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Eugen Kováč∗ Daniel Krähmer†

July 6, 2012

Abstract

The paper extends the optimal delegation framework pioneered by Holmström

(1977, 1984) to a dynamic environment where, at the outset, the agent privately

knows his ability to interpret decision relevant private information received later

on. We show that any mechanism can be implemented by a menu of delegation

sets and characterize the optimal menu for the uniform quadratic case. Sequential

delegation is strictly better than static delegation whenever the conflict of interest

is small, the agent’s ability is sufficiently dispersed, and the likelihood of facing a

high ability agent is sufficiently small.

Keywords: optimal delegation, sequential screening, dynamic mechanism design,

non-transferable utility.

JEL Codes: D02, D20, D82, D86.

∗Universität Bonn, Department of Economics, Adenauer Allee 24–42, D-53113 Bonn (Germany);
E-mail: eugen.kovac@uni-bonn.de; URL: www.uni-bonn.de/~kovac.

†Universität Bonn, Department of Economics, Adenauer Allee 24–42, D-53113 Bonn (Germany), E-
mail: kraehmer@hcm.uni-bonn.de. D. Krähmer gratefully acknowledges financial support by the DFG
(German Science Foundation) under SFB/TR-15.

1



1 Introduction

Decision makers frequently lack decision relevant information and are reliant on informed

agents who have conflicting preferences over the appropriate course of action. When

firm headquarters need to make strategic business decisions, division managers possess

superior knowledge about how these decisions affect the firm as a whole but prefer firm

strategies that benefit only their own division. Regulators seek to make regulatory de-

cisions based on privately known firm characteristics but, instead of the firm’s profits,

want to maximize social welfare. Financial advisors have better information than in-

vestors about portfolio-investor match but are often remunerated based on commissions,

biasing them towards recommending certain funds.

The problem of a principal who is dependent on decision relevant information known

to a biased agent has been extensively studied in the literature (see the review below). The

literature typically focuses on static situations in which the agent has perfect information

about the decision relevant aspects of the world already at the beginning of the relation. In

this paper, we depart from this assumption and investigate dynamic environments where

the agent receives decision relevant private information only during the course of the

relation, and at the outset, has private information about the quality of the information

he will obtain later on.

Take a firm, for example, a car maker, who considers introducing a new model line.

The decision has to be made years before the actual market conditions realize that deter-

mine the ultimate profitability of the new model. While division managers responsible for

developing the new car cannot know future conditions perfectly, they will be better able

than headquarters to predict the success of the launch. Moreover, they will frequently

have additional private information about the accuracy of their prediction, for example,

they may have private contacts to competitors and, knowing about the rival’s plans, be

better able to predict profitability than if they do not have this information.

A similar information structure can be also identified in the regulation example. To

provide planning certainty for firms (and due to other administrative constraints), an

industry regulator typically has to irrevocably set its policy over a longer duration of

time. A firm consulted by the regulator at the outset has thus only imprecise information,

say about future production costs, but, depending on the privately known strength of the

firm’s market research division may be more or less able to predict those future costs.

Also, when an investor and a financial advisor engage in business, the advisor learns

about the former’s needs (e.g. the type of desired diversification) only over time, yet

most advisors are specialized in particular areas (emerging markets, technology markets,

etc.), and so, unknown to the customer, may be more or less able to tie their advice to

the investor’s actual needs.
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In such a situation, how should the principal structure the decision making process

to arrive at an optimal decision? In this paper, we address this question within a dy-

namic extension of Holmström’s (1977, 1984) seminal mechanism design framework with

non-transferable utility where the principal can commit to a decision contingent on the

information provided by agent.

In the first step of our analysis, we extend Holmström’s insight that any mechanism

can be implemented by delegating decision making to the agent. Instead of enacting the

decision herself, the principal offers the agent a delegation set of permissible decisions.

To account for the sequential revelation of information, in our setup any mechanism can

be implemented by a menu of delegation sets where, first, the agent chooses a delegation

set from the menu, and then, after having obtained new information, he makes a decision

within the initially chosen set.

Moreover, only menus are implementable which are incentive compatible, that is, the

menu contains one delegation set for each realization of the agent’s ex ante information,

and the agent has an incentive to select the delegation set corresponding to his ex ante

information. A special menu is the degenerate menu which consists only of identical

delegation sets. We refer to such a menu as static because, in this case, the sequential

nature of information arrival is irrelevant, and the ultimate decision only depends on the

agent’s final information. Whenever the menu is not static, we refer to it as sequential.

Relative to static delegation, the principal can implement a larger set of decisions

under sequential delegation, because this allows her to adapt the delegation set to the

agent’s ex ante information. This is possible because at the ex ante stage, the agent

chooses the delegation set with those decisions that he believes he is most likely to favor

ex post, after observing his signal realization. Since the agent holds private ex ante beliefs

about the distribution of his ex post signal, the agent can be induced to choose different

delegation sets for different ex ante beliefs.

It is hence clear that the optimal sequential delegation menu is at least weakly better

for the principal than the optimal static delegation set. In this paper we ask when

sequential delegation is strictly superior to static delegation, and if so, how the optimal

sequential delegation menu looks like.

We address this question in the familiar setting with quadratic utility, constant bias,

and uniformly distributed state. We assume that the agent is biased towards higher

decisions than the principal. Unlike in the standard setting, the agent in our setup

privately observes an imperfect signal about the state during the course of the relation,

but has private information at the outset about the precision of the signal he will receive.

We interpret the signal’s precision as the agent’s forecasting ability and consider the

simplest case that the agent’s forecasting ability can be of two possible types: either high
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or low. The difference between the high and the low ability, the ability difference, is a

measure of the agent’s ex ante private information.

We identify three factors that determine whether sequential delegation is more prof-

itable than static delegation: (i) the ability difference, (ii) the size of the conflict of

preferences (measured by the agent’s bias), and (iii) the distribution of the agent’s types.

First, we show that if the ability difference is sufficiently small compared to the agent’s

bias, static delegation is optimal irrespective of the distribution of the agent’s types. On

the other hand, for sufficiently large ability difference (relative to the agent’s bias), se-

quential delegation becomes optimal irrespective of the distribution of the agent’s types.

Finally, if the ability difference is in an intermediate range, static delegation is optimal

whenever the high type is sufficiently likely. Moreover, we show that sequential dele-

gation, whenever optimal, involves offering moderate decisions to the low ability type

and more extreme decisions to the high ability type. In fact, the delegation set for the

low type is an interval, while the delegation set for the high type is disconnected with

moderate decisions being excluded.

To provide intuition for these results, it is useful to consider the benchmark case in

which the agent’s ability is publicly known so that his only private information is the

signal realization he observes. The design of an optimal delegation set is then determined

by the interplay of two forces: by including more decisions, the principal makes better

use of the agent’s private information (information effect), but at the same time gives

up control over the decision (loss-of-control effect). The loss-of-control effect makes the

principal averse to delegate large decisions, because due to his positive bias, the agent

tends, from the principal’s perspective, towards to excessively large decisions. Thus the

larger the agent’s bias, the smaller the decisions the principal delegates to the agent.

Moreover, the information effect is stronger for the high than for the low ability agent

because the former possesses more precise information. Therefore, the principal would

like to delegate more decisions, represented by a larger delegation set, to the agent with

the high forecasting ability.

When the agent’s ability is his private information, offering a larger delegation set to

the high ability type is not incentive compatible, as nothing prevents the low type agent

from mimicking the high type. Incentive compatibility is trivially restored under a static

delegation set that does not condition on the agent’s ability. We show that, compared to

the case with publicly observable ability, under optimal static delegation, the principal

delegates too many decisions to the low type and too few to the high type.

Alternatively, the principal may restore incentive compatibility by offering the high

type a set of relatively extreme, including large, decisions but excluding some moderate

decisions. In fact, the low ability type agent is aware that his final information is less
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precise and anticipates that he will likely favor moderate decisions after having observed

the signal. Therefore, the low ability agent will refrain from taking a delegation set

that offers only extreme yet no moderate decisions. Reversely, the high type agent, who

anticipates to observe more dispersed signal realizations, considers it less likely that his

optimal decisions are moderate. Therefore, such an agent will prefer a delegation set with

only extreme to one with only moderate decisions. In other words, offering a delegation

menu with a set consisting of extreme decisions and one consisting of moderate decisions

allows the principal to screen the agent’s ability type.

The key question is when such a sequential delegation menu is better for the principal

than the optimal static delegation set. On one hand, sequential delegation makes better

use of the high ability type’s information, because it allows the final decision to be better

adapted to the more dispersed signal of the high ability agent. On the other hand, dis-

allowing moderate decisions is also costly if the signal indicates that a moderate decision

should be taken. The three factors identified earlier determine when the benefits outweigh

the costs of sequential delegation. First, if the ability difference is small compared to the

bias, offering the high ability agent more extreme decisions has relatively few benefits (as

his informational advantage is small) but high costs (because due to the large bias, the

loss-of-control effect makes offering larger decisions relatively costly). Second, the reverse

logic applies when the ability difference is large compared to the bias, and, in that case,

sequential delegation is optimal.

Third, for intermediate values of the ability difference, the profitability of sequential

delegation also depends on the prior distribution of the agent’s types. To understand

this, observe that when the high ability type is very likely, the optimal static delegation

set is approximately the same as the optimal delegation set when the agent’s ability is

publicly known to be high. Therefore, already under static delegation, relatively large

decisions are offered to the agent, and the marginal benefit of offering even larger decisions

is relatively low. By the same token, if the high ability type is very unlikely, the optimal

static delegation set is not much different from the optimal delegation set when the agent’s

ability is publicly known to be low. In particular, in this case, under static delegation only

moderate decisions are offered. Therefore, offering the high type more extreme decisions

has relatively large benefits due to the information effect, and thus sequential delegation

becomes optimal.

Related Literature

Our paper brings together two strands of the literature: the literature on optimal del-

egation and the literature on sequential screening. Starting with the seminal work of

Holmström (1977, 1984) the optimal delegation literature asks how a principal should

optimally delegate decision making to an informed, but biased agent. Alonso and Ma-
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touscheck (2008) provide conditions that characterize the optimal delegation set in general

environments, including characterizations for when simple interval delegation is optimal.1

Our main contribution to this literature is that, instead of a static environment with a

fully informed agent, we consider a dynamic environment where the agent’s information

arrives sequentially over time. Our result that sequential delegation requires the principal

offer delegation sets with only extreme options is similar to the insight by Szalay (2005)

that offering extreme options is optimal to provide incentives for an initially uninformed

agent to endogenously acquire information. Instead of providing incentives for informa-

tion acquisition, in our setup offering only extreme options provides incentives for the

agent to reveal information about his ex ante expertise. Our paper draws heavily on the

insights in Kováč and Mylovanov (2009) who provide a handy and intuitive representa-

tion of the principal’s expected utility as a weighted average of the agent’s utility. In

particular, we exploit this representation to derive the optimal static delegation set in

our setup. This is not trivial since, for some parameters, our setup violates the conditions

for which Alonso and Matouscheck (2008) or Kováč and Mylovanov (2009) characterize

the solution to the static delegation problem.2

Secondly, our paper is related to the literature on sequential screening in the spirit of

Courty and Li (2000) who study a dynamic price discrimination problem where the agent,

while knowing a private signal at the time of contracting, learns his actual willingness

to pay at the time of consumption only over time.3 In terms of information structure

and timing, our setup is essentially the same as that in Courty and Li (2000). But, the

key difference is that we consider parties without transferable utility so that contingent

monetary transfers are not available. Courty and Li (2000) establish that under standard

regularity conditions the optimal contract always elicits the agent’s information sequen-

tially and strictly improves over the optimal static screening contract. In contrast, in our

setup both static and sequential delegation can be optimal, depending on parameters. In

this sense, the availability of money as a screening instruments works in favor of, but is

not necessary, for the optimality of sequential screening.4

This paper is organized as follows.

1See also Mylovanov (2009) who studies optimal delegation when the principal has veto power ex
post. Martimort and Semenov (2006) investigate when the optimal mechanism is continuous.

2The optimal delegation literature assumes that the principal can contractually constrain the agent’s
discretion, that is, decisions are contractible. A large literature studies the problem with non-contractible
decisions and asks how the unconstrained delegation of authority to an informed and biased agent
compares to other modes of organization, such as communication. See e.g. Riordan and Sappington
(1987), Dessein (2002), Krähmer (2006), Bester (2009), Goltsman, Hörner, Pavlov, and Squintani (2009)
to name only a few.

3See also Baron and Besanko (1984), Battaglini (2005), Esö and Szentes (2007a, 2007b), Dai, Lewis,
and Lopomo (2006), Krähmer and Strausz (2008, 2011), Pavan, Segal, and Toikka (2008), Inderst and
Hoffmann (2009), Nocke, Peitz, and Rosar (2011), Inderst and Peitz (2011).

4On a related note, Krähmer and Strausz (2012) show that in the standard sequential screening model
with money, a sequential contract is never optimal if no ex post losses can be imposed on the agent.
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Section 2 introduces the setup. Section 3 derives the principal’s mechanism design

problem, and Section 4 shows that the principal’s problem can be equivalently stated as a

sequential delegation problem. Section 5 describes the principal’s fundamental trade-off

when designing delegation sets, and Section 6 characterizes two benchmark cases: when

the agent’s ability is publicly known and when only static delegation is feasible. Section 7

fully characterizes the solution to the sequential delegation problem. Section 8 concludes.

