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This Appendix contains supplementary material for Private Information and Insurance Re-
jections. Appendix A contains the proof of Theorem 1 and discusses Remark 1. Appendix B
provides proofs for the lower bound approach discussed in Section 4.1. Appendix C discusses
the data, including details for the covariate specifications and the sample selection. Appendix
D discusses the empirical specification for the lower bound estimator and presents additional
robustness checks referred to in Section 6.5. Section E provides details on the specification
and estimation of the structural approach referred to throughout Section 7. Finally, Section F
presents the a selection of pages from the LTC underwriting guidelines of Genworth Financial.

A Theory Appendix

A.1 Proof of No-Trade Theorem

I prove the no-trade theorem in several steps. First, I translate the problem to a maximization
problem in utility space. Second, I prove the converse of the theorem directly by constructing an
implementable allocation other than the endowment when Condition (1) does not hold. Third,
I prove the no trade theorem for a finite type distribution. Fourth, I approximate arbitrary
distributions satisfying Condition (1) with finite type distributions and pass to the limit, thus
proving the no trade theorem for a general type distribution.

Most of the steps of the proof are straightforward. Indeed, it is arguably quite obvious that
condition (1) rules out the profitability of any pooling contract. The theoretical contribution
is to show that condition (1) also rules out the profitability of separating contracts. Indeed,
the ability for insurance companies to offer separating contracts is an important ingredient in
previous models of this environment (Spence [1978], Riley [1979], Chade and Schlee [2011]).
In Lemma (A.5), I show that condition (1) implies the profitability of a menu of contracts is
bounded above by the profitability of a pooling allocation.

A.1.1 Utility Space

First, translate the problem to utility space so that the incentive and individual rationality
constraints are linear in utility. Let c (u) = u−1 (u) denote the inverse of the utility function
u (c), which is strictly increasing, continuously differentiable, and strictly convex. I denote the
endowment allocation by E = {(cL (p) , cNL (p))}p = {(w − l, l)}p. Let us denote the endowment
allocation in utility space by EU = {u (w − l) , u (w)}p. To fix units, I normalize uNL (1) = u (w).
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Given a utility allocation AU = {uL (p) , uNL (p)}p∈Ψ, denote the slack in the resource con-
straint by

Π
(
AU
)

=

ˆ
[w − pl − pc (uL (p))− (1− p) cNL (p)] dF (p)

I begin with a useful lemma that allows us to characterize when the endowment is the only
implementable allocation.

Lemma A.1 (Characterization). The endowment is the only implementable allocation if and
only if EU is the unique solution to the following constrained maximization program, P1

P1 : max
{uL(p),uNL(p)}p

ˆ
[w − pl − pc (uL (p))− (1− p) c (uNL (p))] dF (p)

s.t. puL (p) + (1− p)uNL (p) ≥ puL (p̂) + (1− p)uL (p̂) ∀p, p̂ ∈ Ψ

puL (p) + (1− p)uNL (p) ≥ pu (w − l) + (1− p)u (w) ∀p ∈ Ψ

Proof. Note that the constraint set is linear and the objective function is strictly concave. The
first constraint is the incentive constraint in utility space. The second constraint is the individual
rationality constraint in utility space. The linearity of the constraints combined with strict
concavity of the objective function guarantees that the solutions are unique. Suppose that
the endowment is the only implementable allocation and suppose, for contradiction, that the
solution to the above program is not the endowment. Then, there exists an allocation AU =

{uL (p) , uNL (p)} such that
´

[w − pl − pc (uL (p))− (1− p) c (uNL (p))] dF (p) > 0 which also
satisfies the IC and IR constraints. Therefore, AU is implementable, which yields a contradiction.
Conversely, suppose that there exists an implementable allocation B such that B 6= E. Let
BU denote the associated utility allocations to the consumption allocations in B. Then, BU

satisfies the incentive and individual rationality constraints. Since the constraints are linear,
the allocations CU (t) = tBU + (1− t)EU lie in the constraint set. By strict concavity of the
objective function, Π

(
CU (t)

)
> 0 for all t ∈ (0, 1). Since Π

(
EU
)

= 0, EU cannot be the
solution to the constrained maximization program.

The lemma allows me to focus attention on solutions to P1, a concave maximization program
with linear constraints.

A.1.2 Necessity of the No Trade Condition

I begin the proof with the converse portion of the theorem: if the no-trade condition does not
hold, then there exists an implementable allocation A 6= E which does not utilize all resources
and provides a strict utility improvement to a positive measure of types.

Lemma A.2 (Converse). Suppose Condition (1) does not hold so that there exists p̂ ∈ Ψ\ {1}
such that p̂

1−p̂
u′(w−l)
u′(w) > E[P |P≥p̂]

1−E[P |P≥p̂] . Then, there exists an allocation ÂU = {(ûL (p) , ûNL (p))}p
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and a positive measure of types, Ψ̂ ⊂ Ψ, such that

pûAL (p) + (1− p) ûNL (p) > pu (w − l) + (1− p)u (w) ∀p ∈ Ψ̂

and ˆ
[W − pL− pc (ûL (p))− (1− p) c (ûNL (p))] dF (p)

Proof. The proof follows by constructing an allocation which is preferable to all types p ≥ p̂ and
showing that the violation of Condition (1) at p̂ ensures its profitability. Given p̂ ∈ Ψ, either
P = p̂ occurs with positive probability, or any open set containing p̂ has positive probability. In
the case that p̂ occurs with positive probability, let Ψ̂ = {p̂}. In the latter case, note that the
function E [P |P ≥ p] is locally continuous in p at p̂ so that WLOG the no-trade condition does
not hold for a positive mass of types. WLOG, I assume p̂ has been chosen so that there exists a
positive mass of types Ψ̂ such that p ∈ Ψ̂ implies p ≥ p̂. Then, for all p ∈ Ψ̂, I have Ψ̂ ⊂ Ψ such
that

p

1− p
u′ (w − l)
u′ (w)

>
E [P |P ≥ p]

1− E [P |P ≥ p]
∀p ∈ Ψ̂

Now, for ε, η > 0, consider the augmented allocation to types p ∈ Ψ̂:

uL (ε, η) = u (w − l) + ε+ η

uNL (ε, η) = u (w)− 1− p̂
p̂

ε

Note that if η = 0, ε traces out the indifference curve of individual p̂. Construct the utility
allocation AU (ε, η) defined by

(ûL (p) , ûNL (p)) =

{ (
u (w − l) + ε+ η, u (w)− p̂

1−p̂ε
)

if p ≥ p̂
(u (w − l) , u (w)) if p < p̂

Note that for ε > 0 and η > 0 the utility allocation (ûL (p) , ûNL (p)) is strictly preferred by all
types p ≥ p̂ relative to the endowment utility allocation. Therefore, AUε is individually rational
and incentive compatible. I now only need to verify that there exists an allocation with ε > 0

and η > 0 which does not exhaust resources. I have

Π (ε, η) =

ˆ
[w − pl − pc (ûL (p))− (1− p) c (ûNL (p))] dF (p)

Notice that this is continuously differentiable in ε and η. Differentiating with respect to ε and
evaluating at ε = 0 yields

∂Π

∂ε
|ε=0 =

ˆ [
−pc′ (u (w − l + η)) +

p̂

1− p̂
(1− p) c′ (u (w))

]
1 {p ≥ p̂} dF (p)
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which is strictly positive if and only if

E [P |P ≥ p̂] c′ (u (w − l + η)) <
p̂

1− p̂
(1− E [P |P ≥ p̂]) c′ (u (w))

Notice that this is continuous in η. So, at η = 0, I have

∂Π

∂ε
|ε=0,η=0 > 0 ⇐⇒ p̂

1− p̂
u′ (w − l)
u′ (w)

>
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

and thus by continuity, the above condition holds for sufficiently small η > 0, proving the
existence of an allocation which both delivers strictly positive utility for a positive fraction of
types and does not exhaust all resources.

