Prescott (1985), for example, impose an upper bound of 10.
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that µ(p) = pλ, with λ ∈ R+. The parameters of the banking sector are calibrated jointly so

that in the simulations the model generates (i) a systemic banking crisis every forty years on

average, i.e. with probability around 2.5% (see Table 1), (ii) an average interest rate spread

equal to 1.71%, and (iii) an average corporate loan rate of 4.35%.26 These latter two figures

correspond to the lending rate on mid–size business loans for the US between 1990 and 2011,

as reported in the US Federal Reserve Bank’s Survey of Terms of Business Lending —see

Appendix C.2. We obtain γ = 0.94, λ = 24, and θ = 0.1. Based on this calibration, the

model generates an average interbank loan rate of 0.86% and an implied threshold for the

corporate loan rate of 2.43% (i.e., R = 1.0243).

Table 2: Calibration

Parameter Values

Discount factor β 1/1.03
Risk aversion σ 4.500
Frish elasticity υ 1/3
Labor disutility ϑ 0.944
Capital elasticity α 0.300
Capital depreciation rate δ 0.100
Standard dev. productivity shock σz 0.018
Persistence of productivity shock ρz 0.900

Bank distribution; µ(p) = pλ λ 24
Diversion cost θ 0.1
Storage technology γ 0.936

4.2 Optimal Asset Accumulation Rule

The model is solved by a collocation method.27 We first discretize the technology shock using

the method developed by Tauchen and Hussey (1991), with 31 nodes for the Gauss–Hermite

approximation. The decision rule for at+1 is approximated by a function of Chebychev

polynomials of the form

at+1(at; zi) = exp

 q∑
j=0

ξnj (zi)Tj(ϕ(at))

 Iat6at + exp

 q∑
j=0

ξcj (zi)Tj(ϕ(at))

 Iat>at ,

where zi denotes a particular level of the total factor productivity in the grid. Tj(·) is a

Chebychev polynomial of order j, ξnj (zi) (resp. ξcj (zi)) is the coefficient associated to this

polynomial when the economy is in normal times (resp. in a systemic banking crisis) for

the value of productivity zi. We use 15th order Chebychev polynomials (q=15). Finally,

26Because precautionary savings play an important role in our model there is a significant gap between the
deterministic and the stochastic steady states. It is therefore more accurate to calibrate the model based the
moments calculated over the simulations of the model, rather than on the basis of the deterministic steady
state.

27The companion technical appendix provides greater details on this solution method.
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ϕ(at) is a function that maps the level of assets into the interval (-1,1),28 and Iat6at (resp.

Iat>at) is an indicator function that takes value one in normal (resp. crisis) times and zero

otherwise. We allow for a discontinuity in the rule at the points when total assets reach the

banking sector’s absorption capacity —that is, when at = at— because in those points the

economy switches regime. (That at is a known function of state variable zt greatly simplifies

the solution algorithm.) The optimal decision rule at+1(at; zt) is given by the fixed point

solution to the Euler equation (4). The parameters of the approximated decision rule are set

such that the Euler residuals are zero at the collocation nodes. We checked the accuracy of

our solution using the criteria proposed by Judd (1992).

Figure 5: Optimal Decision Rules

at

at+1

45◦

High TFP

U

Average TFP

O Low TFP

S Crisis originates in
an unusually large
negative shock

Crisis originates in
an unusually long se-
quence of positive
shocks

Note: Dashed line: 45o line where at+1 = at.

Figure 5 illustrates the optimal asset accumulation decision rules for the lowest, the average,

and the highest productivity levels in our grid.29 As in the standard, frictionless neoclassical

model, the household smooths her consumption over time by accumulating relatively more

(less) assets when productivity is above (below) average. But the pace of accumulation

is faster than in the frictionless model because of the possibility of crises, which lead the

household to also save for precautionary motives. We will discuss this point in the next

section.

28More precisely, we use ϕ(at) = 2 log(at)−log(y)
log(x)−log(y)

− 1, where x ∈ {asup, ai} and y ∈ {amin, ai}. amin and asup

denote the bounds of the interval values for at (we use amin = 0.5 and asup = 20), z and y denote respectively
the upper and the lower bound values we use in normal times and during a systemic banking crisis.

29For illustrative and exposition purposes, we report stylized representations of the decision rules. The
solution decision rules for the benchmark calibration are reported in the companion technical appendix.
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The optimal decision rules provide a first insight into the dynamics of the model. Starting

from the average steady state O, the economy may face a systemic banking crisis for two

different reasons. It may first experience a large negative technology shock, which brings the

economy down to S. Because this shock instantaneously reduces banks’ absorption capacity

below the current level of assets, the crisis breaks out on impact. Such a crisis is purely

driven by the bad realization of the exogenous shock and the amplification mechanism that

the shock triggers. This is the channel usually depicted in the existing literature. In our

model, a crisis may occur for another reason. As the economy experiences an unusually long

sequence of TFP levels above average, the household has time to accumulate a large stock

of assets, which may outgrows banks’ absorption capacity, as in point U. In this case the

crisis results from the optimal response of the household to positive, as opposed to negative,

events. Next section describes such credit–boom led crises in more details.

5 Quantitative Analysis

5.1 The Economy in Normal Times

We start by analyzing the dynamics of the economy in response to a positive one standard

deviation productivity shock about the average steady state. Figures 6–7 report the dynamics

of our model (plain line) and those as obtained from the basic frictionless neoclassical model

(dashed line), which corresponds to our model when γ = 0, θ = 0, or λ = +∞.30

Figure 6 reveals that the model behaves very similarly to the standard frictionless model in

the face of a small positive shock. In both models, output, consumption, investment and

hours worked increase on impact. After one period, the dynamics of the two models depart.

The dynamics generated by our model is hump–shaped, whereas the frictionless economy goes

back monotonically to the steady state. The hump–shaped pattern comes from a financial

accelerator mechanism similar in spirit to that in Bernanke et al. (1999) that amplifies the

effects of the shock. Indeed, the corporate loan rate rises on impact (see Figure 7), which

mitigates counterparty fears on the interbank loan market and relaxes banks’ borrowing

constraints. As every borrower raises its market funding, the aggregate demand for interbank

loans increases and so does the interbank loan rate. Inefficient banks then switch from the

demand to the supply side of the market. This works to raise borrowers’ overall quality

and reduces the moral hazard problem further. Unlike Bernanke et al. (1999), however,

the financial accelerator mechanism comes from frictions on the wholesale loan market —not

from frictions on the retail loan market. The response of financial variables in Figure 7 makes

30We report the average of the distribution of the dynamic paths in the economy, as obtained from 100,000
simulations of the model. Notice that, despite the existence of a storage technology, our frictionless model is
very similar to –and in effect indistinguishable from– the basic neoclassical growth model. The reason is that
for this technology to be operated, one would need an unrealistic, zero–probability, negative TFP shock to
occur.
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Figure 6: Impulse Response to a One Standard Deviation Technology Shock (I)
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Note: Plain line : Average impulse response function across 100,000 simula-
tions in the model, Dashed line: Average Impulse Response across simulations
in the frictionless economy.