Proofs of all propositions and lemmas are relegated to the Appendix.

2 Model

A principal (she) has to take a decision x ∈ R. Her payoff from the decision depends on

a state of the world given by the random variable θ̃ which we assume to be uniformly

distributed on the unit interval. The principal does not know the true state and consults

an agent (he) for advice. When the principal approaches the agent, also the agent does not

know the true state, but before the decision is taken, he privately observes an imperfect

signal s̃ about the true state. In addition, the agent privately knows his degree of expertise

or his forecasting ability which is captured by the quality his signal. We assume that

s̃ coincides with the true state with probability p ∈ [0, 1], whereas it is pure noise with

probability 1−p. By pure noise we mean a random variable that is identically distributed

as, yet stochastically independent from, the true state. The agent does not know whether

the realization of the signal is true or noise.5 Thus, the “precision” p is a measure for

the agent’s ability. We refer to p as the agent’s ability type, and assume that the type

can be either “high” or “low”: p ∈ {h, `}, h > `. The probability with which the agent’s

type is p is commonly known by the parties and denoted by µp ∈ [0, 1].

The parties have state-dependent preferences and disagree about the ideal action to

be taken. We adopt the familiar quadratic utility representation: if action x is taken in

state θ, the principal’s utility is −(x − (θ − b))2, and the agent’s utility is −(x − θ)2,

where the “bias” b > 0 measures the conflict of interest between the parties.6,7 To avoid

5This signal structure is sometimes referred to as the “replacement noise” model.
6This setting is the leading example in Crawford and Sobel (1982) and has also been extensively used in

the literature. See, for example, Alonso, Dessein, and Matouschek (2008), Dessein (2002), Blume, Board,
and Kawamura (2008), Goltsmann et al. (2010), Kartik, Ottaviani, and Squintani (2007), Ottaviani and
Squintani (2006).

7The literature frequently ascribes the bias to the agent in the sense that the principal’s ideal action
is the state θ, and the agent’s ideal action is θ + b. As will become clear below, our formulation is more
convenient for our purposes.
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uninteresting case distinctions, we assume in the whole paper that8

b ≤ `/2. (1)

At the outset, the principal can commit to a mechanism which specifies an action to

be taken after the agent has observed the signal. The principal’s objective is to design a

mechanism which maximizes her expected utility.

Before we describe the principal’s design problem in detail, we argue that in our setup

with quadratic preferences, the expected state conditional on the signal is a sufficient

statistics for the signal. In what follows, it will be more convenient to work with this

sufficient statistics. Let

ω̃ ≡ E[θ̃ | s̃] = ps̃ + (1− p) · 1/2 (2)

be the expected state conditional on the signal s̃. Observe that since the state is uniformly

distributed, the random variable ω̃ is uniformly distributed on the support [ωp, ω̄p], where

the support endpoints are given by

ωp = 1/2− p/2, ω̄p = 1/2 + p/2.

We denote by fp the density of ω̃ and Fp the corresponding cumulative distribution

function.

Since preferences are quadratic, a party’s expected utility, conditional on the signal,

is of the mean-variance form: for z ∈ {0, b},

E[−(x− (θ̃ − z))2 | s] = −(x− (ω − z))2 + V ar(θ̃ | s),

where V ar(θ̃ | s) is the conditional variance of the state, conditional on signal realization

s. Because the conditional variance enters utility only as a constant, a party’s marginal

utility from an action depends only on the expected state ω, yet not on s. We can thus

normalize utility by subtracting the variance. Therefore, our model is isomorphic to

the model where the agent first privately observes his ex ante type p and then privately

observes the expected state ω as specified in (2), and where the principal’s and the agent’s

utilities are respectively given by −(x− (ω − b))2, and −(x− ω)2.

The following timing summarizes the description of the model.

0. The principal commits to a mechanism.

8This assumption will guarantee that when the agent’s ability is publicly known, the optimal delega-
tion set is a non-degenerate interval. See Lemma 4 for more details. In the terminology of Alonso and
Matouscheck (2008), assumption (1) means that delegation is valuable when facing the low type.
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1. The agent privately observes his ability type p ∈ {h, `}.

2. The agent privately observes the expected state ω ∈ [ωp, ω̄p].

3. An action is implemented according to the terms of the mechanism.

We have chosen to study the specific environment with uniformly distributed state,

quadratic preferences, constant bias, and two ability types, because it is tractable and

allows us to fully solve the model for all parameter constellations. The main question

of the paper is to what extent the principal can exploit the fact that the agent receives

his information sequentially. In particular, we ask when the principal can do strictly

better by using a “sequential” mechanism, which conditions on the agent’s ability type,

than by using the optimal “static” mechanism, which does not condition on ability type.

To address this question, it is necessary to be able to solve for the optimal “static”

mechanism. As will become clear below, this is already demanding in our setup and is

likely to be even more so in more general environments. Throughout the analysis we

will explicitly point out where we make use of our specific assumptions and explain the

difficulties in going beyond them.

3 The principal’s problem

The principal’s objective is to design a mechanism which maximizes her expected utility.

In this section, we describe the principal’s problem formally. Since the agent has private

information, the action implemented by the mechanism optimally depends on commu-

nication by the agent to the principal. By the revelation principle for sequential games

(Myerson, 1986), the optimal mechanism is in the class of direct and incentive compatible

mechanisms. A direct mechanism requires the agent to report his private information as

soon as it has arrived. Formally, a direct mechanism

M ≡ {ξp̂(ω̂) ∈ R | p̂ ∈ {h, `}, ω̂ ∈ [ωp, ω̄p]}

requires the agent to first submit a report p̂ about his ability and then a report ω̂ about

the expected state and then implements the action ξp̂(ω̂).9

If the agent’s ex post type is ω and his period 1 report was p̂, then his utility from

reporting ω̂ in period 2 is −(ξp̂(ω̂)−ω)2. The mechanism is incentive compatible in period

2 if it gives the agent an incentive to report the expected state truthfully, conditional on

9We restrict attention to deterministic mechanisms. For an investigation of stochastic mechanisms in
the static delegation problem, see Kováč and Mylovanov (2009).
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having reported his ability truthfully. That is, if for all p ∈ {h, `} and ω, ω̂ ∈ Ωp,

−(ξp(ω)− ω)2 ≥ −(ξp(ω̂)− ω)2. (3)

Observe that the revelation principle does not require truth-telling off the equilibrium

path, i.e. after a lie in period 1.10

Next, we turn to incentive compatibility in period 1. If the agent’s ability is p, the

expected state is uniformly distributed on [ωp, ω̄p]. Thus, the agent’s expected utility

from reporting p̂ when his true ability is p is.∫ ω̄p

ωp

max
ω̂

[−(ξp̂(ω̂)− ω)2]
1

p
dω.

Again, because truth-telling is not required after a lie in period 2, the agent may find it

optimal to lie again in period 2 after a lie in period 1. Thus the “max” operator under

the integral.

The mechanism is incentive compatible in period 1 if it gives the agent an incentive to

report his type truthfully in period 1. Observe that if the agent tells the truth in period

1, then second period incentive compatibility guarantees truth-telling in period 2. Hence,

the mechanism is incentive compatible in period 1 if for all p, p̂,∫ ω̄p

ωp

−(ξp(ω)− ω)2 1

p
dω ≥

∫ ω̄p

ωp

max
ω̂
−(ξp̂(ω̂)− ω)2 1

p
dω. (4)

The principal’s (conditional) expected utility under an incentive compatible mecha-

nism M when the agent’s ability is p is

Vp(M) ≡
∫ ω̄p

ωp

−(ξp(ω)− (ω − b))2 1

p
dω,

and her ex ante expected utility is V (M) ≡ µhVh(M)+µ`V`(M). The principal’s problem,

referred to as M, can therefore be stated as follows:

M : max
M

V (M) s.t. (3), (4).

10The reason is that incentive compatibility in period 1 implies that a lie in period 1 is a zero probability
event and, thus, what happens afterwards does not affect the principal’s utility. On the other hand,
allowing for lying off the path may increase the set of implementable outcomes (see Myerson, 1986).
See also Krähmer and Strausz (2008) for an elaboration of this point in the context of a principal agent
problem with money.
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4 Sequential Delegation

It is well-known that in the static analogue to our problem, when the agent knows the true

state at the outset, the principal’s problem can be equivalently stated as a “delegation

problem” where instead of requiring a report by the agent and implementing the action

herself, the principal offers the agent a set of actions from which he can freely choose.

In this section, we argue that also the mechanism design problem M can be equiv-

alently stated as a sequential delegation problem where the principal offers the agent a

menu (Dh, D`) of delegation sets, and the agent chooses a delegation set from the menu

in period 1 and picks an action from the chosen delegation set in period 2.

To see that the problem M is equivalent to a sequential delegation problem, consider

a menu of delegation sets and observe that, if the agent has chosen Dp̂ in period 1, then

he chooses in period 2 the action11,12

xp̂(ω) ≡ arg max
x′∈Dp̂

−(x′ − ω)2. (A)

We call a menu (Dh, D`) of delegation sets incentive compatible if the agent of any type

p ∈ {h, `} chooses the delegation set Dp from the menu, i.e. if

−
∫ ω̄p

ωp

(xp(ω)− ω)2 1

p
dω ≥ −

∫ ω̄p

ωp

(xp̂(ω)− ω)2 1

p
dω for all p̂. (ICp)

We now argue that any outcome that can be implemented by a direct, incentive compati-

ble mechanism M can also be implemented by an incentive compatible menu of delegation

sets, and vice versa. Indeed, for an incentive compatible mechanism M , define the menu

of delegation sets by the set of all possible actions that can arise under the mechanism:

Dp = {ξp(ω) | ω ∈ [ωp, ω̄p]}, p ∈ {h, `}. Then it follows by (3) that the choice func-

tion defined in (A) satisfies xp(ω) = ξp(ω), and (4) implies that the menu (Dh, D`) is

incentive compatible and, thus, implements the same outcome as the direct mechanism

M . Reversely, given an incentive compatible menu (Dh, D`) of delegation sets, define the

mechanism M by the choice function given in (A): ξp(ω) ≡ xp(ω). Then the mechanism

is (trivially) incentive compatible in period 2, and (ICp) implies that M is also incentive

compatible in period 1.

Therefore, we can state the principal’s problem M equivalently as the following se-

11Without loss of generality, we may assume that delegation sets are closed and bounded. In that case
the maximizer is well defined. See footnote 15 in Alonso and Matouscheck (2008).

12This notation is somewhat inaccurate. Strictly speaking, the agent’s optimal action is a function of
the delegation set.
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quential delegation problem:

D : max
(Dh,D`)

∑
p∈{h,`}

µp

∫ ω̄p

ωp

−(xp(ω)− (ω − b))2 1

p
dω s.t. (A), (IC`), (ICh).

In general, the solution to D will not be unique. This is so because one can always

add redundant actions to the solution which in no state would be chosen by the agent.

We therefore restrict attention to minimal optimal delegation menus in the sense that

any action in the delegation set is chosen in some state and that unchosen actions are

removed.13,14

The minimal optimal delegation menu has the property that in the most extreme

states, the most extreme actions are chosen, and that there is at most one action outside

the support of the state. To state this formally, we introduce the following notation for

the minimal and maximal actions in a delegation set Dp (for p ∈ {h, `}) which we shall

use throughout the paper:15

xp = min Dp, x̄p = max Dp.

Lemma 1. Consider a minimal optimal delegation menu (Dh, D`) and let p ∈ {h, `}.
Then xp(ωp) = xp and xp(ω̄p) = x̄p. Moreover, each of the sets Dp ∩ (−∞, ωp) and

Dp ∩ (ω̄p, +∞) contains at most one action. If so, then it is the action xp and x̄p,

respectively.

The proof of the lemma is straightforward and is, thus, omitted.

5 Information and loss-of-control effect

In this section, we explain the fundamental trade-off the principal faces when designing

a delegation set, conditional on facing a given ability type, and capture this trade-off

formally.

At a fundamental level, granting the agent more discretion involves the trade-off of

making better use of the agent’s information versus suffering a loss of control. Take a

delegation set Dp and consider the effect of adding a single action x̄p + ε to Dp (where

ε > 0 is small). On the one hand, for states higher than x̄p + ε/2+ b, the agent’s decision

13Alonso and Matouscheck (2008) proceed in the same fashion.
14Observe that removing these actions does not upset incentive compatibility. In fact, it relaxes

incentive compatibility, as removing actions from Dp̂ only reduces the agent type p’s incentives to pick
the delegation set Dp̂.

15Note that both the minimum and maximum exist, as Dp is closed and bounded.
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is now closer to the principal’s ideal decision (the information effect). On the other hand,

more freedom of action is costly, because for states in [x̄p + ε/2, x̄p + ε/2 + b], the agent’s

decision moves farther away from the principal’s ideal decision which equals state minus

bias (the loss-of-control effect).

To capture the information and loss-of-control effect formally, we transform the prin-

cipal’s objective by exploiting the second period incentive compatibility constraint (A).

Let up(ω) = −(xp(ω)− ω)2 denote the agent’s utility in state ω when having picked Dp.