This shows that Condition (1) is necessary for the endowment to be the only implementable
allocation.

A.1.3 Useful Results

Before showing that Condition (1) is sufficient for no trade, it is useful to have a couple of results
characterizing solutions to P1.

Lemma A.3. Suppose Condition (1) holds. Then for all cL, cNL ∈ [w − l, l],

p

1− p
u′ (cL)

u′ (cNL)
≤ E [P |P ≥ p]

1− E [P |P ≥ p]
∀p ∈ Ψ\ {1}

and if cL, cNL ∈ (w − l, l),

p

1− p
u′ (cL)

u′ (cNL)
<

E [P |P ≥ p]
1− E [P |P ≥ p]

∀p ∈ Ψ\ {0, 1}

Proof. Since u′ (c) is decreasing in c, I have u′(cL)
u′(cNL) ≤

u′(w−l)
u′(w) . Therefore, the result follows

immediately from Condition (1). The strict inequality follows from strict concavity of u (c).

Lemma A.4. In any solution to P1, cL (p) ≥ w − l and cNL (p) ≤ w.

Proof. Suppose A = {cL (p) , cNL (p)}p is a solution to P1. First, suppose that cL (p̂) < w − l.
For this contract to be individually rational, I must have cNL (p̂) > w. Incentive compatibility
requires cL (p) ≤ cL (p) < w − l ∀p < p̂ and cNL (p) ≥ cNL (p̂) > w ∀p < p̂. Consider the new
allocation Ã = {c̃L (p) , c̃NL (p)} defined by

c̃L (p) =

cL (p) if p > p̂

w − l if p ≤ p̂
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c̃NL (p) =

cNL (p) if p > p̂

w if p ≤ p̂

Then Ã is implementable (IC holds because of single crossing of the utility function). It only
remains to show that Π (A) < Π

(
Ã
)
. But this follows trivially. Notice that the IR constraint

and concavity of the utility function requires that points (cL (p) , cNL (p)) lie above the zero profit
line p (w − l − cL) + (1− p) (w − cNL). Thus, each point (cL (p) , cNL (p)) must earn negative
profits at each p ≤ p̂.

Now, suppose cNL (p̂) > w. Then, the incentive compatibility constraint requires cNL (p) >

w ∀p ≤ p̂. Construct Ã as above, yielding the same contradiction.

I now prove the theorem in two steps. First, I prove the result for a finite type distribution.
I then pass to the limit to cover the case of arbitrary distributions.

A.1.4 Sufficiency of the No Trade Condition for Finite Types

To begin, suppose that Ψ = {p1, ...pN}. I first show that Condition (1) implies that the solution
to P1 is a pooling allocation which provides the same allocation to all types.

Lemma A.5. Suppose Ψ = {p1, ..., pN} and that condition (1) holds (note that this requires
pN = 1). Then, the solution to P1 is a full pooling allocation: there exists ūL, ūNL such that
(uL (p) , uNL (p)) = (ūL, ūNL) for all p ∈ Ψ\ {0, 1}, uL (1) = ūL, uNL (0) = ūNL.

Proof. Let AU = {u∗L (p) , u∗NL (p)}p denote the solution to P and suppose for contradiction
that the solution to P is not a full pooling allocation. Let p̂ = min {p|u∗L (p) = u∗L (1)}, let
p̂− = max {p|u∗L (p) 6= u∗L (1)}. The assumption that Ψ is finite implies that p̂ > p̂−. Let us
define the pooling sets J = {p|u∗L (p) = u∗L (1)} and K = {p|u∗L (p) = u∗L (p̂−)}. I will show that
a profitable deviation exists which pools groups J and K into the same allocation. First, notice
that if p̂ = 1, then clearly it is optimal to provide group J with the same amount of consumption
in the event of a loss as group K, since otherwise the IC constraint of the type p̂ = 1 type would
be slack. So, I need only consider the case p̂ < 1.

Notice that if the IR constraint of any member of group J binds (i.e. if the IR constraint
for p̂ binds), then their IC constraint implies that the only possible allocation for the lower
risk types p < p̂ is the endowment. This standard result follows from single crossing of the
utility function. Therefore, I have two cases. Either all types p̃ ∈ Ψ\J receive their endowment,
(cL, cNL) = (w − l, w), or the IR constraint cannot bind for any member of J . I consider these
two cases in turn.

Suppose u∗L (p) = u (w − l) and u∗NL (p) = u (w) for all types p̃ ∈ Ψ\J . Clearly, I must
then have that the IR constraint must bind for type p̂, since otherwise profitability could be
improved by lowering the utility provided to types p̃ ∈ Ψ\J . I now show that the profitability
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of the allocation violates the no-trade condition. The profitability of AU is

Π
(
AU
)

=

ˆ
p∈J

[w − pl − pc (u∗L (p̂))− (1− p) c (u∗NL (p̂))] dF (p)

Now, I construct the utility allocation AUt by

(
utL (p) , utNL (p)

)
=


(
u (w − l) + t, u (w)− p̂

1−p̂ t
)

if p ∈ J

(u (w − l) , u (w)) if p 66∈ J

Since the IR constraint binds for type p̂, I know that there exists t̂ such that AU
t̂

= AU . By
Lemma A.4, t̂ > 0 and AUt satisfies IC and IR for any t ∈

[
0, t̂+ η

]
for some η > 0. Since profits

are maximized at t = t̂ and since the objective function is strictly concave, it must be the case
that

dΠ
(
AUt
)

dt
|t=t̂ = 0

where
dΠ
(
AUt
)

dt
|t=t̂ =

ˆ
p∈J

[
pc′ (u∗L (p))− (1− p) c′ (u∗NL (p))

p̂

1− p̂

]
dF (p)

Re-arranging and combining these two equations, I have

p̂

1− p̂
u′ (c (u∗L (p̂)))

u′
(
c
(
u∗NL (p̂)

)) =
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

which, by strict concavity of u, implies

p̂

1− p̂
u′ (w − l)
u′ (w)

>
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

which contradicts Condition (1).
Now, suppose that the IR constraint does not bind for any member of J . Then, clearly the