Figure 7: Impulse response to a 1 Standard Deviation Technology Shock (II)
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it clear that the economy does not experience any systemic banking crisis. Even though the

corporate loan rate eventually falls below its steady state value as the household accumulates

assets, at no point in the dynamics does it fall below R (i.e. 2.43%). In effect, the positive

technology shock does not last long enough to have the household accumulate assets beyond

banks’ absorption capacity. We obtain similar (mirror) results after a negative one standard

deviation productivity shock. Most of the time, the model behaves like a standard financial

accelerator model; crises are indeed rare events that occur under specific conditions, as we

show in the next section.

5.2 Typical Path to Crisis

The aim of this section is to describe the typical conditions under which systemic banking

crises occur. As we already pointed out (see Section 4.2), banking crises may break out in

bad as well as in good times in the model. It is therefore not clear which type of shocks

(negative/positive, large/small, short/long lived) are the most conducive to crises. Starting

from the average steady state (i.e. zt = 1), we simulate the model over 500,000 periods,

identify the years when a crisis breaks out, and compute the median underlying technological

path in the 40 (resp. 20) years that precede (resp. follow) a crisis. This path corresponds to

the typical sequence of technology shocks leading to a crisis. We then feed the model with

this sequence of shocks. The left panel of Figure 8 reports the typical path for the technology

Figure 8: Typical path (I)
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shock, along with its 66% confidence interval. The red part of the path corresponds to crisis

periods, the black one is associated with normal times. One striking result that emerges from

this experiment is that the typical banking crisis is preceded by a long period during which

total factor productivity is above its mean. In some 20% of the cases, crises even occur at a

time when productivity is still above mean. This reveals one important and interesting aspect

of the model: the seeds of the crisis lie in productivity being above average for an unusually

long time. The reason is that a long period of high productivity gives the household enough
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time to accumulate assets beyond the banking sector’s absorption capacity (see middle panel

in Figure 8). This is a phase where financial imbalances build up, as reflected in the increase

in the one–step ahead probability from an initial 0 to 0.25 few years before the banking crisis

in Figure 9.31

In our model, the typical crisis breaks out in the middle of a credit boom. At the beginning

both productivity and the corporate loan rate are above their average steady state, and

the credit boom is demand–driven. As productivity goes back to average, the firm reduces

its demand for labor, capital, and credit. Following the decrease in her labor income, the

household reduces her savings and even dissaves (see right panel in Figure 8). But this

reduces only marginally the household’s total stock of assets and the overall supply of credit

by banks, which remains more than 30% above steady state level. At this point in time the

credit boom turns supply–driven and the corporate loan rate goes down below its average

steady state (see Figure 9).32 The fall in the corporate loan rate is followed by a fall in the

interbank loan rate, which gives inefficient banks incentives to demand interbank loans. This

has two important consequences. First, since more banks finance themselves on the market,

the aggregate balance sheet of the banking sector increases in size.33 Second, the fact that

more inefficient banks raise funds erodes trust between banks. It follows that the banking

sector gets bigger precisely at the time when its absorption capacity diminishes, making it

less resilient to adverse shocks. In this context, the rather mild 3% drop of productivity

below its average in year 40 is enough to bring the whole sector down. The crisis manifests

itself as a sudden 10% fall in the credit to assets ratio, kt/at, and a 30% drop in the size

of the banking sector, at + (1− µ (pt))φtat. As banks cut their supply of corporate loans,

the spread rises from 2% to almost 4%. Interestingly, the rise in the spread is due to the

return on equity/deposits falling by more than the corporate loan rate during the crisis, a

phenomenon for example observed in 2007–8 in the US.34 The dynamics of the corporate

loan rate results from two opposite effects. On the one hand, the crisis brings about a credit

crunch that implies, all other things equal, a rise in the corporate loan rate (see Figure 4).

On the other hand, the fall in productivity also implies, in the first place, a fall in the firm’s

demand for corporate loan, and therefore a decrease in the corporate loan rate. In the typical

crisis, this latter effect dominates. Ultimately, the corporate loan rate decreases, but by

31Likewise, the two–step ahead probability goes up to 0.15. These probabilities are constructed following
Definition 2. Hence, the two–step ahead probability in period t is the probability that a banking crisis will
break out in period t+ 2, conditional on the event that there is no crisis in period t+ 1.

32To the best of our knowledge —because of lack of data— there exists no clear historical pattern of the
dynamics of interest rates before SBCs. However, the low level of real US interest rates has been shown to
be one important factor of the recent crisis (Taylor, 2009). The latter was indeed preceded by particularly
low real fed fund rates, with an average of 0.84% over 2000-2007 despite the monetary policy tightening in
2005-2006, against 3.24% over 1986-2000; see Figure C.4 in Appendix C.2.

33On the brink of the typical crisis, the total assets of the banking sector are about 30% above steady state.
In the run up to the crisis, borrowing banks’ market funding ratio (φt) goes down so as to maintain private
incentives, which is consistent with the pre-2007 crisis developments for the US. But since more banks become
leveraged, the leverage of the banking sector as a whole, (1− µ (pt))φt, increases.

34See Figure C.4 in Appendix C.2.

26



Figure 9: Typical path (II)
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much less than it would otherwise have in normal times following a similar —3%— drop in

productivity. After the crisis, all financial variables return back to their steady state levels.