The constraint (A) pins down the agent’s utility and, in fact is equivalent, to16

up(ω2)− up(ω1) =

∫ ω2

ω1

2(xp(ω)− ω) dω ∀ω1, ω2. (5)

Therefore, under an incentive compatible delegation menu, the principal’s expected util-

ity, conditional on facing type p (multiplied through by p), can be written as

p · Vp =

∫ ω̄p

ωp

−(xp(ω)− ω)2 dω − b

∫ ω̄p

ωp

2(xp(ω)− ω) dω − b2

= bup(ωp) +

∫ ω̄p

ωp

up(ω) dω − bup(ω̄p)− b2. (6)

︸ ︷︷ ︸
information effect

︸ ︷︷ ︸
loss-of-control

effect

The first and the second term in (6) say that the principal’s utility goes up with the

agent’s utility in the states ω ∈ [ωp, ω̄p). However, according to the third term, the

principal’s utility goes down the better off the agent in the highest state ω̄p. Thus, the

principal’s objective is a weighted average of the agent’s utility across states, where the

agent’s utility in the lowest state receives weight b and the agent’s utility in the highest

state receives the negative weight −b.17

The decomposition (6) cleanly disentangles the principal’s trade-off. The information

effect corresponds to the agent’s utility gain in states [ωp, ω̄p), and the loss-of-control

effect corresponds to the agent’s utility gain in the state ω̄p (which lowers the principal’s

utility).

In what follows, we provide an auxiliary lemma which provides conditions how the

principal’s expected payoff changes when we add a single action to the delegation set.

This will allow us below to check the (sub)optimality of delegation sets by evaluating

those changes. To state the lemma, we introduce the following critical value which will

16This is formally shown in Lemma 1 of Kováč and Mylovanov (2009). Intuitively, because xp(ω) is a
maximizer of −(x− ω)2, the envelope theorem implies that u′

p(ω) = 2(xp(ω)− ω).
17A similar decomposition, but with weight on a different state, is used by Kováč and Mylovanov

(2009).
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appear repeatedly throughout the rest of the paper:

β0
p ≡ ω̄p − 2b.

Lemma 2. Consider an arbitrary menu (Dh, D`) of delegation sets.18 Let p ∈ {h, `} and

consider an action y /∈ Dp which is non–redundant in the sense that, when added to the

delegation set, it would be chosen in some state, i.e.,

ωp − |ωp − xp| < y < ω̄p + |ω̄p − x̄p|. (7)

(i) Let y < x̄p. Then adding the action y to Dp improves the principal’s expected utility

if 1
2
(y + x̄p) ≤ ω̄p.

(ii) Let y > x̄p. Then adding the action y to Dp improves the principal’s expected utility,

if and only if 1
2
(y + x̄p) < β0

p .

To understand the lemma, observe first that adding an action that is redundant in

the sense that it is not chosen in any state, will leave the principal’s expected payoff

unchanged. Therefore, we focus only on non–redundant actions as given by condition

(7).

Given non–redundancy, part (i) of the lemma describes when it is beneficial to add

an action that is smaller than the maximal action. The condition 1
2
(y + x̄p) < ω̄p simply

means that the new action y is not chosen by the highest type ω̄p. That this condition is

sufficient for an improvement can be readily seen from (6): Since the highest agent type

ω̄p does not choose the new action y, the loss-of-control effect is not affected by including

y. Since the new action is non–redundant, at least one agent type chooses the new action,

which implies that adding the action strictly improves the utility of a positive mass of

agent types, and thus leads to a strict improvement of the objective via the information

effect.

Part (ii) characterizes when it is beneficial to add a new action to the delegation

set that is larger than the maximal action. Adding such an action increases both the

information effect (as the utility of all agent types in [1
2
(y + x̄p), ω̄p) goes up) and the

loss-of-control effect (because the highest type ω̄p chooses the new action). The interplay

of these two effects is determined by the location of the new action y. If y is close to

x̄p, the information effect is relatively large, and the the loss-of-control effect is relatively

small. When 1
2
(y + x̄p) = β0

p , the two effects are in balance.

Lemma 2 implies the following lemma.

18The menu of delegation sets is not required to be incentive compatible here.
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Lemma 3. Consider an arbitrary menu (Dh, D`) of delegation sets and p ∈ {h, `}. Let

β0
p < y < x̄p ≤ ω̄p. Then replacing Dp by D′

p =
(
Dp ∩ [−∞, y]

)
∪ {y} improves the

principal’s expected utility.

The set D′
p in Lemma 3 is obtained by chopping off a piece of the upper end of

the original delegation set Dp and keeping the action y at which the set was chopped

off. Lemma 3 says that modifying the delegation set in this way is beneficial if the new

maximal action y lies above β0
p .

6 Benchmarks

In this section, we discuss two benchmark cases that will play an important role in the

subsequent analysis. First, we consider the principal’s problem when the agent’s ability

type is publicly known. Second, we consider the optimal “static” delegation set which

does not depend on the agent’s ability.

6.1 Publicly known ability

When the agent’s ability is publicly known, the constraint (ICp) in D is redundant,

and the sequential delegation problem reduces to Holmström’s (1977, 1984) classic static

delegation problem with uniformly distributed state ω. It is well-known that in this

case, the optimal delegation set is an interval with upper endpoint β0
p .

19 Note that by

assumption (1), ωp < β0
p . We summarize this result in the following lemma.

Lemma 4. If the agent’s ability p is publicly known, the solution to the delegation problem

is given by D0
p = [ωp, β

0
p ].

We briefly reiterate the reason for the result. The fact that interval delegation is

optimal, can be inferred from (6). Indeed, in state ω̄p, the agent chooses the highest

action available.20 Thus, allowing the agent to pick all smaller actions does not affect

the agent’s utility in the highest state (and so does not lower the principal’s utility), but

(weakly) improves the agent’s utility in the other states [ωp, ω̄p) (and so also improves the

principal’s utility). Extending the interval by including additional higher actions improves

the principal’s utility via the information effect but lowers the principal’s utility via the

loss-of-control effect. At the point β0
p , the two effects are in balance (see Lemma 2, (ii)).

19See, for example, Holmström (1977) or Kováč and Mylovanov (2009).
20It is not hard to see that offering a delegation set that includes actions larger than ω̄p cannot be

optimal.
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6.2 Optimal static delegation

We refer to a menu of delegation sets as static if it can be implemented with a single

delegation set D.21 In terms of the mechanisms design perspective, this means that both

both pieces of agent’s private information are elicited at the same time.

The principal’s utility under a static delegation set is

V =

∫ ω̄h

ωh

−(x(ω)− (ω − b))2 dF (ω),

where x(ω) = arg maxx∈D −(x − ω)2 denotes the choice function of the agent under the

delegation set D, and

F (ω) = µhFh(ω) + µ`F`(ω)

is the average distribution function of the expected state, averaged across the two ability

types.

Analogously to (6), the principal’s utility can be expressed as

V =
µh

h
bu(ωh) +

µ`

`
bu(ω`) +

∫ ω̄h

ωh

u(ω) dF (ω)

−µh

h
bu(ω̄h)−

µ`

`
bu(ω̄`)

−b2, (8)

where u(ω) = −(x(ω) − ω)2 is the agent’s utility. The key difference to the benchmark

case with publicly known types is that, because the delegation set can no longer condition

on the agent’s ability type, now the loss-of-control effect corresponds to the agent’s utility

not only in one state but in two states, as reflected in the second line of (8): conditional

on facing the h-type, the principal’s utility goes down in the state ωh, and conditional

on facing the `-type, the principal’s utility goes down in the state ω`. Therefore, the

simple argument that establishes optimality of interval delegation in the benchmark case

no longer works. In fact, consider a delegation set with a maximal action larger than ω̄`.

Then it would never be beneficial to include all actions below this maximal action but to

insert a small gap around the action ω̄`, because the agent’s utility in state ω̄` enters the

principal’s utility with a negative weight −µ`/` · b.

Yet, the argument from the benchmark case can be extended as follows. For any

delegation set containing two actions which are both below the action ω̄`, (8) implies

that the principal’s utility (weakly) goes up when all actions between the two actions are

included in the delegation set. This follows from that fact that, conditional on each type,

21For example, the menu of intervals Dh = [ω̄h, x] and D` = [ω̄`, x] can be implemented by the single
set D = [ω̄h, x].
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adding these actions only improves the information effect yet leaves the loss-of-control

effect unchanged. Similarly, for any delegation set containing two actions which are both

inside (ω̄`, ω̄h), the principal’s utility (weakly) goes up when all actions between the two

actions are included in the delegation set. Therefore, the optimal delegation set consists

of an interval [ωh, x], where x < ω̄`, and a set D′ which is either an interval or a single

point (within (ω̄`, ω̄h)), or empty. The next lemma makes this reasoning more precise.

Lemma 5. The optimal static delegation set is given by the union of an interval [ωh, ω̄`−
d] and an additional set D′, where d ∈ [0, ω̄h − ω̄`] and

D′ = ∅, or D′ = {ω̄` + d}, or D′ = [ω̄` + d, x̄] (9)

for some x̄ ∈ [ω̄` + d, ω̄h].

The lemma says that if the optimal static delegation set is not an interval, then it has

a symmetric gap around the upper endpoint ω̄` of the low type’s support. The symmetry

of the gap is a consequence of the information effect. If the gap was not symmetric, say

with a larger gap below than above the type ω̄`, then the type ω̄` would choose the action

at the upper end of the gap. Thus, closing the gap slightly from below would not affect

this type’s action and thus would not affect the loss-of-control effect. Yet this would

increase improve the principal’s expected utility by the information effect.

To identify which of the possible three shapes the optimal static delegation set takes,

we use Lemma 2, (ii) which allows us to compare the principal’s utility from an interval

and from an interval plus a point. It follows from Lemma 5 and Lemma 2, (ii) that

interval delegation is optimal when β0
h ≤ ω̄`. To see this, observe first that if β0

h ≤ ω̄`,

the optimal delegation set cannot be the union of two intervals because by Lemma 3 it

would be beneficial to lower the upper endpoint of the second interval which is located

in (ω̄`, ω̄h]. Hence, the optimal delegation set is either an interval or an interval plus a

point. In the latter case, because the delegation set has a symmetric gap around ω̄`, the

average of the two largest actions in the delegation set, ω̄` − d and ω̄` + d, is exactly ω̄`.

Hence, Lemma 2, (ii) implies that since β0
h ≤ ω̄`, it would be better to remove the largest

action from the delegation set. These considerations are summarized in Proposition 1.

Observe that the condition b ≥ 1
2
(ω̄h − ω̄`) stated in the proposition is equivalent to the

condition β0
h ≤ ω̄`.

Proposition 1. Let b ≥ 1
2
(ω̄h − ω̄`) Then the optimal static delegation set is an interval

of the form

Dst = [ωh, β
st], with βst ∈ [β0

` , β
0
h].

Moreover, the upper endpoint βst monotonically increases in µh with βst = β0
` for µh = 0

and βst = β0
h for µh = 1.
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The comparative statics properties of βst are driven by the fact that the principal’s

objective is the weighted average of her objective if she knew the ability type. Therefore,

the optimal upper endpoint is between the optimal upper endpoints of the benchmark

cases with known ability types and converges to the benchmark cases as the principal’s

uncertainty about the agent’s ability diminishes.

Next, we consider the case that β0
h > ω̄` (which is equivalent to b < 1

2
(ω̄h − ω̄`)). In

this case, the optimal static delegation set consists of an interval plus a point or of two

intervals. This is stated in Proposition 2.

Proposition 2. Let b < 1
2
(ω̄h−ω̄`) and µh ∈ (0, 1). Then the optimal static delegation set

consists of the disjoint union of an interval and one other set which is either an interval

or a single point, and has a symmetric gap around ω̄`, i.e., there is a d ∈ [0, ω̄h − ω̄`] so

that

Dst = [ωh, ω̄` − d] ∪D′,

where either D′ = [ω̄` + d, β0
h] and β0

h > ω̄` + d, or D′ = {ω̄` + d} and β0
h ≤ ω̄` + d.

The intuition is analogous to Proposition 1. By Lemma 2, (ii), interval delegation

cannot be optimal, because in the case β0
h > ω̄` it would always pay to include the

additional action ω̄` + d in the delegation set. Whether the optimal delegation set is

the union of an interval and a point or of two intervals, can now be determined by

maximizing the principal’s expected utility with respect to d. (We omit the somewhat

tedious calculation.)

Remark 1. It is useful to relate our results on optimal static delegation to the literature.

The static problem has, in some generality, been studied by Alonso and Matouscheck

(2008) and by Kováč and Mylovanov (2009). In particular, Kováč and Mylovanov (2009)

show that the solution is interval delegation if the density associated with the distribution

of the state is absolutely continuous, and a “regularity” condition holds. However, we

cannot directly apply Kováč and Mylovanov (2009)’s result, because in our case, f is

not absolutely continuous, as it has jumps at the points ω = ω` and ω = ω̄`; thus, f is

only piece-wise absolutely continuous. More seriously, our environment is not regular for

all biases. This is the main reason why we consider a setup with two ability types. A

major obstacle to go beyond this case is the difficulty to characterize the optimal static

delegation set.22

22More precisely, regularity means that the function g(ω) ≡ 1 − F (ω) − bf(ω) is decreasing at the
point ω whenever 0 ≤ g(ω) ≤ 1. For small bias, the function g jumps upward to a value larger than 0
at the point ω̄`, thus violating regularity. Moreover, the more ability types p one allows for, the “more”
irregular g becomes. (That f is only piece-wise continuous causes minor problems only.) This is so since
g makes an upward jump at each point ω̄p. Note that this observation remains true if the state θ is not
uniformly distributed. One could, of course, allow for more ability types and impose assumptions (e.g.
on b) that guarantee regularity. However, our analysis below suggests that the comparison between static
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7 Optimal sequential delegation

In this section, we derive the optimal sequential delegation menu when the agent’s ability

type is his private information. We say that static delegation is optimal, if there exists a

static delegation menu that solves the principal’s problem. Otherwise, the agent’s ability

type is explicitly screened, and we say that sequential delegation is optimal.