IC constraint for type p̂ must bind, otherwise profit could be increased by lowering the utility
provided to members of J . So, construct the utility allocation BU

ε to be

(uεL (p) , uεNL (p)) =

{ (
u∗L (p̂)− ε, u∗NL (p̂) + p̂

1−p̂ε
)

if p ≥ p̂
(u∗L (p) , u∗NL (p)) if p < p̂

so that BU
ε consists of allocations equivalent to AU except for p ∈ J . By construction, BU

ε , is IR
for any ε. Moreover, because of single crossing and because types are separated (finite types),
BU
ε continues to be IC and IR for ε ∈ (−η, η) for some η > 0 sufficiently small. Therefore, I
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must have dΠ(BUε )
dε |ε=0 = 0, which implies

dΠ
(
BU
ε

)
dε

|ε=0 =

ˆ
p∈J

[
pc′ (u∗L (p̂))− (1− p) c′ (u∗NL (p̂))

p̂

1− p̂

]
dF (p)

= Pr {p ∈ J}

[
E [P |P ≥ p̂] 1

u′
(
c
(
u∗L (p̂)

)) − (1− E [P |P ≥ p̂]) 1

u′
(
c
(
u∗NL (p̂)

)) p̂

1− p̂

]

= Pr {p ∈ J} (1− E [P |P ≥ p̂])
u′
(
c
(
u∗L (p̂)

)) [
E [P |P ≥ p̂]

(1− E [P |P ≥ p̂])
−

u′ (c (u∗L (p̂)))

u′
(
c
(
u∗NL (p̂)

)) p̂

1− p̂

]
= 0

which implies
p̂

1− p̂
u′ (c (u∗L (p̂)))

u′
(
c
(
u∗NL (p̂)

)) =
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

which, by strict concavity of u, implies

p̂

1− p̂
u′ (w − l)
u′ (w)

>
E [P |P ≥ p̂]

1− E [P |P ≥ p̂]

which contradicts Condition (1). Therefore, if Condition (1) holds, the only possible solution to
P1 is a full pooling allocation.

All that remains to show is that a full pooling allocation cannot be a solution to P1.

Lemma A.6. Suppose Condition (1) holds. Then, the only possible full-pooling solution to P1

is EU .

Proof. Suppose for contradiction that AU 6= EU is a full-pooling solution to P1. Let u∗L, u
∗
NL

denote the full pooling allocations AU . Recall p1 = min Ψ is the lowest risk type. Note that
the IR constraint for the p1 = min Ψ type must bind in any solution to P1. Otherwise, profits
could be increased by providing all types with less consumption, without any consequences on
the incentive constraints of types p > p1. Consider the allocations CUt defined by

(
utL, u

t
NL

)
= (u∗L + (1− t) (u (w − l)− u∗L) , u∗NL + (1− t) (u (w)− u∗NL))

so that when t = 1 these allocations correspond to AU and t = 0 corresponds to the endowment.
Because the IR constraint of the p1 type must hold, I know that these allocations must follow
the iso-utility curve of the p1 type which runs through the endowment. Differentiating with
respect to t and evaluating at t = 0 yields

dΠ
(
CUt
)

dt
|t=0 = E [P |P ≥ p1] c′ (u (w − l))− (1− E [P |P ≥ p1]) c′ (u (w))

p1

1− p1

where p1
1−p1 comes from the fact that I can parameterize the iso-utility curve of the p1 type by
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uL − τ, uNL + p1
1−p1 τ . But re-arranging the equation, I have

dΠ
(
CUt
)

dt
|t=0 = −E [P |P ≥ p1]

1

u′ (w − l)
+ (1− E [P |P ≥ p1])

1

u′ (w)

p1

1− p1

=
1− E [P |P ≥ p1]

u′ (W − L)

(
− E [P |P ≥ p1]

1− E [P |P ≥ p1]
+
u′ (w − l)
u′ (w)

p1

1− p1

)
< 0

which yields a contradiction of Condition (1) at p = p1.

Therefore, I have shown that if Ψ is finite, then if Condition (1) holds, the only possible
allocation is the endowment. It only remains to show that this property holds when Ψ is not
finite.

A.1.5 Extension to Arbitrary Type Distribution

If F (p) is continuous or mixed and satisfies the no-trade condition, I first show that F can be
approximated by a sequence Fn of finite support distributions on [0, 1], each of which satisfy the
no-trade condition.

Lemma A.7. Let P be any random variable on [0, 1] with c.d.f. F (p). Then, there exists a
sequence of random variables, PN , with c.d.f. FN (p), such that FN → F uniformly and

E [PN |PN ≥ p] ≥ E [P |P ≥ p] ∀p, ∀N

Proof. Since F is increasing, it has at most a countable number of discontinuities on [0, 1]. Let
D = {δi} denote the set of discontinuities and WLOG order these points so that limε→+0 F (δi)−
limε→−0 F (δi) is decreasing in i (so that δ1 is the point of largest discontinuity). Then, the
distribution F is continuous on Ψ\D. For any N , let ωN denote a partition of [0, 1] given
by 2N + min {N, |D|} + 1 points equal to j

2N
for j = 0, ..., 2N and {δi|i ≤ N}. I write ωN ={

pNj

}2N+min{N,|D|}+1

j=1
. Now, define F̂N : ωN → [0, 1] by

F̂N (p) = F
(
max

{
pNj |pNj ≤ p

})
so that F̂N converges to F uniformly as N →∞.

Unfortunately, I cannot be assured that F̂N satisfies the no-trade condition at each N . But,
I can perform a simple modification to F̂N to arrive at a distribution that does satisfy the no-
trade condition for all N and still converges to F . To do so, consider the following modification
to any random variable. For any λ ∈ [0, 1] and for any random variable X distributed G (x)

on [0, 1] define the random variable Xλ to be the random variable with c.d.f. λG (x) and
Pr {Xλ = 1} = 1 − λ. In other words, with probability λ the variable is distributed according
to X and with probability 1 − λ the variable takes on a value of 1 with certainty. Notice that
E [Xλ|Xλ ≥ x] is continuously decreasing in λ and E [X0|X0 ≥ x] = 1 ∀x.
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Now, given F̂N with associated random variable P̂N , I define PNλ to be the random variable
with c.d.f. λF̂N (p). I now define a sequence {λN}N by

λN = max
{
λ|E

[
PNλ |PNλ ≥ p

]
≥ E [P |P ≥ p] ∀p

}
Note that for each N fixed, the set

{
λ|E

[
PNλ |PNλ ≥ p

]
≥ E [P |P ≥ p] ∀p

}
is a compact subset

of [0, 1], so that the maximum exists. Given λN , I define the new approximating distribution,
FN (p), by

FN (p) = λNF
N (p)

which satisfies the no-trade condition for all N . The only thing that remains to show is that
λN → 1 as N →∞.