Finally, Figure 10 illustrates the evolution of macroeconomic variables. In the run up to the

crisis, the positive wealth effect associated with technological gains leads the household to

both consume and invest more. The household also increases her labor supply in order to

take advantage of the high real wage, so that the level of output is 15% above its steady

state in the year before the crisis. These unusually good times end abruptly with the credit

crunch, which triggers a sizable drop in investment, labor, consumption, and output. In the

year of the crisis, output falls by 15%. Part of this loss —around 3%— is due to the fall

in productivity that takes place as the crisis hits, and would have taken place even in the

absence of the crisis as the result of the standard mean–reverting dynamics of productivity;

the remaining 12% of the fall in output is attributable to the banking crisis per se. Notice

that output falls by more than in the data (6.74% —see Table 1), suggesting that financial

frictions in the model are relatively severe.35 However, the performance of the model can be

improved on that front (i) by allowing the firm to issue corporate bonds or equity directly to

the household so as to reduce the prevalence of the banking sector in firm financing, or (ii) by

35For instance, the assumption that banks live for only one period makes information asymmetries partic-
ularly prevalent. One way to mitigate the information problem would be to have banks living several periods
with persistent skills. (An extreme case is one where skills are permanent, as in this case banks’ profits would
perfectly reveal banks’ skills and fully dissipate the asymmetric information problem after the first period.)
This, however, would be at the price of a lack of tractability of the model.

27



slowing down the accumulation of assets by the household and curbing the credit booms, e.g.

through wealth effects in labor supply decisions or capital adjustment costs.36 Overall, the

typical SBC breaks out as productivity returns back to its average level after having remained

above it for an unusually long time. This corresponds to a situation where the household

has accumulated assets in anticipation of a fall in productivity that took more time than

expected to materialize. In effect, one can show that the household over–accumulates assets,

compared to what a central planner would, because she does not internalize the effects of her

savings decisions on the equilibrium corporate loan rate and, ultimately, on the likelihood of

a banking crisis.

Figure 10: Typical path (III)
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The above description of the typical path to crises, however, conceals the variety of banking

crises, which the model features. In particular, SBCs may also be caused by an exogenous

large negative TFP shock. For example, in Appendix C.1 we consider the response of the

economy to such a large shock and show that, in this case, the crisis breaks out on impact.

A 7% drop from the average steady state of TFP is sufficient to generate a crisis. To get a

sense of the frequency of such shock–driven crises with respect to the typical credit boom–led

ones, we report in Figure 11 the distributions of the deviations from their average levels of

(the log of) TFP, the credit/output ratio, and a measure of financial imbalances in the kth

36On (i): see Shin et al. (2011) for some evidence that substitution effects between corporate bonds and
bank loans played an important role in mitigating the impact of the 2007–2008 crisis in the US, and De Fiore
and Uhlig (2012) for a DSGE model with such effects. On (ii): The difficulty of introducing such wealth
effects in our model lies with the numerical resolution of the equilibrium, as in this case the threshold at would
not depend exclusively on state variable zt anymore.
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period before an SBC erupts, for k = 1, 5, 10, 20.

Figure 11: Distribution of percentage deviations before an SBC
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(b) Credit/Output Ratio
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(c) Financial Imbalances
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Note: The figure above shows ergodic cumulative distributions. Panels (a) and (b) show P(∆xT−k >
ζ) in the case of positive percentage deviations ζ (x-axis, right hand side) from average steady
state, and P(∆xT−k 6 −ζ) in the case of negative deviations −ζ (x-axis, left hand side), where
∆xT−k = log(xT−k)− log(x), T is the date of the crisis, x is the average steady state of variable x
calculated over our 500,000 simulations, and x is the logarithm of TFP or credit/output ratio. Panel
(c) shows the probability that the level of assets k periods before the crisis be less than ζ% away from
the absorption capacity of the banking sector, P(∆aT−k 6 ζ), with ∆aT−k = log(aT−k)−log(aT−k).

Panel (a) shows that few SBCs occur after a year where productivity is significantly below its

average steady state. (For instance only 10% of SBCs follow a year where TFP is 5% below

average.) TFP is moreover almost symmetrically distributed around its average in the year

before an SBC, which essentially means that the sign of TFP shocks —or more precisely:

whether TFP is below or above its average— is not in itself informative about whether a

SBC is about to break out. The skewed distributions of lagged TFP (for k = 5, 10, 20) at

a medium to long term horizon even suggests that banking crises tend to be preceded by
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rather long periods of high —and not low— TFP. This is because prolonged sequences of

TFP levels above average feed credit booms; and credit booms are conducive to SBCs. Panel

(b) shows for instance that the credit to output ratio is 5% above its average steady state in

the year that precedes the SBC in 95% of the SBCs. These results point to a general and

important property of our model. Namely, the size of financial imbalances that prevail at

the time shocks hit the economy are more relevant for the dynamics of the economy than the

size and sign of the shocks themselves. Panel (c) illustrates this point more accurately; it

shows the distributions of a measure of financial imbalances k periods before SBCs (again, for

k = 5, 10, 20). We measure financial imbalances by the distance between banks’ absorption

capacity and banks’ core liabilities, log(at) − log(at). The smaller this distance, the larger

the imbalances, and the less resilient to adverse shocks the banking sector. Typically, a

distance of less than, say, 5% reflects large financial imbalances. Panel (c) shows that 70% of

the SBCs break out in the year after financial imbalances have reached this threshold. This

result confirms that most crises in our model break out endogenously, without an adverse

exogenous shock happening at the same time.

The above discussion prompts the question why, in our model, crises are more likely to occur

in good, rather than in bad, times. This is due to the asymmetric effects of permanent

income mechanisms on financial stability over the business cycle. Bad times in the model

are typically times where TFP is low and the household dis–saves. By lowering the TFP

threshold zt, below which a crisis breaks out, the fall in savings makes crises less likely.

Hence, in bad times, the dynamics of savings tends to stabilize the financial sector. In good

times, in contrast, TFP is high and the household accumulates assets, which by raising zt

makes crises more likely. In this case the dynamics of savings tends to destabilize the financial

sector. This asymmetric effect of savings is the basic reason why credit–boom led crises are

so prevalent in our model. Figure 16 in next section also illustrates this point.