Our approach to solving the principal’s problem is to first consider a relaxed problem

where we ignore one incentive constraint. We then show that the optimal delegation menu

for the relaxed problem must be in a class of simple delegation menus which are pinned

down by three parameters. In a second step, we establish that a solution to the relaxed

problem automatically satisfies the other incentive constraint and thus also solves the

original problem. These two steps will then allow us to determine the optimal delegation

menu by optimizing over menus in the class mentioned above.

The benchmark case with publicly known ability types as described in Lemma 4

suggests that we can ignore the high type’s incentive constraint. To see this, observe that

in the benchmark case, the high type’s delegation set is larger than that of the low type:

D0
h = [ωh, β

0
h] ⊃ [ω`, β

0
` ] = D0

` . Thus, the low ability type would have an incentive to

pretend to be of high ability. This intuitively suggests that with privately known ability

types, the low type’s incentive constraint is binding at the optimum.

Thus, we consider the relaxed delegation problem

DR : max
(Dh,D`)

∑
p∈{h,`}

µp

∫ ω̄p

ωp

−(xp(ω)− (ω − b))2 1

p
dω s.t. (A), (IC`).

where we ignore the (ICh) constraint. We denote a solution to DR by (D∗
h, D

∗
` ).

We shall now formally confirm the intuition that (ICh) is binding, and moreover that

the low ability type is offered an interval at the optimum of the relaxed problem.

Lemma 6. At the solution to the relaxed problem DR, (IC`) is binding and D∗
` is an

interval of the form

D∗
` = [ω`, β

∗
` ], where β∗

` ∈ [β0
` , ω̄`].

The fact that the delegation set for the low type is an interval is a consequence of the

effects stated in Lemma 2. Suppose for example that D∗
` contained gaps. Then filling the

gaps (adding the actions inside) would clearly improve the `-type’s utility from picking

the modified delegation set and thus relax the incentive constraint. At the same time,

filling gaps would improve the principal’s expected utility by Lemma 2, (i).

and sequential delegation becomes interesting exactly in irregular cases. Therefore, excluding irregular
cases would be a loss.
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We shall now exploit the fact that (IC`) is binding to derive restrictions on the

optimal delegation set D∗
h. Towards this end, we first provide a representation of the

optimal delegation menu of the relaxed problem. The following lemma says that the high

type’s delegation is a union of two connected sets.

Lemma 7. Without loss of generality, the high type’s delegation set at the optimum of

the relaxed problem DR is a union of two connected sets: D∗
h = Dh1 ∪Dh2, where:

(i) Dh1 = {γ1} with γ1 ≤ ωh, or Dh1 = [ωh, γ1] with γ1 > ωh.

(ii) Dh2 = {γ2}, or Dh2 = [γ2, β
0
h] with ω̄` ≤ γ2 < β0

h.

(iii) γ1 ≤ β∗
` ≤ γ2 and 1

2
(β∗

` + γ2) ≤ ω̄`.

Part (i) says that Dh1 is a singleton or an interval. The first case occurs only if D∗
h

contains an action which is smaller than the lower endpoint of the support. Otherwise,

the second case occurs. Part (ii) says that also Dh2 is either a singleton or an interval.

Importantly, it can be an interval only if ω̄` < β0
h, or equivalently b < 1

2
(ω̄h− ω̄`). This is

precisely the case when interval delegation is not optimal in the static case. In the other

case, Dh2 is a singleton, and thus D∗
h may be represented as a union of an interval and

an action or as a two-action set.

Part (iii) restricts the location of the sets Dh1 and Dh2. The first inequality says that

the two actions γ1, γ2 cannot be jointly larger or smaller than the highest action of the

`–type’s delegation set, β∗
` . The second inequality says that in state ω̄`, the agent (at

least weakly) prefers the action γ2 over the action β∗
` .

Let us emphasize that the optimal static delegation sets from Propositions 1 and 2

are included in the class of menus described in Lemma 7: Interval delegation occurs if

γ1 = γ2 = β∗
` and Dh2 is a singleton. Moreover, the static delegation set from Proposition

2 occurs if γ1 = β∗
` and γ2 = ω̄` + d with d = ω̄` − β∗

` .

Finally, note that Lemma 7 does not claim that D∗
h is of the specified form in every

optimal delegation menu. Rather, it states that for any optimal delegation menu (D∗
h, D

∗
` )

there is a delegation set D′
h of the form described in Lemma 7 such that the menu (D′

h, D
∗
` )

is optimal as well. The intuition is as follows. Given the delegation menu (D∗
h, D

∗
` ), we

construct the set D′
h so that it (weakly) improves the principal’s expected utility and

at the same time preserves the binding (IC`).
23 More specifically, let us denote γ2 the

action that the agent chooses from D∗
h in state ω̄` (if the agent is indifferent between

two actions, let γ2 be the higher one). Then, type ` would (weakly) prefer the interval

[xh, γ2] to D∗
` . On the other hand, type ` would be (weakly) worse off from the two

23The construction actually applies to any delegation menu where (IC`) is binding.
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point set {xh, x̄h} than from D∗
` . Therefore, an intermediate value argument implies that

there is γ1 ∈ [xh, γ2] such that type ` remains indifferent between the set D∗
` and the set

[xh, γ1] in between the large and the small set. Let us now consider the delegation set

D′
h where all actions in D∗

h below γ2 are replaced by [xh, γ1]. This clearly leaves (IC`)

binding. The question is then how the principal’s expected utility is affected by the

change. While the value of D∗
h and D′

h is the same based on the low agent type’s belief

about the expected state, all that matters for the principal is the utility from D∗
h and D′

h,

conditional on facing the high ability type. But observe that the conditional distribution

of the expected state is uniform conditional on both the high and the low ability type.

Therefore, the principal effectively evaluates D∗
h and D′

h with the same beliefs as the low

agent type. Thus, if the change does not affect the agent’s choices in states ω ∈ [ωh, ω`],

also the principal’s expected utility is unaffected by the change.24 On the other hand, if

it does affect the agent’s choices in states ω ∈ [ωh, ω`], the delegation set D′
h may even

improve the principal’s expected utility.

Lemma 7 characterizes the shape of the optimal delegation menu for the relaxed

problem. We now show that any delegation menu in the class described in Lemma 7

automatically satisfies the incentive compatibility constraint for type h. Therefore, a

solution to the relaxed problem is automatically a solution to the original problem.

Lemma 8. A solution (D∗
h, D

∗
` ) to the relaxed problem DR of the form as in Lemma 7,

is also a solution to the original problem D.

The basic idea behind Lemma 8 is as follows. Suppose there is a sequential solution

(D∗
h, D

∗
` ) to the relaxed problem that violates (ICh).

25 Then, since (ICh) is violated, the

h-type’s utility would be improved when the agent was offered the static menu consisting

of D′
h = [ωh, ω`] ∪ D∗

` = [ωh, x̄`] and D′
` = D∗

` .
26 In terms of the principal’s utility,

by (6), a modification that improves the h-type’s utility improves the objective by the

information effect. Moreover, since x̄h ≥ x̄` by Lemma 7, the utility of the highest type

ω̄h is higher under D∗
h than under D′

h, and therefore, the loss-of-control effect is smaller

under D′
h than under D∗

h. Consequently, if (ICh) is violated, offering the static menu

is (D′
h, D

′
`) is an improvement in terms of both the information and the loss-of-control

effect.

Lemma 7 and Lemma 8 imply that the optimal delegation menu can be found by

optimizing over the class described in Lemma 7. By part (ii) of Lemma 7, the properties

24If the underlying state θ is not uniformly distributed, a change of D∗
h that leaves the low type

indifferent does not necessarily leave the principal indifferent, because the conditional distributions of
the expected state, conditional on the various ability types, are not linear transformations of one another.
It is an open question to what extent the previous argument extends to the non-uniform case.

25Clearly, a static solution meets (ICh).
26This static menu can also be implemented by offering the delegation set D′

h = [ωh, β∗
` ] to both types.
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of the h–type’s optimal delegation set D∗
h depend on whether, for the static problem,

interval delegation is optimal or not. It is therefore useful to make this case distinction.

7.1 Large bias: b ≥ 1
2(ω̄h − ω̄`)

We now consider the set of biases so that interval delegation is optimal in the static

problem. Recall that this is the case if b ≥ 1
2
(ω̄h − ω̄`), or equivalently,

β0
h ≤ ω̄`. (10)

Propositions 3 and 4 below fully characterize the solution to the principal’s problem.

The propositions say that sequential delegation is optimal if and only if the bias is small

(relative to ω̄h − ω̄`) and the prior probability of the high type, µh, is not too large.

Lemma 7 implies that in this case D∗
h is a union of an interval and an isolated point, or

it is a two-action set. Otherwise, static delegation remains to be optimal.

Proposition 3. Let b ≥ ω̄h − ω̄`. Then static interval delegation is optimal for the

problem D. The optimum is achieved at the delegation set Dst = [ωh, β
st].

Proposition 4. Let 1
2
(ω̄h − ω̄`) ≤ b < ω̄h − ω̄`, and define27

b̂ ≡ 1 +
√

5

4
(ω̄h − ω̄`). (11)

Then for every b ∈
[

1
2
(ω̄h − ω̄`), b̂

)
there is µ̂h(b) ∈ (0, 1] such that:

(a) If b ≥ b̂, or if b < b̂ and µ ≥ µ̂h(b), then static delegation is optimal for the problem

D. The optimum is achieved at the delegation set Dst = [ωh, β
st].

(b) If b < b̂ and µ < µ̂h(b), then sequential delegation is optimal for the problem D.28

To illuminate the forces behind the result, we shall identify the costs and benefits of

sequential delegation. For a fixed delegation set of the low type, the principal’s choice

of the high type’s delegation set is restricted by the incentive compatibility requirement

that (IC`) be binding. This pins down the agent’s utility from the high type’s delegation

set, aggregated over the range of the low type’s support [ω`, ω̄`]:

` · U` =

∫ ω̄`

ω`

u`(ω) dω =

∫ ω̄`

ω`

uh(ω) dω. (12)

27Observe that 1
2 (1 +

√
5) ≈ 1.62 is the Golden ratio.

28By Lemmata 6 and 7, at the optimum, D` is an interval, and Dh is a union of an interval and an
isolated point, or it is a two-action set.
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Therefore, by (6), the principal’s expected utility, conditional on facing the h-type, can

be expressed as29

h · Vh = ` · U` +

∫ ω`

ωh

uh(ω) dω +

∫ ω̄h

ω̄`

uh(ω) dω + buh(ωh)− buh(ω̄h)− b2. (13)

Again, we can identify an information and a loss-of-control effect. The information effect

corresponds to the agent’s utility gain in states ω ∈ [ωh, ω`) ∪ (ω̄`, ω̄h), and the loss-

of-control effect corresponds to the agent’s utility gain in the state ω̄h (which lowers

the principal’s utility). Observe that, compared to the benchmark case with publicly

known ability types, since U` is fixed by incentive compatibility, the information effect

is diminished, as the principal now only benefits from the agent’s utility in the states

ω ∈ [ωh, ω`)∪ (ω̄`, ω̄h), but the loss-of-control effect is the same as in the benchmark case.

In this sense, the cost of incentive compatibility is that it weakens the information effect

with respect to the high ability type.

To understand the effects of sequential delegation more specifically, it is useful to

consider marginal changes of the optimal static delegation set. Recall that for the case

under consideration in this subsection (b ≥ 1
2
(ω̄h− ω̄`)), the optimal static delegation set

is an interval [ωh, β
st] by Proposition 1. Now suppose that, instead of offering the static

menu Dh = D` = [ωh, β
st], the principal offers the sequential delegation menu where D` is

maintained and the upper endpoint of Dh is slightly increased by dβst and an appropriate

gap dz is inserted in Dh to maintain incentive compatibility:

D′
` = Dst, D′

h = [ωh, β
st − dz] ∪ {βst + dβst}. (14)

We refer to this modification as marginal sequential delegation. Since marginal sequential

delegation is feasible for the relaxed problem DR, it follows that if marginal sequential

delegation is beneficial (relative to static delegation), then some sequential delegation

menu is optimal for the relaxed problem, and thus, by Lemma 8 also for the original

problem. We now investigate when marginal sequential delegation is beneficial.

We may use (13) to evaluate the effect of marginal sequential delegation on the prin-

cipal’s utility, conditional on facing the h-type. Since βst is increased only marginally, the

gap necessary to maintain incentive compatibility is also only marginal. In particular,

as under static delegation, all actions [ωh, ω`) will be included in the h-type’s modified

delegation set. Hence, marginal sequential delegation does not affect that part of the

information effect that is attributable to the agent’s utility in the states [ωh, ω`) (the sec-

29It is important to note that this follows from the assumption that the state is uniformly distributed.
The binding (IC`) uses the distribution conditional on facing type `. On the other hand, the above
formula involves the distribution conditional on facing type h. If the types are distributed according to
the uniform distribution, the two conditional distributions differ only by a constant factor.
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ond and fourth term in (13)). Yet it does affect both what remains from the information

effect (the third term in (13)) and the loss-of-control effect (the fifth term in (13)).