By definition of λN , for each N there exists p̃N such that

E
[
PNλN |P

N
λN
≥ p̃N

]
= E [P |P ≥ p̃N ]

Moreover, because λN is bounded, it has a convergent subsequence, λNk → λ∗. Therefore,

E
[
PNkλ∗ |P

Nk
λ∗ ≥ q

]
→ E [Pλ∗ |Pλ∗ ≥ q]

uniformly (over q) as k → 0, where Pλ∗ is the random variable with c.d.f. λ∗F (p). Moreover,

E
[
PNkλNk

|PNkλNk
≥ q
]
→ E [Pλ∗ |Pλ∗ ≥ q]

uniformly (over q) as k → 0. Therefore,

E
[
PNkλ∗ |P

Nk
λ∗ ≥ p̃N

]
→ E [P |P ≥ p̃N ]

so that I must have λ∗ = 1.
Therefore, the distribution PNk with c.d.f. FNk (p) = λNkF

Nk (p) for k ≥ 1 has the property

E
[
PNk |PNkλ ≥ p

]
≥ E [P |P ≥ p] ∀p

and FNk (p) converges uniformly to F (p).

Now, returning to problem P1 for an arbitrary distribution F (p) which satisfies the no-
trade condition. Let Π (A|F ) denote the value of the objective function for allocation A under
distribution F . Suppose for contradiction that an allocation Â = (ûL (p) , ûNL (p)) 6= (w − l, w)

is the solution to P1 under distribution F , so that Π (A|F ) > 0. Let FN (p) be a sequence
of finite approximating distributions which satisfy the no-trade condition and converge to F .
Let ωN =

{
pNj

}
denote the support of each approximating distribution. For any N , define

the augmented allocation ÂN =
(
ûNL (p) , ûNNL (p)

)
by choosing (ûL (p) , ûNL (p)) to be the most
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preferred bundle from the set
{
uL

(
pNj

)
, uNL

(
pNj

)}
j
. Since Â is incentive compatible, clearly

I will have
(
ûNL

(
pNj

)
, ûNNL

(
pNj

))
=
(
ûL

(
pNj

)
, ûNL

(
pNj

))
. By single crossing, for p 6= pNj

agents with p ∈
(
pNj−1, p

N
j

)
will prefer either allocation for type pNj−1 or pNj .

Clearly, ÂN converges uniformly to Â. Since ÂN satisfies IC and IR by construction, the
no-trade condition implies that the allocation ÂN cannot be as profitable as the endowment, so
that

Π
(
ÂN |FN

)
≤ Π (E|FN ) = 0 ∀N

By the Lebesgue dominated convergence theorem (Π
(
ÂN |FN

)
is also bounded below by− (W + L)),

Π
(
Â|F

)
≤ 0

Which yields a contradiction that Â was the optimal solution (which required Π
(
Â|F

)
> 0)

and concludes the proof.

A.2 Remark 1

A proof of Remark 1 follows in the same manner as the proof of the no trade condition. It is
straightforward to see how the no trade condition holding for values p ≤ F−1 (1− α) rules out
the tradability of pooling contracts that attract a fraction α of the population. To see how it
also rules out separating contracts, one can repeat the analysis of Lemma A.5 noting that the
measure of the sets J and K must be at least α.
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B Properties of the Lower Bound Estimator

This section formally derives the properties of the nonparametric lower bound approach pre-
sented in Section 4.1 and provides a proof of Proposition 2.

First, note that P is a mean-preserving spread of PZ :

E [P |X,Z] = E [Pr {L|X,P} |X,Z]

= E [Pr {L|X,Z, P} |X,Z]

= Pr {L|X,Z}

= PZ

where the first equality follows from Assumption 1, the second equality follows from Assumption
2, the third equality follows from the law of iterated expectations (averaging over realizations of
P given X and Z), and the fourth equality is the definition of PZ .

Let QP (α) to be the α-quantile of P ,

QP (α) = inf
q
{q|Pr {P ≤ q} ≥ α}

and Qα (PZ) to be the α-quantile of the analogue,

QPZ (a) = inf
q
{q|Pr {PZ ≤ q} ≥ α}

Note that E [m (P )] can be represented as a weighted average of these quantiles:

E [m (P )] =

ˆ 1

0
[Eα̃ [QP (α̃)−QP (α) |α̃ ≥ α]] dα

=

ˆ 1

0

1

1− α

[ˆ
ã≥α

[QP (α̃)−QP (α) dα̃]

]
dα

=

ˆ 1

0

ˆ
ã≥α

QP (α)

1− α
dα̃dα− E [P ]

=

ˆ 1

0
QP (α̃)

ˆ α̃

0

1

1− α
dαdα̃− E [P ]

=

ˆ 1

0
[QP (α)− E [P ]] log

(
1

1− α

)
dα

Now it is straightforward to prove Proposition 2.

Proof of Proposition 2 The fact that P is a mean-preserving spread of PZ implies that

ˆ 1

x
QPZ (α) dα ≤

ˆ 1

x
QP (α) dα ∀x ∈ [0, 1]

11



So,

E [m (P )]− E [mZ (PZ)] =

ˆ 1

0
[QP (α)−QPZ (α)] log

(
1

1− α

)
dα

=

ˆ 1

0
[QP (α)−QPZ (α)]

ˆ α

0

1

1− α̃
dα̃dα

=

ˆ 1

0

ˆ α

0
[QP (α)−QPZ (α)]

1

1− α̃
dα̃dα

=

ˆ 1

0

ˆ 1

α̃
[QP (α)−QPZ (α)]

1

1− α̃
dαdα̃

=

ˆ 1

0

(ˆ 1

α̃
[QP (α)−QPZ (α)] dα

)
1

1− α̃
dα̃

≥ 0

where the last inequality follows from the fact that
´ 1
α̃ [QP (α)−QPZ (α)] dα ≥ 0 for all α̃

because P is a mean-preserving spread of PZ .
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C Data Appendix

C.1 Covariate Specification

The variables used in the pricing and full controls specifications for each market are presented
in Table A1. These specifications, along with the baseline age and gender specification, cover a
wide range of variables that insurance companies could potentially use to price insurance and
allow for an assessment of how the potential frictions imposed by private information would vary
with the observable characteristics insurance companies use to price insurance.

LTC In LTC, the pricing specification primarily follows Finkelstein and McGarry [2006] to
control for variables insurers use to price insurance, along with the interaction of a rich set
of health conditions to capture how insurance companies would price contracts to whom they
currently reject. I include age and age squared, both interacted with gender; indicators for
ADL restrictions, an indicator for performance in the lowest quartile on a word recall test, and
indicators for numerous health conditions: presence of an ADL or IADL, psychological condition,
diabetes, lung disease, arthritis, heart disease, cancer, stroke, and high blood pressure.73 For the
extended controls specification, I add full interactions for age and gender, along with interactions
of 5 year age bins with measures of health conditions, indicators for the number of living relatives
(up to 3), census region, and income deciles.

Disability For disability, I construct the pricing specification using underwriting guidelines
and also rely on feedback from interviews with a couple of disability insurance underwriters
at major US insurers. In general, there are three main categories of variables used in pricing:
demographics, health, and job information. The pricing specification includes age, age squared,
and gender interactions; indicators for self employment, obesity (BMI > 40), the presence of
a psychological condition, back condition, diabetes, lung disease, arthritis, a heart condition,
cancer, stroke, and high blood pressure. I also include a linear term in BMI to capture differential
pricing based on weight. Finally, I include wage deciles to capture differential pricing by wage.