5.3 The Role of Financial Imbalances

This section focuses on the effects of financial imbalances on the frequency, the duration, and

the amplitude of banking crises. As above, we measure financial imbalances as the distance

between at and at. The experiment compares the transition dynamics of the economy toward

its average steady state as the initial asset position of the agent varies. Building upon the

previous experiment, which showed that crises are most likely to occur after a productivity

boom, we impose that productivity is initially 7.5% above average in all the simulations. We

simulate the economy starting from six different initial levels of assets ranging from 0% (large

financial imbalances) to 50% (small imbalances) below absorption capacity.37 Figures 12 and

13 report the median adjustment dynamics of output and the credit to assets ratio across

37We do not take a stance on the reasons why the economy reached these particular levels of assets in the
first place, as this is not relevant here.
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500,000 simulations.38

Figure 12: Output dynamics: Sensitivity to Initial Conditions
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Dynamics in normal times, Dynamics in a systemic banking crisis,
long–run average. a(7.5%) denotes the banks’ absorption when productiv-

ity is 7.5% above average

We find that the closer the banking sector to its absorption capacity, the more likely and

the sooner the crisis. No crisis occurs so long the initial asset position of the economy is

at least 30% below the absorption capacity. Financial imbalances pave the way to crises.

Interestingly, initial conditions not only affect the probability and the timing of a crisis,

but also its duration and amplitude. Figure 13 thus shows that the length of the credit

crunch raises from 12 to 19 periods as the initial level of assets goes from 20% to 10% below

absorption capacity. In that case the initial drop in output raises from 1.85% to 5.88% (see

Figure 12).

Figure 14 illustrates the banking sector’s resilience to shocks by reporting the proportion of

paths featuring SBCs along the transition dynamics. In the economy with small imbalances

(upper left panel), this proportion does not exceed 20% at any point in time. This suggests

that, for this economy to experience a SBC, extreme TFP levels (and therefore extreme

sequences of TFP shocks) in the 20% tail of the TFP distribution must occur. In contrast,

the economy with the largest imbalances (lower right panel) is much more fragile and unlikely

38The mean path would be the usual representation. However this representation would average out the
effects of the financial crises, which do not break out along every one of the 500,000 simulated paths. This is
the reason why, in the context of our model the median path is more informative.
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Figure 13: Credit/Assets Dynamics: Sensitivity to Initial Conditions
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Figure 14: Frequency of SBCs: Sensitivity to Initial Conditions
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This figure reports the evolution of the frequency of SBCs during the transition

toward the average steady state.
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to escape a crisis, irrespective of the size of the shocks that hit it. In this economy more than

80% of the trajectories indeed feature a SBC.

The Role of Permanent Income Mechanisms: Financial imbalances are brought

about by the household’s rational expectations and permanent income behaviors —consumption

smoothing and precautionary savings. As imbalances build up, the representative household

realizes that the likelihood of a crisis increases, and accumulates assets to smooth her con-

sumption profile. By doing so, however, the household inadvertently exacerbates the imbal-

ances that may precipitate the crisis. To illustrate and assess quantitatively the importance

of saving behaviors in the model, we replicated the above experiment using a “Solow” version

of our model, where the saving rate is constant and the household neither smooths con-

sumption nor accumulates precautionary savings.39 We set the saving rate, s, such that the

economy reaches the same average steady state as in our benchmark economy (s = 0.22).

For comparison purposes, we also set the initial level of productivity 7.5% above average in

all the simulations, and only let the initial level of assets vary. Because in this version of the

model only large imbalances lead to a crisis, we only report in Figure 15 the results for initial

levels of asset greater than 0.8a(7.5%).

Panel (a) of Figure 15 shows that the household accumulates assets more slowly in the absence

(plain line) than in the presence (dashed line) of permanent income mechanisms. The upshot

is that SBCs are less frequent, shorter, and milder in the Solow version of the model. When

the economy is started 10% below absorption capacity (middle panel), for instance, the crisis

takes more time to materialize and entails a smaller credit crunch, with the credit to assets

ratio falling by 10.3%, against 11.1% in the benchmark. In this case output drops by 3

percentage points less and the crisis is 11 years shorter than in the benchmark.

More generally, financial imbalances do not build up as much, and therefore do not play as

big a role on financial stability in the absence of permanent income mechanisms. To illustrate

this point, we derive the typical path to crisis in the Solow economy and find that the typical

crisis is shock–driven, as opposed to credit–boom driven (compare Figures 16 and 8).40 This

result highlights the importance of saving dynamics to explain why, in our model, systemic

banking crises break out in the midst of credit intensive booms (Fact #3).

39See the companion technical appendix for a detailed description of this version of the model.
40This result is also reflected in the difference between the optimal decision rules in our benchmark model

and those in the Solow model, which all cross the 45 degree line in the normal times regime. For a comparison
between the optimal decision rules, see the companion technical appendix.
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Figure 15: The Role of Permanent Income Mechanisms
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Figure 16: Typical path: Solow model
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5.4 Assessment of the Model

We now assess the ability of the model to account for the main stylized facts on systemic

banking crises (see Section 2). As a first step, we simulate the model and generate long

time series (500,000 periods) for output and credit. We then identify all recessions. A

“recession” in the simulations starts when the economy experiences growth below a threshold

that guarantees that, on average, the model generates recessions 10% of the time, as in the

actual data (see Table 1). We further identify as financial recessions those recessions that

feature a systemic banking crisis. Table 3 reports summary recession statistics similar to

those reported in Table 1.

Table 3: Statistics on recessions and banking crises

Frequency Magnitude Duration
(%) (%) (Years)

from peak to trough

Systemic Banking Crises (SBC) 2.69 – –

All recessions 10.00 12.08 (7.30) 2.08
Recessions with SBC 13.00 17.87 (10.50) 2.62
Recessions w/o SBC 87.00 10.04 (6.73) 1.90

Note: As in Table 1, the magnitudes reported into parentheses are calculated using the HP–filtered
series of output, and are thereby corrected for the underlying trend in output. Notice that the
average amplitude (duration) of financial recessions is slightly higher, with a 17.87% fall in output
(2.62 years), than along the typical path in Figure 10, where it is around 15% (2 years). These
differences are due to the non-linearities in the model, which imply that the average response of
the economy to shocks (as reported above) differs from the response of the economy to the average
shock (as reported in Figure 10).

On average, the duration of a recession featuring a banking crisis is 26% larger than that

of other recessions. It also replicates the observation that recessions with SBCs are deeper

than the average recession (48%). The model, however, overall over–estimates the amplitude

and duration of recessions (compare Table 3 with Table 1). As discussed in section 5.2, this

result is due to (i) our assumptions that firm financing is fully intermediated and (ii) the

absence of wealth effects on labor supply decisions. Since the model was calibrated so as to

obtain systemic banking crises every forty years in the simulations, the model replicates —by

construction— Fact #1 (i.e. crises are rare events). Hence, we focus on Fact #2 and Fact

#3.

Fact #2: Financial recessions are deeper and last longer than other recessions.