Since the upper endpoint, βst, of the optimal static delegation set is smaller than β0
h

by Proposition 1, it is also smaller than ω̄` by condition (16). Therefore, in the states

[ω̄`, ω̄h], the agent chooses the highest action from the h-type’s delegation set both under

static and under marginal sequential delegation. Together with the argument in the

previous paragraph, this implies that the benefit of marginal sequential delegation can

be expressed as

d(hVh)

dβst
=

d

dβst

{∫ ω̄h

ω̄`

−(βst − ω)2 dω − b[−(βst − ω̄h)
2]

}
. (15)

︸ ︷︷ ︸ ︸ ︷︷ ︸
information

effect

loss-of-control

effect

Observe that both the information and the loss-of-control effect go up through marginal

sequential delegation, as the agent now obtains a higher utility in all relevant states

ω ∈ [ω̄`, ω̄h]. Hence, what matters is how the two effects increase relative to one another.

Three forces drive the relative size of the information and the loss-of-control effect.

First, because the agent’s utility is quadratic, the agent’s utility increases by more

in state ω̄h than in any state ω ∈ [ω̄`, ω̄h) when βst is marginally increased. Yet, the

difference in the increase declines the smaller is the action βst. This is because the agent’s

loss function is concave so that the difference between the marginal loss in state ω̄h and

in some state ω ∈ [ω̄`, ω̄h) diminishes as the loss becomes large. Therefore, the smaller

is βst, the more the information effect works in favor of marginal sequential delegation.

Recall from Proposition 1 that βst increases in the likelihood µh of the h-type.

Second, the loss-of-control effect is evidently less pronounced, the smaller is the bias.

Thus, the smaller is b, the less the loss-of-control effect works against marginal sequential

delegation. Third, the information effect is more pronounced the larger is the interval

[ω̄`, ω̄h). Thus, the larger is ω̄h − ω̄`, the more the information effect works in favor of

marginal sequential delegation.

We now explain how these effects play out for the cases distinguished in Propositions 3

and 4. Consider first Proposition 3, i.e., b ≥ ω̄h−ω̄`. As said above, a marginal increase of

βst increases the agent’s utility by more in state ω̄h than in states ω ∈ [ω̄`, ω̄h). Therefore,

the agent’s utility increase in state ω̄h, multiplied by b, is larger than the agent’s aggregate

utility increase over the range [ω̄`, ω̄h) which has measure ω̄h−ω̄` smaller than b. Thus, the

loss-of-control effect dominates the information effect. This shows that, for b ≥ ω̄h − ω̄`,

the principal cannot benefit from marginal sequential delegation. While this argument

deals only with marginal modifications of the optimal static delegation menu, the proof
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of Proposition 3 shows that, in fact, no profitable modification of the optimal static

delegation menu exists when b ≥ ω̄h − ω̄`.
30

Next, consider Proposition 4, where b < ω̄h − ω̄`. As argued above, the benefit of

marginal sequential delegation is large when b and µh are small and ω̄h − ω̄` is large. A

computation shows that at the values b = b̂ and µh = µ̂h, the benefit of marginal sequen-

tial delegation (15) is zero. Thus, for parameter constellation (b), marginal sequential

delegation improves upon static delegation, and a fortiori, some sequential delegation

menu must be the solution to the principal’s problem.

Likewise, for the parameter constellation under (a), marginal sequential delegation

does not improve upon static delegation. In principle, therefore, a non-marginal modifi-

cation of the static delegation menu could be profitable. That this is not the case, can

intuitively be seen from (13) and the insight from Lemma 7 that the optimal delega-

tion set for the h-type is an interval plus an action, or it is a two–action set. Because

a marginal modification is not profitable, any increase of the upper endpoint of the h-

type’s delegation set increases the agent’s utility in state ω̄h (times b) by more than the

agent’s aggregate utility over the states [ω̄`, ω̄h). Hence, by (13), any potential gain from

a non-marginal modification must come from the effect it has on the agent’s utility in

state ωh and on the agent’s aggregate utility over the states (ωh, ω`). But the agent’s

utility in those states is already maximized under marginal sequential delegation. Hence,

there is no room for a non-marginal modification to yield the principal additional utility.

This concludes our discussion of the case where the agent’s bias is relatively large.

Next, we turn to the case with small bias.

7.2 Small bias: b < 1
2(ω̄h − ω̄`)

We now consider the set of biases so that interval delegation is no longer optimal in the

static problem. Recall that this is the case if b < 1
2
(ω̄h − ω̄`), or equivalently,

β0
h > ω̄`. (16)

We show that in this case, sequential delegation is always strictly better than static

delegation.

Proposition 5. Let b < 1
2
(ω̄h − ω̄`). Then sequential delegation is optimal for the prin-

cipal’s problem D.31

30Interestingly, the condition b ≥ ω̄h − ω̄` stated in Proposition 3 is exactly the regularity condition
established in Kováč and Mylovanov (2009). It is an open question of whether, in general, regularity is
sufficient for the optimality of static delegation.

31By Lemmata 6 and 7, at the optimum, D` is an interval, and Dh is a union of an interval and an
isolated point, or it is the disjoint union of two intervals, or it is a two-action set.
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The intuition can again be best understood in terms of the information and the loss-

of-control effect as captured by expression (13) which, for convenience, we reiterate:

h · Vh = ` · U` +

∫ ω`

ωh

uh(ω) dω +

∫ ω̄h

ω̄`

uh(ω) dω + buh(ωh)− buh(ω̄h)− b2. (17)

Recall that by Proposition 2, the optimal static delegation set is the disjoint union of

an interval and one other set which is either an interval or a single point, and has a

symmetric gap around ω̄`. For the sake of the discussion, suppose it is the union of an

interval and a single point (the argument for the other case is identical):

Dst = [ωh, ω̄` − d] ∪ {ω̄` + d}, with ω̄` + d ≤ ω̄h. (18)

Consider a modification of the optimal static delegation menu where the delegation set

of the low type is the same as under static delegation except that the action {ω̄` + d} is

removed: D` = [ωh, ω̄` − d]. Further, the delegation set of the high type is modified by

chopping off a piece of the upper end of the interval and adding a small interval to the

left of the upper endpoint so that (IC`) remains binding:

Dh = [ωh, ω̄` − d− η] ∪ [ω̄` + d− ε, ω̄` + d], η, ε > 0. (19)

We now argue that this modification is profitable for the principal (relative to static

delegation). Since the modification is feasible for the relaxed problemDR, some sequential

delegation menu is therefore optimal for the relaxed problem, and thus, by Lemma 8, also

for the original problem.

To see that the modification is profitable, observe that because D` and Dst induce

the same action for the `-type agent, the modification does not affect the principal’s

utility conditional on facing the `-type. The effect on the principal’s utility conditional

on facing the h-type can be seen from (17). Because the agent’s utility in state ω̄h has

not changed under the modification, the loss-of-control effect — the term buh(ω̄h) in (17)

— is unaffected by the modification.

Consider next the impact of the modification on the information effect — the second

to fourth terms in (17). Suppose that ε (and thus η) is so small that ω̄` − d − η > ω`

(we may always find such an ε). Then the information effect that is attributable to the

agent’s utility in the states ω ∈ [ωh, ω`] — the second and fourth term in (17) — is

not affected by the modification. But, the information effect that is attributable to the

agent’s utility in the states ω ∈ [ω̄`, ω̄h) — the third term in (17) — does increase under

the modification. To see this, observe that since the modification maintains (IC`), it must

be that in the states ω ∈ [ω̄`, ω̄` + d − ε], the agent chooses the action ω̄` + d − ε under
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the modification, whereas under static delegation he chooses the worse action ω̄` + d.

Moreover, in the states ω ∈ [ω̄` +d−ε, ω̄` +d), the agent gets his ideal action ω under the

modification, whereas under static delegation he chooses the worse action ω̄` +d. Finally,

in the states ω ∈ [ω̄` + d, ω̄h] the agent’s action under the modification is the same as

under static delegation. In sum, the principal’s expected utility unambiguously goes up

under the modification, and thus, a sequential delegation menu is strictly better than

static delegation.

8 Conclusion

In this paper, we have provided insights into the nature of optimal delegation when the

agent’s private information arrives over time. While we focus on a special environment

to obtain a full characterization, the intuitions developed in the paper suggest that many

of our findings are likely to carry over to more general settings. In particular, it seems

likely that in many environment offering delegation menus with only extreme options

is necessary to screen the agent’s ex ante ability. Also, whenever the principal faces a

trade-off between information and loss of control, it is reasonable to conjecture that a

smaller conflict of interest and a larger uncertainty about the agent’s ex ante ability work

in favor of sequential delegation.

The design approach adopted in our paper requires that actions are contractible.

Starting with Crawford and Sobel (1982), there is a huge literature that investigates

the static problem when actions are not contractible and the parties have to rely on

non-binding forms of communication such as cheap talk. An interesting question for

future research that can be addressed within the model of this paper is how the nature

of non-binding communication is affected by the sequential arrival of new information.
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A Appendix

Proof of Lemma 2. (i) By assumption, 1
2
(y + x̄p) ≤ ω̄p. Therefore, adding y does not

modify the agent’s utility in state ω̄p. In addition, (7) implies that some agent type

ω ∈ [ωp, ω̄p] chooses y. Hence, adding y strictly improves the agent’s utility in some

neighborhood of y when y > ωp, or in some neighborhood of ωp when y ≤ ωp. By (6),

these observations imply that adding y strictly improves the principal’s utility.

(ii) Let us first consider the case x̄p ≥ ωp. Condition (7) implies that 1
2
(y + x̄p) < ω̄p.

Thus, by (6), the principal’s utility from D′
p = Dp∪{y} and Dp are respectively given by

p · V ′
p = C +

∫ (y+x̄p)/2

x̄p

(x̄p − ω)2 dω −
∫ ω̄p

(y+x̄p)/2

(y − ω)2 dω + b(y − ω̄p)
2 − b2, (20)

p · Vp = C +

∫ ω̄p

x̄p

(x̄p − ω)2 dω + b(x̄p − ω̄p)
2 − b2, (21)

where C is the principal’s utility, conditional on the states [ωp, x̄p] which is the same for

both delegation sets. Thus,

p(V ′
p − Vp) = −

∫ ω̄p

(y+x̄p)/2

(y − ω)2 − (x̄p − ω)2 dω + b[(y − ω̄p)
2 − (x̄p − ω̄p)

2]. (22)

The integral is equal to

−
∫ ω̄p

(y+x̄p)/2

(y − x̄p)(y + x̄p − 2ω) dω = (y − x̄p)

(
y + x̄p

2
− ω̄p

)2

. (23)

The second term in p(V ′
p − Vp) can be written as

b[(y − ω̄p)
2 − (x̄p − ω̄p)

2] = b(y − x̄p)(y + x̄p − 2ω̄p) = 2b(y − x̄p)

(
y + x̄p

2
− ω̄p

)
. (24)

Hence,

p(V ′
p − Vp) = (y − x̄p)

(
ω̄p −

y + x̄p

2

) (
ω̄p −

y + x̄p

2
− 2b

)
. (25)

Since the first two factors are positive by assumption, we obtain that p(V ′
p − Vp) > 0 is

equivalent to 1
2
(y + x̄p) < ω̄p − 2b = β0

p , as desired.

Second, consider the case x̄p < ωp < 1
2
(y + x̄p). Due to non-redundancy, we have

Dp = {x̄p} and D′
p = {x̄p, y}. In this case, the lower bound in the integrals in (20) and

(21) is ω̄p instead of x̄p. The formula (27) as well as the rest of the proof remain the

same.

Finally, third, consider the case 1
2
(y + x̄p) ≤ ωp. We show that in this case, adding

28



y improves the principal’s expected utility (recall that ωp < β0
p). Note that now non-

redundancy implies that Dp = {x̄p} and D′
p = {y}, as in D′

p the action x̄p becomes

redundant. Let us for any z ∈ R define

σ(z) = −b(z − ωp)
2 −

∫ ω̄p

ωp

(z − ω)2 dω + b(z − ω̄p)
2 − b2 (26)

the principal’s expected utility (scaled by p) from a singleton delegation set {z}. Then

p · Vp = σ(x̄p) and p · V ′
p = σ(y) and a direct computation gives

p(V ′
p − Vp) = (ω̄p − ωp)(y − x̄p)[ωp + ω̄p − (y + x̄p)− 2b]. (27)

The first and the second brackets are clearly positive. The third bracket is also positive,

as ωp + ω̄p − (y + x̄p) ≥ ωp + ω̄p − 2ωp = ω̄p − ωp = ` > 2b, where the first inequality

follows from 1
2
(y + x̄p) ≤ ωp, assumed in this case, and the second inequality follows

from assumption (1). Thus, we have shown that indeed V ′
p > Vp, which completes the

proof.

Proof of Lemma 3. Consider first the case that [y, x̄p] ⊆ Dp. Then Dp = D′
p ∪ (y, x̄p]

which means that Dp can be obtained by adding actions y′ from the interval (y, x̄p] to

D′
p. Since y is the maximal action in D′

p, and since y′ ≤ ω̄p, such an action y′ is non-

redundant for the set D′
p. Moreover, the average of y = max D′

p and y′ is larger than β0
p

since y ≥ β0
p . Hence, Lemma 2, (ii), implies that adding y′ to D′

p lowers the principal’s

expected utility. Therefore, the set D′
p yields the principal a higher expected utility than

the set Dp, as we wanted to show.