The extended controls specification includes full interactions of age and gender, full inter-
actions of wage deciles, a part time working status indicator, job tenure quartiles, and a self
employment indicator. I also include interactions between 5 year age bins and the following
health variables: arthritis, diabetes, lung disease, cancer, heart condition, psychological con-
dition, back condition, and BMI quartiles. I also include full interactions between 5 year age
bins and BMI quartiles. I also include full interactions of several job characteristic variables: an
indicator that the job requires stooping, the job requires lifting, and the job requires physical
activity. Finally, I include interactions between 5 year age bins and census region (1-5).

73Note that for the no reject sample many of these health conditions will in practice drop out of the estimation
because, for example, there are no people with ADLs in the no reject sample.
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In general, my conversations with underwriters suggest I have a decent approximation to the
way in which insurers currently price insurance. However, as discussed in the main text, I do not
observe the results of medical tests and attending physician statements, which sometimes feed
into the underwriting process. Underwriters suggest the primary role of such tests is to verify
application information, not for independent use in pricing; but there may be some additional
factors not included in my regressions that disability insurers could use to price insurance.74

Life For life, the pricing specification primarily follows He [2009] who tests for adverse selection
in life insurance. The preferred specification includes age, age squared, and gender interactions,
smoking status, indicators for the death of a parent before age 60, BMI, income decile, and
indicators for a psychological condition, diabetes, lung disease, arthritis, heart disease, cancer,
stroke, and high blood pressure. I also include a set of indicators for the years between the
survey date and the AGE corresponding to the loss.75

The extended controls specification adds full interactions of age and gender; full interactions
between age and the AGE in the subjective probability question; interactions between 5 year
age bins and smoking status, income decile, census region, and various health conditions (heart
condition, stroke, non-basal cell cancer, lung disease, diabetes and high blood pressure); BMI;
and an indicator for death of a parent before age 60.

In general, I approximate the variables insurers use to price insurance fairly well. As with
disability insurance, life insurers often require medical tests and attending physician statements
from applicants; and, as with disability insurance, my conversations with underwriters suggest
that the primary role of such tests is to verify application information and ensure that there is
no presence of a rejection condition. But, I cannot rule out that such information could be used
by insurance companies to price insurance.

Although I can well approximate the variables insurers use currently to price insurance,
the data does have one key limitation in constructing the variables insurers would use to price
insurance to the rejectees. A common rejection condition is the presence of cancer. If insurers
were to offer insurance to people with cancer, they would potentially price differentially based on
the organ in which the cancer occurs. Unfortunately, the HRS does not report the organ in which
the cancer occurs in all years. Fortunately, the 2nd wave (1993/1994) of the survey does provide
the organ in which a cancer occurs; therefore, to assess whether pricing differentially based on the
organ of the cancer would reduce the amount of (or potentially remove all) private information,
I construct a sample from 1993/1994 and include a full set of indicators for the cancer organs
(54 indicators). These results are discussed in Section D.2.2 and the main conclusions of the

74Even if one believes insurers would use more information to price policies to the rejectees, it should be clear
that my approach will still be able to simulate the extent to which private information would afflict an insurance
market if insurers priced using the set of observables I use from the HRS. With additional data future work
could explore different specifications and perhaps even make prescriptive recommendations to underwriters about
relevant variables for reducing informational asymmetries.

75I also include this in my age & gender and extended control specifications for life.
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lower bound analysis in life insurance continue to hold.

C.2 Sample Selection

For all three settings, I begin with years 1993-2008 (waves 2-9) of the HRS survey (subjective
probability elicitations are not asked in wave 1).

LTC For LTC, I exclude individuals I cannot follow for a subsequent five years to construct the
loss indicator variable; years 2004-2008 are used but only for construction of the loss indicator.
Also, I exclude individuals who currently reside in a nursing home or receiving specialized home
care. Finally, I exclude individuals with missing observations (either the subjective probabilities,
or observable covariates). For consistency, I exclude any case missing any of the extended control
variables (results are similar for the price controls and age/gender controls not excluding these
additional missing cases).

The primary sample consists of 9,051 observations from 4,418 individuals for the no reject
sample, 10,108 observations from 3,215 individuals for the reject sample, and 10,690 observations
from 5,190 individuals for the uncertain sample. In each sample, I include multiple observations
for a given individual (which are spaced roughly two years apart) to increase power. All standard
errors are clustered at the household level.

In addition to the primary sample, I construct a sample that excludes those who own insur-
ance to assess robustness of my results to moral hazard. For this, I drop the 13% of the sample
that owns insurance, along with an additional 5% of the sample currently enrolled in Medicaid.

Disability For disability, I begin with the set of individuals between the ages of 40 and 60 who
are currently working and report no presence of work-limiting disabilities. Although individuals
are To construct the corresponding loss realization, I limit the sample to individuals who I can
observe for a subsequent 10 years (years 2000-2008 are used solely for the construction of the
loss indicator). The final sample consists of 936 observations from 491 individuals for the no
reject classification, 2,216 observations from 1,280 individuals for the reject classification, and
5,361 observations from 1,280 individuals for the uncertain classification.76 Note that the size
of the no reject sample is quite small. This is primarily due to the restriction that income
must be above $70,000. As discussed in Section _, the individual disability insurance market
primarily exists for individuals with sufficient incomes. Thus, many of these individuals enter
the uncertain classification.

Life For the life sample, I restrict to individuals I can follow through the age corresponding to
the subjective probability elicitation 10-15 years in the future, so that years 2000-2008 are used

76Ideally, I would also test the robustness of my results using a sample of those who do not own disability
insurance, but unfortunately the HRS does not ask about disability insurance ownership.
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solely for the construction of the loss indicator. Since the earliest age used in the elicitation
is 75, my sample consists of individuals aged 61 and older. The final sample consists of 2,689
observations from 1,720 individuals for the no reject classification, 2,362 observations from 1,371
individuals for the reject classification, and 6,800 observations from 4,270 individuals for the
uncertain classification. Similar to LTC, I include those who own life insurance in the primary
sample (64% of the sample) but present results excluding this group for robustness.

D Lower Bound Appendix

D.1 Lower Bound Specification

Here, I discuss the construction of the lower bound estimates. I begin with a detailed discussion
of the specification for the pricing controls specification and then discuss the modifications for
the age/gender and extended controls specifications.