Figure 17 replicates Figure 1 and reports the average dynamics of the cyclical component

of output and credit around financial recessions (dark line) and the other recessions (red

line). The striking observation from the figure is its similarity with the actual data. The

model is able to replicate the facts that financial recessions particularly deep and that both
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Figure 17: Dynamics of GDP and Credit gaps around Recessions
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Note: For the sake of consistency, we treated the simulated series of output and credit in the same
way as we treated the actual data in Section 2. Output and credit are first expressed in logarithm
and the cyclical component is obtain using the HP–filter with λ = 6.25. Thus, as in Figure 1, the
reported % deviations are the average % deviations around a Hodrick–Prescott trend. The implied
magnitude of financial recessions (the left chart) is about 7.1%, which is lower than that 10.50%
reported in Table 3. This discrepancy reflects the fact that the statistics in Table 3 also take into
account recessions of more than 6 years. We find similar results when we consider the % deviations
of output and credit from their respective linear trends (see the companion technical appendix).

output and credit are much larger (5.2% and 3.4% above trend, respectively) before financial

recessions than before regular recessions. In particular, as in the data, the credit gap drops

to -1% during a SBC, much more than in a regular recession. The phase that follows the

credit crunch also presents a U–shape pattern that reflects the greater persistence of financial

recessions. Financial recessions last longer because they tend to occur in good times, when

TFP is above mean and likely to go down. The exogenous fall in TFP that tends to follow

upon the typical financial recession works to delay the recovery.

Fact #3: Systemic banking crises break out in the midst of credit intensive

booms. Figure 18 replicates Figure 2 and reports the ergodic distributions of output and

credit gaps in the full sample (red line) and in the year preceding a systemic banking crisis

(histogram). This figure too bears a lot of similarities with its empirical counterpart. Both

output and credit gaps are above trend in the year that precedes a banking crisis. One may

argue that this result is not so surprising, since recessions (either in the data or in the model)

should —by construction— follow expansions. However, we have seen with Figure 17 that

the output and credit gaps are both much higher before a SBC than before a regular reces-

sion, and we find similar results for the distributions of GDP and credit growth rates (not

reported). In other terms, these results are not driven by the way we filter the series.

As a last experiment, we want to illustrate the prediction properties of our model. To do

so, we compute the probabilities that a SBC breaks out at a one– and a two–year horizon
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Figure 18: Distributions of GDP and credit gaps
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—as defined in Definition 2— and compare them with the actual US data over the period

1960-2011. The US experienced two banking crises during this period, both within the last

three decades: the Savings & Loans crisis in 1984, and the subprime crisis in 2008. Jordà et

al. (2011a) do not count the 2000 dotcom bubble bust as a banking crisis. We are interested

in whether our model is able to predict these events. In the model, the crisis probability in

year t (t=1960,. . . ,2011) is fully determined by the level of productivity, zt, and the level of

assets in the banking sector, at. The dynamics is initialized using the level of assets in the US

banking sector in 1960, a1960, taken from Jordà et al. (2011a). The model is then fed with

Fernald (2009)’s series of total factor productivity, which we beforehand detrended in order

to be consistent with our stationary setup,41 and the model’s internal dynamics are then used

to compute the probabilities. Figure 19 reports the implied k–step ahead probability of a

crisis for k=1,2 (left panel) as well as the underlying series of total factor productivity (right

panel).

Considering its stylized character and the limited amount of information that it uses, the

model predicts the US crisis episodes remarkably well. The one–step ahead probability (left

panel) is essentially zero until the early 80s, spikes to 40% within three years, in 1981-1983,

just before the Savings & Loans crisis, and remains relatively high throughout the rest of the

period. While the probability is still 30% the year before the dotcom bubble bust, it goes

down to 15% in 2001-2005 and picks up again as of 2007. At 20% the 2007 crisis probability

is still relatively high by historical standards, and further increases in 2008-10, as the Great

Recession materializes. The two–step ahead probability follows a similar pattern, with a

one year lead. To a large extent, these results reflect the relationship in the model between

financial stability and total factor productivity (right panel), which persistently stayed 10%

41More precisely, we linearly detrend the logarithm of Fernald’s “naive” productivity series over the sample
1947–2011. We use the whole sample to use as much information as available. We then use the so–detrended
series to construct the level of productivity, zt, for the period 1960–2011. For the initial value of bank assets,
a1960, we apply the percentage deviation from linear trend of the banking sector’s assets observed in 1960, to
the model steady state associated with z1960.
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Figure 19: k–step ahead Probabilities of a Financial Crisis (k=1,2)
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above trend until the early 80s and has fluctuated below trend since then. We find similar

results when we use Fernald’s TFP series corrected for the rate of factor utilization, or when

we detrend the series of TFP using a break in the trend to account for a structural US

productivity slowdown in the mid 70s (see the companion technical appendix).

6 Discussion

6.1 Sensitivity Analysis

We now turn turn to the sensitivity of the properties of the model to the parameters. We

simulate the model for 500,000 periods, compute the means of some key quantities across

these simulations, and compare the results with our benchmark calibration (see Table 4).

Risk Averse Economies Are Prone to Crises: We first vary the utility curvature pa-

rameter σ from our benchmark 4.5 to values 2 and 10, therefore changing the degree of risk

aversion of the household. By making the household more willing to accumulate assets for

precautionary motives, ceteris paribus, the increase in σ works to raise the quantity of assets

banks have to process without affecting banks’ absorption capacity — leaving banks more

exposed to adverse shocks. The probability of a crisis is thus higher than in the benchmark

(5.4% versus 2.7%). In other words, the risk averse economy is paradoxically more prone

to systemic banking crises. It also experiences deeper and longer crises than the benchmark

economy, with output falling by 1.1 percentage point more from peak to trough and crises

lasting 1.4 year longer. The main reason is that, by accumulating more assets, the economy

builds up larger imbalances that make it difficult to escape crises once they occur. Accord-

ingly, the banking sector of the risk averse economy is also less efficient, with an interest rate

spread of 2.09%, against 1.71% in the benchmark. In contrast, less risk averse economies are
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Table 4: Sensitivity Analysis