Next, consider the case that [y, x̄p] 6⊆ Dp. Then adding all (missing) actions in the

interval [y, x̄p) causes an improvement for the principal by (6), because the action chosen

by type ω̄p, and thus his utility is not affected by the availability of the new actions.

Together with the argument in the previous paragraph, this implies that the principal is

better of with D′
p than with Dp, as desired.

Proof of Lemma 5. Let D be an optimal delegation set. The claim follows from the

following four properties:

(a) Each of the sets D ∩ [ωh, ω̄`] and D ∩ [ω̄`, ω̄h] is connected or empty.

(b) If both intersections in (a) are non-empty and x1 = max(D ∩ [ωh, ω̄`]) and x2 =

min(D ∩ [ω̄`, ω̄h]), then ω̄` − x1 = x2 − ω̄`.

29



(c) D ∩ (ω̄h,∞) is empty.

(d) ωh ∈ D.

We prove the properties by contradiction by assuming that each of the properties

holds at the optimal delegation set and then constructing a delegation set which is an

improvement.

(a) Suppose first D ∩ [ωh, ω̄`] contains a gap, i.e. there are y1, y2 ∈ D, y1 < y2 so

that D ∩ (y1, y2) = ∅. Then, since y2 < ω̄` < ω̄h, adding the set of actions (y1, y2) would

not affect the agent’s choice (and thus his utility) in states the ω̄` and ω̄h. However,

it would strictly increase the agent’s utility in the states ω ∈ (y1, y2). Therefore, by

(8), adding actions from the interval (y1, y2) to D strictly improves the the principal’s

expected payoff, a contradiction to the optimality of D. The argument for the case that

D ∩ [ωh, ω̄`] contains a gap is identical.

(b) Suppose to the contrary that the differences ω̄` − x1 and x2 − ω̄` are not equal.

We only consider the case that ω̄` − x1 < x2 − ω̄` (the other case is analogous). Let

x′1 = 2ω̄` − x1 be the mirror action of x1 mirrored at ω̄`. Then x′1 /∈ Dp. Since x2 ≤ ω̄h

and by construction of x′1, adding the action x′1 to the delegation set would not affect

agent’s choice (and thus his utility) in states the ω̄` and ω̄h. However, it would strictly

increase the agent’s utility the neighborhood of x′1. Therefore, by (8), adding x′1 to D

strictly improves the the principal’s expected payoff, a contradiction to the optimality of

D.

(c) Assume to the contrary that D ∩ (ω̄h,∞) is not empty at the optimum. Then

it contains exactly one action, namely x̄ = max D (other actions would be redundant).

Let us also denote x′ = max D \ {x̄}. Then x′ ≤ ω̄h and x̄ is chosen in state ω̄h, i.e.,
1
2
(x′ + x̄) < ω̄h. We consider two cases.

Case 1. Suppose first that the agent chooses action x̄ in state ω̄`, i.e., 1
2
(x′ + x̄) < ω̄`.

Then it would be profitable to add the action y = x′ + ε for ε small enough. To see

this, observe that y satisfies the non–redundancy condition (7) for p ∈ {h, `}, and also
1
2
(y + x̄) < ω̄p. Thus, it follows by Lemma 2, (i), that adding y improves the principal’s

expected utility, a contradiction to the optimality of D.

Case 2. Suppose next that the agent does not choose action x̄ in state ω̄`, i.e.,
1
2
(x′ + x̄) ≥ ω̄`. We distinguish three subcases.

Case 2.1. If x′ < β0
` , then adding the (non–redundant) action y = x′ + ε (for ε small

enough) to D improves the principal’s expected utility conditional on both types: for

type h strictly due to part (i) of Lemma 2 (since y < x̄ and 1
2
(x′ + x̄) < ω̄h so that also

1
2
(y + x̄) < ω̄h for ε small enough); for type ` due to part (ii). (Here, x′, which is the
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action chosen by type ` in state ω̄`, plays the role of x̄` in the statement of Lemma 2.

We can then apply part (ii) since y > x′ and 1
2
(y + x′) < β0

` for ε small enough.) This

contradicts the optimality of D.

Case 2.2. If 1
2
(x̄−x′) < ω̄h−ω̄`, then let y = 2ω̄h−x̄ be the mirror action of x̄, mirrored

at ω̄h. We show that adding y to D improves the principal’s utility conditional on both

types. To see this, note that 1
2
(x′ + x̄) < ω̄h implies that y > x′, and 1

2
(x̄− x′) < ω̄h − ω̄`

implies that 1
2
(x′ + y) > ω̄`. Therefore, y is not chosen by the agent in the state ω̄` and

adding y does not influence the principal’s utility conditional on type `. In addition,

by (8), it improves the principal’s utility conditional on type h, because it does not

affect uh(ω̄h), but improves the agent’s utility in lower states. This again contradicts the

optimality of D.

Case 2.3. Assume that x′ ≥ β0
` and 1

2
(x̄− x′) ≥ ω̄h − ω̄`. We show that removing the

action x̄ improves the principal’s utility. First, removing x̄ has no effect on the principal’s

utility conditional on type `, since x̄ is not chosen in the state ω̄` by assumption. Moreover,

it holds
y + x̄

2
= y +

x̄− y

2
≥ β0

` + ω̄h − ω̄` = β0
h. (28)

Therefore, removing the action x̄ improves the principal’s utility conditional on type h

due to Lemma 2, (ii). (Observe that if the above inequality holds as an equality, then the

principal is indifferent between removing and not removing x̄. In this case, it is therefore

without loss of generality that property (c) holds.)

(d) Suppose to the contrary that ωh /∈ D. Then D ∩ [ωh, ω̄`] is empty, as otherwise

adding the action ωh would improve the principal’s expected utility conditional on both

types by Lemma 2, (i). Moreover, by part (c), D cannot contain an action larger than

ω̄h. Therefore, D contains actions in (ω̄`, ω̄h] or in (−∞, ωh). In the former case, similar

arguments as in part (b) imply that the principal’s utility could be improved by adding

the action y = 2ω̄` − (min(D ∩ (ω̄`, ω̄h])). Note that y ∈ [ωh, ω̄`], contradicting the

assumption that D ∩ [ωh, ω̄`] is empty. Moreover, it cannot be optimal to offer actions

only in (−∞, ωh) due to our assumption that b < `/2.

This completes the proof.

Proof of Proposition 1. We want to show that the optimal static delegation set is an

interval Dst = [ωh, x̄] with β0
` ≤ x ≤ β0

h. To the contrary, suppose it is not an interval.

By Lemma 5, we then have

Dst = [ωh, ω̄` − d] ∪D′, (29)
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with D′ = {ω̄` +d}, or D′ = [ω̄` +d, x̄]. Now, D′ = [ω̄` +d, x̄] cannot be optimal, because

the fact that β0
h ≤ ω̄` < x̄ implies that lowering x slightly would be an improvement by

Lemma 3 (conditional on both, h and `). Therefore, D′ = {ω̄` + d}. But also this cannot

be (strictly) optimal, because by Lemma 2, (ii), it would be profitable to remove the action

ω̄`+d from Dst conditional on both types (observe that 1
2
(ω̄`−d+ω̄`+d) = ω̄` ≥ β0

h ≥ β0
` ).

Hence, we have shown that Dst is an interval. We conclude the proof by demonstrating

the stated properties of the upper endpoint βst of the optimal interval. Let Vp(x̄) be the

principal’s expected utility from a general interval [ωh, x̄], conditional on facing type p.

Then, the principal’s expected utility from interval delegation when he does not know

the ex ante type is

V (x̄) = µhVh(x̄) + µ`V`(x̄). (30)

From the benchmark case with publicly ability types, we know that

V ′
p(x̄) S 0 ⇔ x̄ T β0

p . (31)

Therefore, V ′(x̄) > 0 for all x̄ < β0
` , and V ′(x̄) < 0 for all x̄ > β0

` . Hence, the optimal

upper endpoint βst is in between β0
` and β0

h.

Moreover, differentiating the first order condition V ′(βst) = 0 with respect to µh yields

d

dµh

βst = V ′
h(β̄

st)− V ′
` (β

st), (32)

which is strictly positive by (31) since βst ∈ (β0
` , β

0
h). Furthermore, V converges to Vh

when µh converges to 0. Thus, also βst converges to β0
h. Similarly, βst converges to β0

` as

µ` converges to 1. This completes the proof.

Proof of Proposition 2. We want to show that the optimal static delegation set, Dst, is

the union of an interval [ωh, ω̄` − d] and a set D′ with either D′ = [ω̄` + d, β0
h] and

β0
h > ω̄` + d, or D′ = {ω̄` + d} and β0

h ≤ ω̄` + d.

Indeed, suppose, contrary to the claim, that Dst is not of the postulated form. Then

by Lemma 5, it is an interval [ωh, ω̄` − d]. But Lemma 2, (ii), implies that the principal

could improve by offering the set [ωh, ω̄` − d] ∪ {ω̄` + d}. (Adding the action ω̄` + d does

not affect the choices of type `. however, since β0
h > ω̄` by assumption, Lemma 2, (ii)

implies that adding the action ω̄` + d improves the principal’s utility conditional on type

h.) Therefore, by Lemma 5, the optimal set is the union of two intervals, or an interval

and a point.

32



Consider the first case Dst = [ωh, ω̄` − d] ∪ [ω̄` + d, x]. Then, if x 6= β0
h, then the

principal’s expected profit could be improved either by adding an action y = x + ε close

to x (when x < β0
h) or by slightly decreasing x (when x > β0

h). The modifications would

not affect the choices by type `, but improve the principal’s utility conditional on type

h by Lemma 2, (i), in the first case and by Lemma 3 in the second case. This shows

that when the optimal delegation set is the union of two intervals, the second interval is

D′ = [ω̄` + d, β0
h].

Consider next the case Dst = [ωh, ω̄` − d] ∪ {ω̄` + d}. Then, if ω̄` + d < β0
h, then,

adding an action slightly higher than ω̄` + d would improve the the principal’s expected

profit conditional on type h by Lemma 2, (i), but leave the choices of type ` unaffected.

This shows that when the optimal delegation set is the union of an interval and a point

ω̄` + d, we have ω̄` + d ≥ β0
h. This completes the proof.

Proof of Lemma 6. To show the claim, we use the following auxiliary lemma proven be-

low.

Lemma 9. Consider an arbitrary menu (Dh, D`) of delegation sets and p ∈ {h, `}. If

Dp 6= [ωp, z] for all z ≥ β0
p , then for every ε > 0 there exists y /∈ Dp such that replacing

Dp by the delegation set D′
p = Dp ∪ {y} improves the principal’s expected utility and

improves the agent’s expected utility by no more than ε:

0 < V ′
p − Vp, and 0 ≤ U ′

p − Up < ε. (33)

To establish Lemma 6, observe first that at the optimum of the relaxed problem,

D∗
` = [ω`, x̄

∗
` ] with x̄∗` ≥ β0

` . Otherwise, we can consider a modification of D∗
` as specified

in Lemma 9. Such a modification preserves (IC`), as it increases U∗
` , but also improves

V ∗
` . This contradicts the optimality of D∗

` .

Second, we show that (IC`) is binding at the optimum. To the contrary, suppose

(IC`) is slack at the optimum. We derive a contradiction in three steps.

Step 1. We show that D∗
h = [ωh, x̄

∗
h], where x̄∗h ≥ β0

h. Otherwise, consider a modifi-

cation of D∗
h as specified in Lemma 9. Because such a modification improves the `–type

agent’s expected utility only marginally and thus preserves the slack (IC`). Moreover, it

also improves V ∗
h , which is a contradiction to the optimality of D∗

h.

Step 2. We show that x̄h = β0
h, i.e., D∗

h = [ωh, β
0
h]. Assume to the contrary that

x̄h > β0
h. Non-redundancy requires that x̄p ≤ ω̄p. Let us replace the delegation set D∗

h

by the set [ωh, x̄
∗
h − ε] where ε > 0 is sufficiently small (so that x̄∗h − ε > β0

h). This

modification preserves (IC`), as it lowers the `-type’s expected utility from choosing Dh.
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Moreover, by Lemma 3, it improves the principal’s expected utility, which contradicts

the optimality of D∗
h.

Step 3. We finally argue that (IC`) cannot be slack. Indeed, as we have already

shown, D∗
` is an interval. Since D∗

h = [ωh, β
0
h], the slack (IC`) implies that x̄∗` > β0

h > β0
` .

Then, replacing D∗
` by [ωh, x̄

∗
` − ε] again preserves the slack (IC`), as the modification

is only marginal. Moreover, by Lemma 3, the principal would benefit from the change,

which is a contradiction to the assumption that D∗
` is optimal.

Proof of Lemma 9. Adding an action always (weakly) improves the agent’s utility. It is

thus sufficient to specify an action y such that the improvement is marginal and that it

also increases the principal’s expected utility.

Assume first that Dp is not connected. Then Dp contains a gap, i.e., there are y1, y2 ∈
Dp, y1 < y2, such that Dp ∩ (y1, y2) = ∅. Then we can add the action y = y1 + ε′ to Dp

(for ε′ > 0 small). Since y1 is not chosen in state ω̄p, we can find ε′ sufficiently small

so that 1
2
(y + x̄p) < ω̄p. Hence, by Lemma 2, (i), adding y also improves the principal’s

utility.