Aside from differences in the variables X, Z, and L, the specifications do not vary across the
9 samples (LTC, Life, Disability + Reject, No reject, Uncertain classifications). For the pricing
controls specification, I model Pr {L|X,Z} as a probit,

Pr {L|X,Z} = Φ (Xβ + Γ (age, Z))

where X contains all of the price control variables. The function Γ (age, Z) captures the way
in which the subjective probabilities affect the probability of a loss. In principle, one could
allow this effect to vary with all observables, X; in practice, this would generate far too many
interaction terms to estimate. Therefore, I allow Z to interact with age but not other variables.
Note that this does not restrict how the distribution of Pr {L|X,Z} varies with X and Z; it only
limits the number of interaction coefficients. The distribution of Pr [L|X,Z] can and does vary
because of variation in Z conditional on X. Indeed, the results are quite similar if one adopts a
simple specification of Pr {L|X,Z} = Φ (Xβ + γZ).

I choose a flexible functional form for Γ (age, Z) that uses full interactions of basis functions
in age and Z:

Γ (age, Z) =
∑
i,j

αijfi (age) gj (Z)

For the basis in Z, I use second-order Chebyshev polynomials for the normalized variables,
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Z̃ = 2 (Z − 50%), plus separate indicators for focal point responses at Z = 0, 50, and 100:

g1 (Z) = Z̃

g2 (Z) =
(

2Z̃2 − 1
)

g3 (Z) = 1 {Z = 0%}

g4 (Z) = 1 {Z = 50%}

g5 (Z) = 1 {Z = 100%}

For the basis in age, I use a linear specification, f1 (age) = age (note that any constant terms
are absorbed into Xβ).

I estimate β and {αij} using MLE (the standard probit command in stata) and construct
the predicted values for Pr {L|X,Z}. Given these predicted values, I plot the distribution of
Pr {L|X,Z} − Pr {L|X} aggregated within each setting and rejection classification. To do so,
I also need an estimate of Pr {L|X}. For this, I use the same specification as above, except I
exclude Γ (age, Z), so that

Pr {L|X} = Φ
(
Xβ̃
)

I again estimate β̃ using MLE and construct the predicted values of Pr {L|X}.
Now, for each observation, I have an estimate of Pr {L|X,Z} and Pr {L|X}. Therefore, I

can plot the predicted empirical distribution of Pr {L|X,Z} − Pr {L|X} in each sample. For
ease of viewing, I estimate a kernel density, using the optimal bandwidth selection (the default
option in Stata), and plot the density in Figure 2.

I then construct an estimate of the average magnitude of private information implied by
Z. With infinite data, I could construct an estimate of E [mZ (PZ) |X] for each value of X; in
practice, I need to aggregate across values of X within a sample to gain statistical power. To
do this aggregation, I rely on the assumption that the distribution of Pr {L|X,Z} − Pr {L|X}
does not vary conditional on age. Thus, I can aggregate across the residual distribution to
construct, for each age, the average difference between ones own probability and the probability
of worse risks. I construct the residual, ri = Pr {L|X,Z} − Pr {L|X} for each case in the
data. Then, within each age, I compute the average residual, Pr {L|X,Z} − Pr {L|X} of those
with higher residuals within a given age (i.e. for an observation with ri = x, I construct
r̂i = E [ri|ri ≥ x, age]). Note that this is where I use the assumption that the distribution of
Pr {L|X,Z} − Pr {L|X} does not vary conditional on age. I then construct the average of r̂i in
the sample, which equals E [mZ (PZ) |X ∈ Θ] for the given sample Θ.

For the age/gender controls specification, I use the same specification as for the price controls,
but replace X with the saturated set of age/gender variables. However, for the extended controls
specification, the number of covariates is too large for a probit specification. Aside from the
computational difficulties of maximizing the probit likelihood, it is widely known that the probit
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yields inconsistent estimates of Γ in this setting when the dimensionality of X increases (this
is analogous to the problem of doing a probit with fixed effects). I therefore adopt a linear
specification, L = βX + Γ (age, Z) + ε, to ease estimation with the very high dimensionality of
X. Under the null hypothesis that the linear model is true, this approach continues to deliver
consistent estimates of Γ even as the dimensionality of X increases. For Γ, I use the same basis
function approximation as used above (of course it now has a different interpretation).

D.2 Lower Bound Robustness Checks

This section presents several robustness checks of the lower bound analysis.

D.2.1 Age Analysis

First, I present estimates of the average magnitude of private information implied by Z separately
by age for the disability and life settings. Figure 6 presents the results, along with bootstrapped
standard errors. I also split the results separately for males and females in disability to ensure
that the results are not driven by age-based sample selection in the HRS (the HRS samples near
retirement individuals and includes their spouses regardless of age).

As one can see, the results suggest generally that there is more private information for the
rejectees relative to non-rejectees, conditional on age.

D.2.2 Organ Controls for Life Specification

The specifications for life insurance did not include controls for the affected organ of cancer
sufferers. As a result, the main results identify the impact of private information assuming that
the insurer would not differentially price insurance as a function of the organ afflicted by cancer.
It seems likely that insurers, if they sold insurance to cancer patients, would price differentially
based on the afflicted organ. Fortunately, organ information is provided in the 1993/4 wave of
the survey (it is not provided in other waves). Therefore, I can assess the robustness of my
finding of private information using a sample restricted to this wave alone.

In the second column of Table A2, I report results from a specification restricted to years
1993/1994 which includes a full set of 54 indicators for the affected organ added to the ex-
tended controls specification. The finding of statistically significant amounts of private in-
formation amongst the rejectees continues to hold (p = 0.0204). Moreover, the estimate of
E
[
mZ (PZ) |X ∈ ΘReject

]
remains similar to the preferred (pricing) specification (0.0308 versus

0.0338 for the primary specification). While insurers could potentially price differentially based
on the afflicted organ, doing so would not eliminate or significantly reduce the amount of private
information held by the potential applicant pool.
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Figure 6: Magnitude of private information by age
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E Structural Estimation

E.1 Specification Details

I approximate the distribution, f (p|X), using mixtures of beta distributions,

f (p|X) =
∑
i

wiBeta (ai + Pr {L|X} , ψi)

where Beta (µ, ψ) is the p.d.f. of the beta distribution with mean µ and shape parameter ψ. Note
this parameterization of the beta distribution is slightly non-standard; the Beta distribution is
traditionally defined with parameters α and β such that the mean is µ = α

α+β and the shape
parameter ψ = α+ β.

In the main specification, I use three beta distributions, i = 1, 2, 3. Also, I make a couple
of simplifying restrictions to ease estimation. First, I only estimate two values of the shape
parameter; one for the most central beta, ψ1 = ψcentral, and one for all other beta distributions,
ψi = ψnoncentral (i = 2, 3). This helps reduce the non-convexity of the likelihood function.77

Second, I constrain the shape parameters, ψi, such that ψi ≤ 200. This restriction prevents
ψi from reaching large values that introduce non-trivial approximation errors in the numerical
integration of the likelihood over values of p (these numerical errors arise when fP (p|X) exhibits
extreme curvature). Changing the levels of this constraint does not affect the results in the LTC
Reject, Disability Reject, Life No Reject, and Life Reject samples. However, the LTC No Reject
and Disability No Reject initial estimates did lie on the boundary, ψi = 200 for the most central
beta. Intuitively, these samples have little amounts of private information so that the model
attempts to construct a very highly concentrated distribution, fP (p|X). To relax this constraint,
I therefore include an additional point mass at the mean, Pr {L|X}, that helps capture the mass
of people with no private information (note that inserting a point mass at the mean is equivalent
to inserting a beta distribution with ai = 0 and ψi =∞). This computational shortcut improves
the estimation time and helps remove the bias induced by the restriction ψi ≤ 200.