Benchmark σ ν θ λ σz ρz
2 10 0.25 1 0.20 35 0.02 0.95

Returns:
Interbank (ρ) 0.86 1.04 0.23 0.84 0.83 0.40 1.34 0.89 0.72
Corporate (R) 4.35 4.55 3.70 4.28 4.41 5.50 3.70 4.32 4.29
deposit/equity (r) 2.64 2.96 1.61 2.52 2.80 2.61 2.67 2.55 2.59
Spread (R− r) 1.71 1.59 2.09 1.77 1.60 7 2.89 1.03 1.77 1.70

R 2.43 2.43 2.43 2.43 2.43 4.83 0.41 2.43 2.43

Crises:
Probability 2.69 1.20 5.43 3.31 0.99 7.34 0.16 3.35 1.90
Duration 2.62 1.89 4.08 2.90 1.97 5.06 1.87 2.82 2.92
Amplitude 17.87 17.30 19.00 19.94 11.96 16.90 15.80 19.36 16.08

Note: All numbers are averages over a long simulation of 500,000 periods and, except for durations,
are expressed in percents. In the case where the persistence of the technology shock is raised to
ρz = 0.95, the standard deviation of the innovation was rescaled so as to maintain constant the
volatility of TFP.

more resilient to systemic banking crises. When σ = 2, for instance, SBCs occur only with a

1.20% probability.

Elastic Labor Supply Increases the Probability of a Crisis: We vary the (inverse of

the) labor supply Frisch elasticity and consider values ν = 1/4 and ν = 1, the latter being

rather standard in the DSGE literature (see Christiano et al., 2005). The Frisch elasticity af-

fects the speed of accumulation of assets. In good times, for example, the household typically

works more and, therefore, accumulates assets faster when ν = 1/4 (high elasticity) than

when ν = 1 (low elasticity). Since financial imbalances build up faster in the high elasticity

economy, this economy is also more prone to crises: when ν is reduced from 1 to 1/4, the

probability of a crisis increases from 0.99% to 3.31%. Moreover, when the crisis breaks out

the impact of the credit crunch on output is magnified by the larger response of hours worked;

hence crises are also more severe and longer lasting in economies with higher labor elasticity.

Contract Enforceability and Bank Efficiency Improve Financial Stability: The

third column of the table reports statistics for an economy where the cost of diversion is

lower than in the benchmark. The increase in θ from 0.1 to 0.2 works, in the first place, to

aggravate the moral hazard problem between banks. Banks have to deleverage in order to

keep issuing interbank claims. Of course, in the general equilibrium there are some counter–

balancing effects. For example, since the banking sector is less efficient the return on bank

deposit/equity goes down, the household reduces her savings, banks reduce their supply of

credit to the firm, and the equilibrium corporate loan rate tends to increase, which works to

restore banks’ incentives. But such effects are of second order. Overall, the crisis probability
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jumps from 2.69% to 7.34%.

A change in the distribution of banks has qualitatively similar effects. In the fourth column

we consider an economy where λ = 35, implying a high concentration of the distribution of

banks towards the top. The banking sector as a whole is more efficient than in the benchmark.

Since efficient banks have lower incentives to divert cash, the moral hazard problem is less

stringent and counterparty fears recede. Lenders tolerate a higher market funding ratio,

aggregate demand and the interbank rate rise, which crowds the less efficient banks out of

the demand side of the interbank loan market. As a result, the crisis probability drops from

2.7% to 0.16%. When they occur banking crises are however slightly more pronounced and

more protracted. This is because they break out after a longer build–up phase, upon larger

imbalances.

Higher Uncertainty is Conducive to Crises: As the only source of uncertainty, tech-

nology shocks play a crucial role in the model. In the last two columns in Table 4 we consider

two experiments. First, we increase the volatility of the shock by raising σz from 0.018 to

0.02, leaving its persistence unchanged. The consequences are straightforward: the household

accumulates more assets for precautionary motives, the corporate loan rate decreases with

respect to benchmark, and the financial sector is more fragile. Next, we increase the persis-

tence of the shock by raising ρz shock from 0.9 to 0.95, leaving its volatility unchanged. This

change exerts two opposite effects on financial stability. On the one hand, following a positive

productivity shock the household does not accumulate assets as fast as in the benchmark.

Hence financial imbalances build up more slowly. On the other hand, the productivity level

is more likely to remain high for longer, implying that imbalances accumulate over a longer

period of time and, therefore, grow larger. In our calibration, the first effect dominates, and

the probability of a crisis overall decreases.

6.2 Bank Leverage, Bank Defaults

One caveat of our model is that it abstracts from the dynamics of bank leverage and bank

defaults, two elements yet important from a macro–prudential perspective. The reason is

that, absent any friction between the banks and the household, the deposit to equity ratio is

indeterminate. In this section we introduce a friction that permits us to pin this ratio down

and to analyze the evolution of bank leverage and bank defaults along the typical path to

crisis. For simplicity, we will keep a framework where the bank deposit to equity ratio does

not have any impact on aggregate dynamics, so that the typical path to crisis is unchanged.

To derive this ratio we make two additional assumptions. First, we assume that banks can

collect deposits, which we define as the risk–free asset of the economy. Since deposits must

be risk–free, there is a limit to the quantity of deposits that a given bank can collect. This

40



limit is related to the value of the bank’s assets in the worst possible state of the nature,

i.e. γat+1 for a bank born in t. (The worst possible state of the nature for a bank is one

where the bank is inefficient and there is a crisis.) Second, we assume that banks are run

by risk–neutral managers, whose objective is to maximize their banks’ expected return on

equity. That managers do not discount risk —or have a different discount factor than the

shareholder’s— is a standard assumption that creates a wedge between the managers and

the shareholder’s objectives. While in equilibrium the shareholder will be indifferent between

equity and deposits, managers will in contrast be willing to raise as much deposits as possible.