From now on, let us assume that Dp is connected, i.e., Dp = [xp, x̄p], or Dp is a

singleton (in which case xp = x̄p). If Dp 6= [ωp, z] for all z ≥ β0
p , then we have four

possible cases.

Case 1. Let xp < ωp. Non-redundancy requires that Dp is a singleton with xp = x̄p <

ωp. Then we can add the action y = xp+ε′ for ε′ > 0 small enough (so that y < ωp). This

modification improves the agent’s utility only marginally. It also improves the principal’s

expected utility due to Lemma 2, (ii), as 1
2
(y + x̄p) < ωp < β0

p .

Case 2. Let ω̄p < x̄p. Non-redundancy again requires that Dp is a singleton with

xp = x̄p > ω̄p. Then we can add the action y = x̄p − ε′ for ε′ > 0 small enough. This is

again a marginal modification with D′
p = {y} being a singleton. In order to compare the

principal’s expected utility we use formula (27) from the Proof of Lemma 2, (ii). Now

the first bracket is positive, whereas the second bracket is negative. The third bracket is

negative as well, because ωp + ω̄p − (y + x̄p) < ωp + ω̄p − 2ω̄p < 0 < 2b. Thus, adding y

to Dp indeed improves the principal’s expected utility.

Case 3. Let ωp < xp and x̄p ≤ ω̄p. Now we can add the action y = xp − ε′ for ε′ > 0

small enough (so that y > ωp). This change improves the agent’s utility only marginally

and is profitable for the principal, due to Lemma 2, (i).

Case 4. Let ωp = xp and x̄p < β0
p . In this case, we can add the action y = x̄p + ε′

for ε′ > 0 small enough (so that y < β0
p). This change again improves the agent’s utility

34



only marginally, and it improves the principal’s expected utility due to Lemma 2, (ii), as
1
2
(y + x̄p) < β0

p .

Proof of Lemma 7. We start by deriving necessary conditions, (a)–(e), for D∗
h. Before

doing so, recall our definition that γ2 = xh(ω̄`) is the agent’s choice from D∗
h in state ω̄`

(if in state ω̄` the agent is indifferent between two actions, let γ2 be the higher one).

(a) Each of the intersections D∗
h∩(−∞, ω`] and D∗

h∩ [ω̄`,∞) is connected or empty. If,

to the contrary, one of them is not connected, it contains a gap, i.e., there are y1, y2 ∈ D∗
h,

y1 < y2 such that D∗
h ∩ (y1, y2) = ∅. Then we can add the action y = y1 + ε to D∗

h (for

ε > 0 small). Since y1 is not chosen in state ω̄h, we can find ε sufficiently small so that
1
2
(y + x̄h) < ω̄h. Hence, by Lemma 2, (i), adding y also improves the principal’s utility.

Moreover, adding y also preserves (IC`), as it does not modify the agent’s utility in states

[ω`, ω̄`]. This contradicts the optimality of D∗
h.

(b) xh ≤ ωh. Assume the opposite. Then, consider adding the (non-redundant) action

y = 2ωh − xh + ε to D∗
h.

32 For ε > 0 small enough, action y is chosen in the state ωh

but not in the state ω`. Thus, adding y does not influence the `-type’s utility from the

modified D∗
h, and so it preserves (IC`). Moreover, this operation improves the principal’s

utility from type h, according to Lemma 2, (i), a contradiction to the optimality of D∗
h.

(c) If γ2 < x̄h, then ω̄` ≤ γ2. Assume the opposite. Then by definition of γ2, the

action y = 2ω̄` − γ2 (the mirror image of γ2 with respect to ω̄`) does not belong to D∗
h.

Then y < x̄h and 1
2
(y+ x̄h) ≤ ω̄h. Thus, adding y to D∗

h preserves (IC`) and also improves

the principal’s expected utility by Lemma 2, (i).

(d) If γ2 < x̄h, then x̄h = β0
h. Otherwise, the principal’s expected utility can be

improved by one of the following modifications. If x̄h < β0
h, we add the action y = x̄h + ε

to D∗
h, where ε > 0 is small enough. If x̄h ∈ (β0

h, ω̄h], we reduce x̄h marginally, i.e.,

replace D∗
h by the delegation set

(
D∗

h ∩ (−∞, x̄h − ε]
)
∪ {x̄h − ε}, where ε > 0 is small

enough. If x̄h > ω̄h, then x̄h is an isolated point of D∗
h by Lemma 1, and we remove the

action x̄h. In all cases, because ω̄` ≤ γ2 < x̄h, the change does not affect the agent’s

choices in states ω ∈ [ω`, ω̄`] and, thus, it keeps (IC`) binding. Moreover, it improves the

principal’s expected payoff: due to Lemma 2, (ii) for the first change; due to Lemma 3

(because x̄h − ε > z ≥ β0
h) for the second change; and, finally, due to Lemma 2, (ii) for

the third change. This contradicts the optimality of D∗
h.

We can now prove part (i) and (ii) of Lemma 7. We show that the principal weakly

benefits by replacing D∗
h by the set D′

h = Dh1 ∪ Dh2, where the sets Dh1 and Dh2 are

specified as follows: From (a), (c), and (d), we infer that if γ2 < x̄h, then ω̄` < β0
h and

32Note that 2ωh − xh is the mirror action to xh, mirrored at ωh.
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D∗
h ∩ [ω̄`,∞) = [γ2, β

0
h]. In that case, let us set Dh2 = [γ2, β

0
h]. Otherwise, if γ2 = x̄h, we

set Dh2 = {γ2}.

Consider now the set [xh, γ1] ∪ Dh2 as constructed in the discussion of Lemma 7.

(If γ1 = xh, we identify [xh, γ1] with {xh}.) The construction ensures that type ` is

indifferent between the set D∗
` and [xh, γ1] ∪Dh2, so replacing D∗

h by [xh, γ1] ∪Dh2 keeps

(IC`) binding. Now it may be that [xh, γ1] ∪Dh2 contains redundant actions. If γ1 ≤ ωh

then all actions below γ1 are redundant, and we set Dh1 = {γ1}; if γ1 > ωh, all actions

below ωh are redundant, and we set Dh1 = [ωh, γ1].

We now show that the principal’s utility, conditional on facing the h-type, is weakly

higher under D′
h = Dh1 ∪Dh2 than under D∗

h, implying that D′
h is optimal, too. For this

we use the formula (6) for p = h, where we split the integral into three parts.

h · Vh = buh(ωh)︸ ︷︷ ︸
T1

+

∫ ω`

ωh

uh(ω) dω︸ ︷︷ ︸
T2

+

∫ ω̄`

ω`

uh(ω) dω︸ ︷︷ ︸
T3

+

∫ ω̄h

ω̄`

uh(ω) dω︸ ︷︷ ︸
T4

− buh(ω̄h)︸ ︷︷ ︸
T5

−b2. (34)

In what follows we indicate all variables pertaining to D′
h (resp D∗

h) with a prime (resp.

an asterisk) and compare the principal’s utilities from D′
h and D∗

h using (34).

First, observe that T ′
3 = T ∗

3 because (IC`) is binding for both D∗
h and D′

h.

Second, we argue that T ′
4 = T ∗

4 and T ′
5 = T ∗

5 . Indeed, this follows directly from

the above construction, because we kept the agent’s utility on the states ω ∈ [ω̄`, ω̄h]

unchanged.

Third, we show that T ′
1 ≥ T ∗

1 and T ′
2 ≥ T ∗

2 . It follows from (a) and (b) that D∗
h ∩

(−∞, ω`] is either a singleton {x`}, or it is an interval of the form [ω`, z]. In both cases,

this intersection is a subset of [x`, γ1], which then yields a (weakly) higher utility to the

agent. Moreover, this utility remains unchanged when omitting the redundant actions,

as described above.

Summing up, we have shown that the delegation set D′
h yields at least as large utility

to the principal’s as the set D∗
h, and this establishes part (i) and (ii).

Finally, we proof part (iii) by deriving the inequalities for γ1 and γ2. First, we show

that γ1 ≤ β∗
` . Assume the opposite. Then in every state ω ∈ (β∗

` , ω̄`], the agent is strictly

better off under the delegation set D′
h than under D∗

` , as the former has an action, namely

min{ω, γ1}, that is closer to the agent’s ideal action. Moreover, in states ω ∈ [ω`, β
∗
` ], the

agent chooses his ideal action ω under both D′
h and D∗

` . Thus, the `-type agent strictly

prefers the delegation set D′
h, which contradicts (IC`).

Second, we show that β∗
` ≤ γ2. Otherwise, we have γ2 < β∗

` ≤ ω̄` and thus Dh2 = {γ2}.
Then in every state ω ∈ (γ2, ω̄`], the agent is strictly better off under the delegation set

36



D∗
` than under D′

h, as the former has an action, namely min{ω, β∗
h}, that is closer to the

agent’s ideal action. Moreover, in states ω ∈ [ω`, γ2], the agent weakly better of under D∗
` ,

where he chooses his ideal action ω. Thus, the `-type agent strictly prefers the delegation

set D∗
h, which contradicts (IC`).

Third, we show that 1
2
(β∗

` + γ2) ≤ ω̄`. The inequality is trivial when γ2 ≤ ω̄`. Let

us thus assume that γ2 > ω̄` and 1
2
(β∗

` + γ2) > ω̄`. By definition, in state ω̄`, the agent

chooses action γ2 from D′
h, whereas he chooses action β∗

` from D∗
` . Since β∗

` ≤ ω̄` < γ2

and 1
2
(β∗

` + γ2) > ω̄`, the action β∗
` is strictly better than γ2 in state ω̄`. Therefore, the

agent is strictly better off under the delegation set D∗
` than under D′

h in state ω̄`, and by

continuity also in some neighborhood around ω̄`. Moreover, in all other states in [ω`, ω̄`]

the agent is (weakly) better off under D∗
` than under D′

h since γ1 ≤ β∗
` . Thus, the `-type

agent strictly prefers the delegation set D∗
` to D′

h, which contradicts the assumption that

(IC`) is binding. This completes the proof.

Proof of Lemma 8. Let (D∗
h, D

∗
` ) be a solution to the relaxed problem. The statement is

trivial when the delegation menu is static. Let us thus consider only delegation menus

that are sequential. Assume, to the contrary, that (ICh) is violated. We show that the

principal can increase her expected utility by offering both types the (static) delegation

menu (D′
h, D

′
`) such that D′

` = D` and D′
h = [ωh, x̄`].

We obtain from the violated (ICh) and binding (IC`) that∫ ω`

ωh

uh(ω) dω +

∫ ω̄`

ω`

uh(ω) dω +

∫ ω̄h

ω̄`

uh(ω) dω

=

∫ ω`

ωh

uh(ω) dω + ` · U` +

∫ ω̄h

ω̄`

uh(ω) dω

< −
∫ ω`

ωh

(ω` − ω)2 dω + ` · U` −
∫ ω̄h

ω̄`

(x̄` − ω)2 dω, (35)

where the equality in the second line follows since (IC`) is binding, and the third expres-

sion is the h-type’s expected utility from D`.

Now, as the delegation sets D` and D′
` are identical, they also yield the same principal’s

expected utility. Let us then compare the principal’s expected utility conditional on facing

the h-type. By formula (6) we obtain

h · Vh = ` · U` +

∫ ω`

ωh

uh(ω) dω +

∫ ω̄h

ω̄`

uh(ω) dω + buh(ωh)− buh(ω̄h)− b2

< ` · U` −
∫ ω`

ωh

(ω` − ω)2 dω −
∫ ω̄h

ω̄`

(x̄` − ω)2 dω + buh(ωh) + b(x̄h − ω̄h)
2 − b2, (36)
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where the inequality follows from (35) and where we have used that the largest type ω̄h

picks the largest action x̄h by Lemma 1. On the other hand, for the set D′
h we obtain

h · V ′
h = ` · U` − 0−

∫ ω̄h

ω̄`

(x̄` − ω)2 dω + 0 + b(x̄` − ω̄h)
2 − b2. (37)

Comparing the expressions (36) and (37) term by term, we can clearly see that the

latter is higher. The only inequality that is not trivial is b(x̄h− ω̄h)
2 < b(x̄`− ω̄h)

2, which

is equivalent to 1
2
(x̄` + x̄h) < ω̄h. This clearly holds when x̄h ≤ ω̄h. On the other hand,

when x̄h > ω̄h, then x̄h is an isolated point of D∗
h and Dh2 as specified in Lemma 7 is a

singleton. However, according to Lemma 7, (iii) we have 1
2
(x̄` + x̄h) ≤ ω̄` < ω̄h. Thus we

indeed obtain that V ′
h > Vh. This proves our statement and completes the proof of the

lemma.

Proof of Proposition 3. Let (D∗
h, D

∗
` ) be the optimal delegation menu in the form as spec-

ified in Lemmas 6 and 7. Let us assume to the contrary that this menu is a sequential

menu and is (strictly) better for the principal than any static menu.

The main idea of the proof is the comparison of this delegation menu with a static

delegation set D′ = [ωh, β
∗
` ] = [ωh, ω`)∪D∗

` being offered to both types. Under this menu,

the h-type is also offered the `-type’s delegation set which is extended by states that are

never chosen by the `-type. We show that for b ≥ ω̄h− ω̄`, the delegation set D′ improves

the principal’s expected utility.