In addition to these constraints, Assumptions 1 and 2 also yield the constraint Pr {L|X} =

E [P |X], which requires
∑

iwiai = 0. Imposing this constraint further reduces the number of
estimated parameters. I also censor the mean of each beta distribution, ai + Pr {L|X} to lie in
[0.001, 0.999]. I accomplish this by censoring the value of ai given to observations with values of
X such that ai + Pr {L|X} is greater than 0.999 or less than 0.001. I then re-adjust the other
values of ai and wi for this observation, to ensure the constraint

∑
iwiai = 0 continues to hold.

If the parameter values and values of X are such that a2 + Pr {L|X} < 0.001, I then define
a2 = 0.001 − Pr {L|X} and then adjust a3 such that a2w2 + a3w3 = 0. In some instances, it
may be the case that a2 = 0.001 and a3 = 0.999; in this case, I adjust the weights w2 and w3 to

77For example, non-convexity arises because a dispersed distribution can be accomplished either with one beta
distribution with a high value of ψ or with two beta distributions with lower values of the shape parameters but
differing values of ai.
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ensure that
∑
wiai = 0 (note that weight w1 is unaffected because a1 = 0).

Given this specification with three beta distributions and the above mentioned restrictions,
there are six parameters to estimate: two parameters capture the relative weights on the three
betas, two parameters capture the non-centrality of the beta distributions (a1 and a2), and the
two shape parameters, ψcentral, and ψnoncentral. Finally, for the LTC No Reject and Disability No
Reject samples I estimate a seventh parameter given by the weight on the point-mass, wptmass.

Estimation In each of the six samples, estimation is done in two steps.78 First, I estimate
Pr {L|X} using the probit specification described in Section E.1. Second, I estimate the six beta
mixture parameters, {w1, w2, a1, a2, ψcentral, ψnoncentral}, along with the four elicitation error
parameters, {σ, κ, λ, α} using maximum likelihood. As is standard with mixture estimation,
the likelihood is non-convex and can have local minima. I therefore start the maximization
algorithm from 100+ random starting points in the range of feasible parameter values.

In addition, I impose a lower bound on σ in the estimation process. It is straightforward
to verify that, under the null hypothesis, I have σ ≥ min

{
var

(
Znf

)
− cov

(
Znf , L

)
,
√

3
8

}
.

In reality, the distribution of Z is concentrated on integer values between 0 and 100%, and
in particular, multiples of 5% and 10%. In some specifications, the unconstrained maximum
likelihood procedure would yield estimates of σ ≈ 0 and distributions of P that attempt to
match the integer patterns of Z. In other words, the model attempts to match the dearth of
Z values between 5.01% and 9.99%, and the higher frequency at Z = 10%. By imposing the
constraint σ ≥ min

{
var

(
Znf

)
− cov

(
Znf , L

)
,
√

3
8

}
, these pathological outcomes are removed.

Re-assuringly, the constraint does not locally bind in any of my samples (i.e. I find estimates of
σ between 0.3 and 0.45, whereas values of var

(
Znf

)
− cov

(
Znf , L

)
fall consistently around 0.2

in each setting).

E.2 Robustness

Table A3 presents the minimum pooled price ratio evaluated at other points along the distribu-
tion of Pr {L|X} in each sample. The table presents the estimates at the 20th, 50th, and 80th
quantile of the Pr {L|X} distribution. The first set of rows presents the results for the Reject
samples. The first row presents the point estimates, followed by the 5/95% confidence intervals,
and finally by the value of Pr {L|X} corresponding to the given quantile. The second set of rows
repeats these figures for the non-rejectees. In general, the results are quite similar to the values
reported in Tables 5 and 6, which considered a characteristic corresponding to the mean loss,
Pr {L|X} = Pr {L}.

78The bootstrapping procedure for standard errors will repeat the entire estimation process (i.e. both steps 1
and 2) for each bootstrap iteration.
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E.3 Estimation Results Details

Measurement error parameters Table A4 presents the estimated measurement error pa-
rameters. In general, I estimate values of σ between 0.29 and 0.46, indicating that elicitations
are quite noisy measures of true beliefs. Roughly 30-42% of respondents are focal point respon-
dents, and the focal point window estimate ranges from 0 to 0.173. The estimate of κ = 0

indicates that focal point respondents choose to report an elicitation of 50%, regardless of their
true beliefs. Finally, I estimate moderate bias of magnitudes less than 10% in all samples except
the LTC Rejectees, for whom I estimate a substantial 28.6pp downward bias. Although many
factors could be driving this result, it is consistent with the hypothesis that many individuals
do not want to admit to a surveyor that they are going to have to go to a nursing home.

Beta Mixture Parameters Table A5 presents the estimated parameters for fP (p|X), along
with the bootstrapped standard errors.

F Selected Pages from Genworth Financial Underwriting Guidelines

The following 4 pages contain a selection from Genworth Financial’s LTC underwriting guideline
which is provided to insurance agents for use in screening applicants. Although marked “Not for
use with consumers or to be distributed to the public”, these guidelines are commonly left in the
public domain on the websites of insurance brokers. The printed version here was found in pub-
lic circulation at http://www.nyltcb.com/brokers/pdfs/Genworth_Underwriting_Guide.pdf on
November 4, 2011. I present 4 pages of the 152 pages of the guidelines. The conditions docu-
mented below are not exhaustive for the list of conditions which lead to rejection - they constitute
the set of conditions which solely lead to rejection (independent of other health conditions); com-
binations of other conditions may also lead to rejections and the details for these are provided
in the remaining pages not shown here.