To model defaults, we further assume that the shareholder has a partial liability, in the sense

that she must recapitalize the banks that are unable to repay their deposits up to a fraction

ξ of the banks’ assets, with ξ > 0. The shareholder’s liability thus amounts to ξat+1. Under

this assumption, a manager is able to raise deposits up to (γ + ξ)at+1, which is more than

what her bank will be able to repay, should a bad enough state of the nature materialize. We

will say in this case that the bank defaults.42 Let rdt+1 be the risk–free (non–state contingent)

gross return on deposits dt+1 and ret+1 (p) be the ex post return on bank p’s equity et+1 at

the end of period t+ 1 with, by definition, at+1 ≡ dt+1 + et+1 and

ret+1(p) ≡
rt+1(p)at+1 − rdt+1dt+1

et+1
, (10)

where rt+1(p) is defined in (5). Since bank p defaults when ret+1(p) < 0 the type p̃t+1 of the

marginal bank that defaults at the end of period t+ 1 is given by

p̃t+1 = r−1t+1

(
rdt+1

dt+1

at+1

)
I
pt+16r

−1
t+1

(
rdt+1

dt+1
at+1

), (11)

where I
pt+16r

−1
t+1

(
rdt+1

dt+1
at+1

) is an indicator function that takes value one if pt+1 6 r
−1
t+1

(
rdt+1

dt+1

at+1

)
and zero otherwise. The household’s no–arbitrage condition between deposits and equity then

requires that

Et(u′(ct+1)r
e
t+1) = rdt+1Et(u′(ct+1)), (12)

where ret+1 ≡
∫ 1
0 r

e
t+1(p)dµ(p). This condition relies on rdt+1 being a risk–free rate determined

at the end of period t, yields rdt+1 so that the household is indifferent between deposits and

42An alternative way to introduce bank defaults could be to assume that a deposit insurance scheme is in
place, that makes it possible for the managers to raise more risk–free deposits. The difference with our setup
is that deposit insurance is a subsidy to the banking sector, which would then have to be accounted for in
the Euler equation (4). In the companion technical appendix of the paper, we show that deposit insurance
would affect the dynamics of savings and the typical path to crisis, but only marginally. The constraint that a
given bank’s deposits are limited by the bank’s equity capital (see constraint 14 below) has indeed very little
impact on the aggregate dynamics in our model. The reason is that banks have the possibility to issue equity
on the market so as to raise their deposits and, ultimately, increase their supply of corporate loans. That is,
bank capital is not scarce. In this respect, our model stands in contrast with other models, like Gertler and
Kiyotaki (2009), where banks are not allowed to issue equity. This restriction is very severe because it implies
banks can only accumulate net worth through retained earnings. And in these models banks typically never
live long enough to accumulate enough net worth out of financing constraints. As a result, bank capital is
scarce and, by limiting the quantity of credit that banks can supply, it affects the aggregate dynamics. This
is not the case here.
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equity in equilibrium, and implies that rdt+1 < Et(ret+1). Risk–neutral managers choose the

deposit to equity ratio so as to maximize their respective banks’ expected returns on equity43

max
dt+1/et+1

βEt(rt+1) + β
(
Et(rt+1)− rdt+1

) dt+1

et+1
(13)

subject to the feasibility constraint that deposits must be risk–free,

dt+1r
d
t+1 6 (γ + ξ)at+1. (14)

Since (from (10) and (12)) Et (rt+1) > rdt+1 it is clear that managers want to raise as much

deposits as possible and that, in equilibrium, constraint (14) binds. Hence,

dt+1

et+1
=

γ + ξ

max
(
rdt+1 − γ − ξ, 0+

) . (15)

One can now easily derive borrowing (lending) banks’ optimal leverage `bt+1 (`lt+1) as

`bt+1 =
dt+1 + φt+1(dt+1 + et+1)

et+1
and `lt+1 =

dt+1

et+1
, (16)

as well as the mass ∆t+1 of the banks that default as

∆t+1 = µ (p̃t+1) . (17)

Bank leverage depends on both the market funding ratio and the deposit to equity ratio. It

is easy to see from Proposition 1 and relation (15) that these two ratios move in opposite

directions. On the one hand the market funding ratio increases with ρt+1. On the other

hand, the deposit to equity ratio decreases with rdt+1, as bank managers can afford raising

more deposits when deposits become cheaper. Since ρt+1 and rdt+1 move together, it is not

clear how leverage moves along the typical path. To investigate this, we set ξ = 0.4% so that

in the simulations 1% of the banks default on average every year; with this calibration bank

leverage is 16.13 on average (i.e. the bank capital ratio is around 6%), no bank defaults in

normal times, and 12.5% of the banks default in crisis times (see Table 5). The evolution of

Table 5: Leverage and Default

Leverage Default
Borrowing Banks Lending Banks Aggregate Normal Crisis Average

19.82 11.41 16.13 0 12.55% 0.90%

Note: All numbers are averages over a long simulation of 500,000 periods.

leverage, defaults, and the deposit rate along the typical path to crisis is reported in Figure

20.44 In the run–up to the typical crisis, bank leverage overall increases for all banks, be

43More precisely, bank managers choose dt+1/et+1 to maximize βEt (ret+1) subject to the identities
rt+1at+1 ≡ rdt+1dt+1 + ret+1et+1 and at+1 ≡ dt+1 + et+1. If managers’ incentives were aligned with the

banks’ shareholder, then they would instead maximize βEt
(
u′(ct+1)

u′(ct)
ret+1

)
and be indifferent between equity

and deposits.
44We focus on these variables because, the household being indifferent between equity and deposits, the

deposit to equity ratio does not have any effect on the macroeconomic dynamics and all the other variables of
the model follow the same path as in Figures 8–10.
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Figure 20: Typical Path: Leverage and Default
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they lenders or borrowers. For borrowers, in particular, the rise in the deposit to equity ratio

offsets the diminution of the market funding ratio (see Figure 9); hence, even for those banks

leverage is slightly pro–cyclical in normal times. During the crisis, in contrast, the evolution

of leverage differs across banks, depending on whether or not they rely on market funding.

While the leverage of borrowing banks (which finance themselves through the market) falls

during the crisis, that of lending banks (which only finance themselves through equity and

deposits) increases. The reason is that, in our model, bank equity is more volatile than retail

deposits but less volatile than interbank loans. This result highlights the importance of the

(un)stability of banks’ various sources of funding in determining the dynamics of leverage.

Finally, the lower right panel in Figure 20 shows that a significant mass of banks need to be

recapitalized during systemic banking crises.