When analyzing the differences between the principal’s expected payoffs, it will turn

out to be useful to define the function

κ(ω) = (β∗
` − ω)2 − (β∗

h − ω)2 = (β∗
h − β∗

` )[2ω − (β∗
` + β∗

h)]. (38)

Now consider the menu (D′, D′). Observe that the states by which D` is extended do

not alter the choice function of the type `. Thus D′ yields the same expected utility to

the principal as D` conditional on facing the `-type:

V ′
` = V`. (39)

For the comparison of the principal’s expected utility conditional on facing the h-type,

we use formula (6) and observe that the integral on the interval [ω`, ω̄`] is actually equal

to type `’s expected utility (multiplied by factor `) from the delegation sets D` and Dh,
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respectively. These expected utilities are equal due to the binding (IC`). Thus,

h · Vh = ` · U` +

∫ ω`

ωh

uh(ω) dω −
∫ ω̄h

ω̄`

(β∗
h − ω)2 dω + buh(ωh) + b(β∗

h − ω̄h)
2 − b2,

h · V ′
h = ` · U` −

∫ ω̄h

ω̄`

(β∗
` − ω)2 dω + b(β∗

` − ω̄h)
2 − b2,

h(Vh − V ′
h) = −bκ(ω̄h) + buh(ωh) +

∫ ω̄h

ω̄`

κ(ω) dω +

∫ ωh

ω`

uh(ω) dω. (40)

In the following, we show that b ≥ ω̄h − ω̄` implies V ′
h ≥ Vh, which contradicts

sequential delegation being optimal.

First recall that according to Lemma 7 we have β∗
` + β∗

h ≤ 2ω̄` < 2ω̄h and thus

κ(ω̄h) > 0. We then obtain

h(Vh − V ′
h) ≤ −bκ(ω̄h) +

∫ ω̄h

ω̄`

κ(ω) dω ≤ −bκ(ω̄h) +

∫ ω̄h

ω̄`

κ(ω̄h) dω

= −[b− (ω̄h − ω̄`)]κ(ω̄h) ≤ 0. (41)

The first inequality was obtained by neglecting the non-positive terms
∫ ω`

ωh
uh(ω) dω and

buh(ωh) in Vh. The second inequality follows from the fact that κ(ω) is increasing in ω.

The third inequality follows from the assumption b ≥ ω̄h − ω̄` and from κ(ω̄h) > 0. This

completes the proof.

Proof of Proposition 4. We begin with part (b): We show that the marginal sequential

delegation menu (14) is strictly better than static delegation whenever b < b̂ and µh <

µ̂h(b), where µ̂h(b) is determined below. As argued in the text following the statement of

the proposition, this is the case if expression (15) satisfies:

d(hVh)

dβst
> 0 ⇔ b < b̂ and µh < µ̂h(b). (42)

Indeed, we have

d(hVh)

dβst
=

d

dβst

{∫ ω̄h

ω̄`

−(βst − ω)2 dω − b[−(βst − ω̄h)
2]

}
.

= −2

∫ ω̄h

ω̄`

(βst − ω) dω + 2b(βst − ω̄h)

= −(βst − ω̄h)
2 + (βst − ω̄`)

2 + 2b(βst − ω̄h)

= [2βst − 2ω̄h + (ω̄h − ω̄`)] [−(ω̄h − ω̄`)]− 2b(ω̄h − βst)

= 2(ω̄h − βst)(ω̄h − ω̄` − b)− (ω̄h − ω̄`)
2. (43)
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Hence, since ω̄h − ω̄` − b > 0 by assumption, we obtain

d(hVh)

dβst
> 0 ⇔ βst < ω̄h −

(ω̄h − ω̄`)
2

2(ω̄h − ω̄` − b)
≡ ξh. (44)

Now, a computation (provided below) shows that

β0
` < ξh ⇔ b < b̂. (45)

By Proposition 1, βst increases monotonically from β0
` to β0

h as µh goes from 0 to 1. Thus,

for every b < b̂ there is a unique µ̂h(b) ∈ (0, 1] so that βst < ξh if and only if µh < µ̂h(b).

Together with (44) and (45), this establishes (42).

To complete the proof of part (b), we show (45). Let a = ω̄h − ω̄`. Observe that

a− b > 0 by assumption. Recall that β0
` = ω̄` − 2b. Thus, by definition of ξh:

β0
` < ξh ⇔ −2b < a− a2

2(a− b)
⇔ 4b2 − 2ab− a2 < 0

⇔ b > 1
4
(1−

√
5)a and b < 1

4
(1 +

√
5)a = b̂. (46)

The left inequality in the last line is always satisfied since 1
2
a > 1

4
(1−

√
5)a and since, by

the maintained assumption in this subsection, b ≥ 1
2
a. Therefore, β0

` < ξh if and only if

b < b̂, as desired.

Proof of part (a): By Lemma 6 and 7, the optimal delegation menu is in the set

R ≡
{
(Dh, D`) | Dh = [min{ωh, zh}, zh] ∪ {x̄h}, D` = [ω`, x̄`], (47)

β0
` ≤ x̄` ≤ x̄h,

1
2
(x̄` + x̄h) ≤ ω̄`,

(IC`) binding
}

Due to the fact that (IC`) is binding, any menu in R is pinned down by the points x̄h

and x̄`, and we denote the associated expected utility for the principal by

V (x̄h, x̄`). (48)

Observe that static interval delegation corresponds to the menu in R for which x̄h = x̄`.
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By (6) and (13),

V (x̄h, x̄`) =
µh

h
hVh +

µ`

`
`V`

=
µh

h

[
` · U` +

∫ ω`

ωh

uh(ω) dω +

∫ ω̄h

ω̄`

uh(ω) dω + buh(ωh)− buh(ω̄h)

]

+
µ`

`

[∫ ω̄`

ω`

u`(ω) dω + bu`(ω`)− bu`(ω̄`)

]
. (49)

Since uh(ω) ≤ 0 for all ω, the second and the fourth term in the first square brackets are

negative, and we obtain that

Ψ(x̄h, x̄`) ≡ µh

h

[
` · U` +

∫ ω̄h

ω̄`

uh(ω) dω − buh(ω̄h)

]
+

µ`

`

[∫ ω̄`

ω`

u`(ω) dω + bu`(ω`)− bu`(ω̄`)

]
(50)

is an upper bound on V which is actually attained if x̄h = x̄`, i.e.:

V (x̄h, x̄`) ≤ Ψ(x̄h, x̄`) for all x̄` ≤ x̄h, and V (x, x) = Ψ(x, x). (51)

We will show that Ψ is maximized at the point (βst, βst). Since Ψ is an upper bound on

V that coincides with V for x̄h = x̄`, this will imply that also V is maximized at the point

(βst, βst) so that static delegation is optimal. We begin by computing Ψ explicitly. As

argued in the proof of Lemma 7, for all ω ∈ [ω̄`, ω̄h], we have xh(ω) = x̄h ≤ ω̄h. Recall,

moreover, that ` · U` =
∫ ω̄`

ω`
u`(ω)dω. This, together with the fact that D` = [ω`, x̄`] is an

interval, implies that

Ψ(x̄h, x̄`) =
µh

h

[
−

∫ ω̄h

ω̄`

(x̄h − ω)2 dω + b(x̄h − ω̄h)
2

]
−

(µh

h
+

µ`

`

) ∫ ω̄`

x̄`

(x̄` − ω)2 dω +
µ`

`
b(x̄` − ω̄`)

2 − b2. (52)

We will be interested in the partial derivative of Ψ. Observe that the partial derivative

of Ψ with respect to x̄h is the same as (a multiple of) the derivative of hVh with respect

to βst in (43). Thus, we can deduce as above:

∂Ψ(x̄h, x̄`)

∂x̄h

> 0 ⇔ x̄h < ξh. (53)

With these preliminaries, we can now prove the claim.

We consider first the case b ≥ b̂. To show the optimality of static delegation, we show
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that when choosing a delegation menu (Dh, D`) in R, it is optimal to choose x̄` = x̄h,

that is, V (x̄h, x̄`) ≤ V (x̄`, x̄`) for all x̄` ≤ x̄h. Since V (x̄h, x̄`) ≤ Ψ(x̄h, x̄`) and V (x̄`, x̄`) =

Ψ(x̄`, x̄`), it is sufficient to show that

Ψ(x̄h, x̄`) ≤ Ψ(x̄`, x̄`) for all x̄` ≤ x̄h. (54)

Indeed, from part (b), ξh ≤ β0
` ⇔ b ≥ b̂. Therefore, b ≥ b̂ together with (53) and the fact

that β0
` ≤ x̄` implies that

∂Ψ(x̄h, x̄`)

∂x̄h

≤ 0 for all x̄` ≤ x̄h. (55)

We can deduce that Ψ(x̄h, x̄`) ≤ Ψ(x̄`, x̄`), establishing (54) as desired.

Next, we show that static delegation is optimal if b < b̂ and µh ≥ µ̂h(b). Because

for all x̄` ≤ x̄h, we have V (x̄h, x̄`) ≤ Ψ(x̄h, x̄`), it is sufficient for the optimality of static

delegation that

Ψ(x̄h, x̄`) ≤ Ψ(βst, βst) = V (βst, βst) for all x̄` ≤ x̄h. (56)

We distinguish three cases. Suppose first that x̄` ≥ ξh. Then equation (53) yields

that ∂Ψ/∂x̄h ≤ 0 for all x̄h ≥ x̄`. Thus, Ψ(x̄h, x̄`) ≤ Ψ(x̄`, x̄`) ≤ Ψ(βst, βst).

Second, suppose that x̄h > ξh > x̄`. Then equation (53) yields that ∂Ψ/∂x̄h ≤ 0 for

all x̄h ≥ ξh. Thus, Ψ(x̄h, x̄`) ≤ Ψ(ξh, x̄`). Thus, it cannot be ture that x̄h > ξh at the

optimum.

Third, suppose that x̄h ≤ ξh. By definition, µh ≥ µ̂h(b) implies that ξh ≤ βst.

Accordingly,

x̄` ≤ x̄h ≤ βst, (57)

and, by (53),

∂Ψ(βst, βst)

∂x̄h

≤ 0. (58)

Since βst satisfies the first order condition for optimal interval delegation, we also have

0 =
dV (x̄, x̄)

dx̄

∣∣∣
x̄=βst

=
dΨ(x̄, x̄)

dx̄

∣∣∣
x̄=βst

=
∂Ψ(βst, βst)

∂x̄h

+
∂Ψ(βst, βst)

∂x̄`

. (59)
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The two previous properties imply

∂Ψ(βst, βst)

∂x̄`

≥ 0. (60)

Now, by definition of Ψ, we can compute

∂Ψ(x̄h, x̄`)

∂x̄`

= −
(µh

h
+

µ`

`

)
· 2 ·

∫ ω̄`

x̄`

(x̄` − ω) dω +
µ`

`
2b(x̄` − ω̄`)

=
(µh

h
+

µ`

`

)
(x̄` − ω̄`)

2 − µ`

`
2b(ω̄` − x̄`)

= (ω̄` − x̄`)
[(µh

h
+

µ`

`

)
(ω̄` − x̄`)−

µ`

`
2b

]
. (61)

Note that this expression does not depend on x̄h. Now, since βst ≤ ω̄`, (60) implies that

the square bracket in the last line is non-negative when evaluated at x̄` = βst. It follows

that the square bracket in the last line is a forteriori non-negative when evaluated at

x̄` ≤ βst. Thus, we get

∂Ψ(x̄h, x̄`)

∂x̄`

≥ 0 for all x̄` ≤ x̄h. (62)

Hence, Ψ(x̄h, x̄`) ≤ Ψ(x̄h, x̄h) ≤ Ψ(βst, βst). This establishes (56) and completes the

proof.

Proof of Proposition 5. We only consider the case where the optimal static delegation set

is the union of an interval plus a point. (The argument for the other case is identical.)

Let D` = [ω`, ω̄` − d], and consider the marginal modification defined in (19),

Dh(ε) = [ωh, ω̄` − d− η] ∪ [ω̄` + d− ε, ω̄` + d], η, ε > 0, (63)

so that (IC`) is binding. Observe that for ε = 0, the delegation menu (Dh(0), D`)

essentially reduces to the optimal static menu. We show that the principal’s expected

utility goes up in ε by showing that the derivative of the principal’s utility with respect

to ε is strictly positive when evaluated at ε = 0. Indeed, conditional on facing the `-type,

the principal’s utility does not depend on ε. Moreover, conditional on facing the h-type,

the principal’s utility is given by (17). For ε small enough, ω̄` − d− η is larger than ω`.

Because (IC`) is binding and because the `-type is indifferent between D` and Dh(0), it

must be that the action ω̄` + d − ε is closer to ω̄` than is the action ω̄` − d − η. Hence,

the agent chooses action ω̄` + d− ε in the states ω ∈ [ω̄`, ω̄` + d− ε]. Because of this and
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since ω̄` + d ≤ ω̄h, (17) writes

h · Vh = ` · U` −
∫ ω̄`+d−ε

ω̄`

(ω̄` + d− ε− ω)2 dω −
∫ ω̄h

ω̄`+d

(ω̄` + d− ω)2 dω

+ b(ω̄` + d− ωh)
2 − b2. (64)

The derivative with with respect to ε is

2

∫ ω̄`+d−ε

ω̄`

(ω̄` + d− ε− ω) dω = (ω̄` + d− ε− ω̄`)
2, (65)

which is strictly positive for ε = 0. This establishes the claim.
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