22











P
ric

e 
C

on
tro

ls
E

xt
en

de
d 

C
on

tro
ls

P
ric

e 
C

on
tro

ls
E

xt
en

de
d 

C
on

tro
ls

P
ric

e 
C

on
tro

ls
E

xt
en

de
d 

C
on

tro
ls

A
ge

, A
ge

^2
, G

en
de

r
Fu

ll 
in

te
ra

ct
io

ns
 o

f
A

ge
, A

ge
^2

, G
en

de
r

Fu
ll 

in
te

ra
ct

io
ns

 o
f

A
ge

, A
ge

^2
, G

en
de

r
Fu

ll 
in

te
ra

ct
io

ns
 o

f
G

en
de

r*
ag

e
A

ge
G

en
de

r*
ag

e
A

ge
G

en
de

r*
ag

e
A

ge
G

en
de

r*
ag

e^
2

G
en

de
r

G
en

de
r*

ag
e^

2
G

en
de

r
G

en
de

r*
ag

e^
2

G
en

de
r

S
m

ok
er

 S
ta

tu
s

W
or

d 
R

ec
al

l P
er

fo
rm

an
ce

1
W

or
d 

R
ec

al
l P

er
fo

rm
an

ce
1

In
di

ca
to

rs
 fo

r
Fu

ll 
in

te
ra

ct
io

ns
 o

f 
S

el
f E

m
pl

oy
ed

w
ag

e 
de

ci
le

Fu
ll 

In
te

ra
ct

io
ns

 o
f

In
di

ca
to

rs
 fo

r
In

di
ca

to
rs

 fo
r

O
be

se
pa

rt 
tim

e 
in

di
ca

to
r

ag
e

A
D

L/
IA

D
L 

R
es

tri
ct

io
n

A
D

L/
IA

D
L 

R
es

tri
ct

io
n

P
sy

ch
 c

on
di

tio
n

jo
b 

te
nu

re
 q

ua
rti

le
A

G
E

 in
 s

ub
j p

ro
b 

qu
es

tio
n

P
sy

ch
 C

on
di

tio
n

P
sy

ch
ol

og
ic

al
 C

on
di

tio
n

B
ac

k 
co

nd
iti

on
se

lf-
em

pl
oy

m
en

t i
nd

ic
at

or
D

ia
be

te
s

D
ia

be
te

s
D

ia
be

te
s

Lu
ng

 D
is

ea
se

Lu
ng

 D
is

ea
se

Lu
ng

 D
is

ea
se

A
rth

rit
is

A
rth

rit
is

A
rth

rit
is

B
M

I
S

m
ok

er
 S

ta
tu

s
H

ea
rt 

D
is

ea
se

H
ea

rt 
D

is
ea

se
H

ea
rt 

C
on

di
tio

n
A

rth
rit

is
In

co
m

e 
D

ec
ile

C
an

ce
r

C
an

ce
r

C
an

ce
r

D
ia

be
tte

s
In

di
ca

to
rs

 fo
r

H
ea

rt 
co

nd
iti

on
S

tro
ke

S
tro

ke
S

tro
ke

Lu
ng

 d
is

ea
se

P
sy

ch
ol

og
ic

al
 C

on
di

tio
n

S
tro

ke
H

ig
h 

bl
oo

d 
pr

es
su

re
H

ig
h 

bl
oo

d 
pr

es
su

re
H

ig
h 

B
lo

od
 P

re
ss

ur
e

C
an

ce
r

D
ia

be
te

s
C

an
ce

r
H

ea
rt 

co
nd

iti
on

Lu
ng

 D
is

ea
se

Lu
ng

 d
is

ea
se

B
M

I
P

sy
ch

ol
og

ic
al

 c
on

di
tio

n
A

rth
rit

is
D

ia
be

te
s

B
ac

k 
co

nd
iti

on
H

ea
rt 

D
is

ea
se

H
ig

h 
bl

oo
d 

pr
es

su
re

W
ag

e 
D

ec
ile

B
M

I Q
ua

rti
le

C
an

ce
r

C
en

su
s 

R
eg

io
n

S
tro

ke
Fu

ll 
in

te
ra

ct
io

ns
 o

f
H

ig
h 

bl
oo

d 
pr

es
su

re
B

M
I

B
M

I q
ua

rti
le

N
um

be
r o

f A
D

L 
/ I

A
D

L 
R

es
tri

ct
io

ns
5 

ye
ar

 a
ge

 b
in

s
In

co
m

e 
de

ci
le

N
um

be
r o

f l
iv

in
g 

re
la

tiv
es

 (<
=3

)
P

as
t h

om
e 

ca
re

 u
sa

ge
Fu

ll 
in

te
ra

ct
io

ns
 o

f
C

en
su

s 
re

gi
on

 (1
-5

)
Jo

b 
re

qu
ire

s 
st

oo
pi

ng
In

co
m

e 
D

ec
ile

Jo
b 

re
qu

ire
s 

lif
tin

g
Jo

b 
re

qu
ire

s 
ph

ys
 a

ct
iv

ity

Fu
ll 

In
te

ra
ct

io
ns

 o
f

5 
ye

ar
 a

ge
 b

in
s

C
en

su
s 

re
gi

on
 (1

-5
)

1 In
di

ca
to

r f
or

 lo
w

es
t q

ua
rti

le
 p

er
fo

rm
an

ce
 o

n 
w

or
d 

re
ca

ll 
te

st
2 Fu

ll 
in

di
ca

to
r v

ar
ia

bl
es

 fo
r n

um
be

r o
f y

ea
rs

 to
 A

G
E

 re
po

rte
d 

in
 s

ub
je

ct
iv

e 
pr

ob
ab

ili
ty

 q
ue

st
io

n

In
di

ca
to

r f
or

 y
ea

rs
 to

 q
ue

st
io

n2

In
di

ca
to

r f
or

 d
ea

th
 o

f p
ar

en
t 

be
fo

re
 a

ge
 6

0

In
te

ra
ct

io
ns

 b
et

w
ee

n 
5 

yr
 a

ge
 b

in
s 

an
d 

th
e 

pr
es

en
ce

 o
f:

Ta
bl

e 
A

1:
 C

ov
ar

ia
te

 S
pe

ci
fic

at
io

ns

Li
fe

D
is

ab
ili

ty
Lo

ng
-T

er
m

 C
ar

e

In
te

ra
ct

io
ns

 o
f 5

 y
r a

ge
 b

in
s 

w
ith

:

In
di

ca
to

r f
or

 d
ea

th
 o

f p
ar

en
t 

be
fo

re
 a

ge
 6

0

N
um

be
r o

f H
ea

lth
 C

on
di

tio
ns

 (H
ig

h 
bp

, 
di

ab
et

es
, h

ea
rt 

co
nd

iti
on

, l
un

g 
di

se
as

e,
 

ar
th

rit
is

, s
tro

ke
, o

be
si

ty
, p

sy
ch

 c
on

di
tio

n)

In
te

ra
ct

io
ns

 b
et

w
ee

n 
5 

yr
 a

ge
 b

in
s 

an
d 

th
e 

pr
es

en
ce

 o
f:



Preferred Specification
Organ + Extended Controls 

(1993/1994 Only)

Reject 0.0587*** 0.0526***
s.e.1 (0.0083) (0.0098)
p-value2 0.000 0.002

No Reject 0.0249 0.0218
s.e.1 (0.007) (0.007)
p-value2 0.1187 0.3592

Difference: ∆Z 0.0338*** 0.0308**
s.e.1 (0.0107) (0.0121)
p-value3 0.0000 0.0260

Uncertain 0.0294*** 0.0342***
s.e.1 (0.0054) (0.0063)
p-value2 0.0001 0.0003

Table A2: Cancer Organ Controls (Life Setting)

1Bootstrapped standard errors computed using block re-sampling at the household level (results shown for N=1000 
repetitions)

*** p<0.01, ** p<0.05, * p<0.10

2p-value for the Wald test which restricts coefficients on subjective probabilities equal to zero
3p-value is the maximum of the p-value for the rejection group having no private information (Wald test) and the p-value 
for the hypothesis that the difference is less than or equal to zero, where the latter is computed using bootstrap
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