7 Conclusion

We develop a simple macroeconomic model that accounts for key features of systemic banking

crises and helps understand why, historically, banking crises (i) occur in unusually good times

and (ii) bring about the most severe recessions. The primary cause of systemic banking crises

in the model is the accumulation of assets by the household in anticipation of future adverse

shocks. When long enough, this asset accumulation process generates financial imbalances
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(credit boom, disproportionately large bank balance sheets), which, in the best case, lower

the resilience of the banking sector to shocks and, in the worst case, lead endogenously to

a crisis. In this context, adverse random shocks themselves play a secondary role, as what

matters the most is the conditions under which these shocks occur. This last result is of

particular importance from a policy making perspective: it implies that systemic banking

crises are predictable. We show indeed that, although very stylized, our model provides with

a simple tool to detect financial imbalances and predict future crises.
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— APPENDIX —

A Proofs of Propositions

Proposition 1: The program of a borrowing bank writes

max
φt

pRt(1 + φt)− ρtφt

s.t. pRt(1 + φt)− ρtφt > ρt
γ(1 + θφt) 6 ρt

The participation constraint indicates that only banks with ability p > pt ≡ ρt/Rt will borrow. We
focus on this segment of the market. The problem simplifies to

max
φt

pRt(1 + φt)− ρtφt

s.t. γ(1 + θφt) 6 ρt

for p > pt. Let us denote by λ the Lagrange multiplier associated to the incentive constraint, the first
order conditions are then

pRt − ρt = γθλ

λ(ρt − γ(1 + θφt)) = 0

It follows that λ > 0 for all p > pt. The result follows. �

Proposition 2: The market clearing condition (9a) in normal times together with the optimal
demand for capital yields the normal times equilibrium corporate loan rate Rt = fk(at; zt) + 1 − δ.
The interbank market is at work if and only if this rate is above R, i.e., if and only if at 6 at ≡
f−1k (R+ δ − 1; zt). �

Proposition 3: The proof proceeds in two steps.

i) From (9) and Proposition 2, we show that the corporate loan rate increases during a credit
crunch:

lim
at↗at

Rt + δ − 1 = lim
at↗at

fk(at; zt) = lim
at↘at

fk(at; zt)

< lim
at↘at

fk ((1− µ (γ/Rt)) at; zt) = lim
at↘at

Rt + δ − 1

ii) From (7), we know that limat↗at rt/Rt =
∫ 1

pt
p dµ(p)
1−µ(pt)

, which conditional expectation monoton-

ically increases in pt. Using point (i) and the inequality ρt > γ, we have that limat↗at pt >

limat↗at γ/Rt > limat↘at γ/Rt. Hence, limat↗at rt/Rt > limat↘at
∫ 1

γ/Rt
p dµ(p)
1−µ(γ/Rt) . Finally,

we know from (7) that

lim
at↘at

rt/Rt = lim
at↘at

γ

Rt
µ

(
γ

Rt

)
+

∫ 1

γ/Rt

p dµ (p) < lim
at↘at

∫ 1

γ/Rt

p
dµ (p)

1− µ (γ/Rt)
,

which implies limat↗at rt/Rt > limat↘at rt/Rt. The result follows. �
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B Equations of the Model with endogenous Labour Supply

1. yt = ztk
α
t h

1−α
t + (γ + δ − 1) (at − kt)

2. Rt = αk
−υ(1−α)
υ+α

t z
1+υ
υ+α

t

(
1− α
ϑ

) 1−α
υ+α

+ 1− δ

3.

(
ct − ϑ

h1+υt

1 + υ

)−σ
= βEt

(ct+1 − ϑ
h1+υt+1

1 + υ

)−σ
rt+1


4. ht =

(
(1− α) zt

ϑ

) 1
υ+α

k
α
υ+α

t

5. at ≡ ((1− α) /ϑ)
1
υ
(
α/
(
R+ δ − 1

)) υ+α
υ(1−α) z

1+υ
υ(1−α)

t

6. it = at+1 − (1− δ) at

If at 6 at (normal times)

7a. kt = at

8a.
rt
Rt

=

∫ 1

pt

p
dµ (p)

1− µ (pt)

9a. pt =
ρt
Rt

10a. Rt =
ρt

µ−1
(

ρt−γ
ρt−(1−θ)γ

) , with ρt > ρ

11a. yt = ct + it + (Rt − rt) at

If at > at (crisis times)

7b. kt = at − µ (γ/Rt) at

8b.
rt
Rt

=
γ

Rt
µ (γ/Rt) +

∫ 1

γ/Rt

p dµ (p)

9b. pt = γ/Rt

10b. ρt = γ

11b. yt = ct + it + (Rt − rt) at − (Rt − γ) (at − kt)

Few comments are in order here. (i) In autarky assets at − kt are stored for return γ. Since capital
depreciates at rate δ, the value added of storage is γ + δ − 1, as reflected in equation 1. (Remember
that γ + δ − 1 > 0.) (ii) The good market clearing conditions 11a and 11b are derived from Walras’
law and the agents’ budget constraints. Summing up the household and the firm’s budget constraints
(1) and (3), one gets: ct + at+1 = ztk

α
t h

1−α
t + (1− δ) kt + rtat − Rtkt, which simplifies to ct + it =

yt−(γ+δ−1)(at−kt)−(1− δ) (kt−at)+rtat−Rtkt⇐⇒ yt = ct+it+(Rt−rt)at−(Rt−γ)(at−kt). (iii)
The last two terms of this accounting identity correspond to the aggregate cost of financial frictions.

In autarky, for instance, this cost is, by definition, equal to
∫ 1

γ/Rt
(1− p)Rtat dµ(p), which indeed

simplifies to (using 7b and 8b): (1− µ(γ/Rt))Rtat − at
∫ 1

γ/Rt
pRt dµ(p) = Rtkt − rtat + γ(kt − at) =

(Rt − rt) at − (Rt − γ) (at − kt).
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C Additional Figures

C.1 Response to a Large Negative Shock

The economy is started from the average steady state and is subjected to a 10% drop in total factor
productivity in the initial period. As in other DSGE models featuring financial frictions, the model is
able to generate a financial crisis from a large negative shock, provided that the shock is large enough.
In our case, a 7% drop from average steady state is sufficient to generate crises.

Figure C.1: Response to a large drop in TFP (I)
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Figure C.2: Response to a large drop in TFP (II)
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Figure C.3: Response to a large drop in TFP (III)
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C.2 Evolution of US Interest Rates and Spreads

Figure C.4: Evolution of Various Corporate Loan Spreads

(a) Spread: Corporate loan rates - Federal Fund Rate
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(b) Underlying Real Corporate Loan Rates
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The effective federal fund rate is from the Federal Reserve Economic Database (http://research.
stlouisfed.org/fred2/series/FEDFUNDS?cid=118). The corporate loan rates are from the Fed-
eral reserve (http://www.federalreserve.gov/releases/e2/e2chart.htm). Nominal rates are de-
flated using the annualized quarter on quarter rate of growth of the GDP implicit deflator (http:
//research.stlouisfed.org/fred2/series/GDPDEF?cid=21).
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