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Abstract

We study the anti-competitive effects of non-linear contracts (e.g., two-part tariffs, re-

bates, quantity discounts) between a buyer and an incumbent, dominant firm in the presence

of small rivals wishing to expand. While it is known that in a rent-shifting environment

with imperfect information two-part tariffs are not different than the exclusive contracts

of Aghion and Bolton, we show that alternative non-linear schemes can be remarkably dif-

ferent. Schemes that do not include unconditional payments and, therefore, work entirely

through the spot market (e.g., rebates), prevent the buyer and the incumbent to commit

ex-ante to the transfer of rents. The effect is so strong that these contracts are rarely anti-

competitive; more so when the incumbent’s bargaining power and outside option are large.

The reason these contracts exist is because they can still be used to extract rents from

inefficient rivals, which ultimately limits the amount of inefficient expansion.

1 Introduction

The potential exclusionary effect of rebates and quantity discounts has received widespread

attention from scholars and antitrust authorities in recent years. There is a long list of cases

from the well known British Airways, Michelin II and Intel1 to some very recent ones such as

∗All three authors (nfigueroa@uc.cl, eeide@uc.cl and jmontero@uc.cl) are with the Department of Economics
of the Pontificia Universidad Católica de Chile (PUC-Chile). Comments from Joaqúın Poblete, Patrick Rey and
audiences at CRESSE-Corfu, Paris School of Economics and Torcuato di Tella are much appreciated. Financial
support from the ICSI Institute (P05-004F) is also gratefully acknowledged. None of us is or has been involved
in any of the cases mentioned in the paper.

1Description of these cases can be found in British Airways v. Commission (EU Case T-219/99), Virgin v.
British Airways (2nd Cir. 2001 and S.D.N.Y. 1999), Michelin II v. Commission (EU Case T-203/01), Intel v.
Commission (EU Case T-286/09), AMD v. Intel (CA No. 05-441, District of Delaware), and Attorney General
Andrew M. Cuomo v. Intel (C.A. No. 09-827, District of Delaware).
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Unilever v. Chile (FNE 2013). Rebates are believed to be a cheaper and more effective way of

exclusion as they “allow firms to use the inelastic portion of demand as leverage to decrease the

price in the elastic portion of demand, thereby artificially increasing switching costs for buyers”

(Maier-Rigaud, 2005). The granting of rebates would then generate a “lock-in” effect inducing

buyers to concentrate their purchases from a single supplier, much as exclusive dealing contracts

would do (Faella, 2008). In fact, European Courts have been particularly harsh in some of their

rulings towards theses non-linear contracts, especially regarding all-unit retroactive rebates

(where the per-unit price falls discontinuously for all units purchased after a pre-specified sales

threshold is reached).2

The problem is that quantity discounts can arise without an exclusionary motive and,

more importantly, can be efficient. For example, all-unit discounts may be used in a bilat-

eral monopoly setting to avoid a problem of double marginalization when demand is known,

and be used as a screening device when retailers have private information regarding demand

(Kolay, Ordover and Shaffer, 2004). Moreover, they can also help solve agency and hold-up

problems by aligning the incentives of manufacturers and retailers; an argument analogous to

the efficiency defense of exclusive dealing contracts (Marvel, 1982; Motta, 2004; and Whinston,

2006). Rebates may also generate efficiency gains for a dominant firm allowing it to exploit its

economies of scale and/or save on transaction costs (Rey et. al. 2005). And they may even

increase price competition between downstream firms (Ahlborn and Bailey, 2006). For these

reasons both authorities and scholars tend to favor a case-by-case approach when looking at

these non-linear schemes in which their potential efficiency gains are balanced against their

possible anticompetitive effects (Rey et. al. 2005; Spector 2005; Office of Fair Trading 2005;

Motta 2006).

The economic view on the anticompetitive effects of exclusive dealing has also evolved

significantly over the last fifty years. Chicago schoolars contend that exclusive deals cannot

be used to deter the entry of efficient rivals (e.g., Posner 1976; Bork 1978). A buyer would

not sign an exclusive contract that reduces competition unless it is fully compensated, which

the incumbent cannot afford when the entrant is more efficient. Aghion and Bolton (1987),

henceforth A&B, were the first to challenge this so-called Chicago-School view. They show

that exclusive deals can occur in equilibrium if the contract generates an externality into a

2For an excellent survey of some European Cases see Gyselen (2006), and for an analysis of comparative law
between the US and the EU see Ahlborn and Bailey (2006).
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third party (i.e., the potential entrant) that is absent at the contracting stage. There is now an

extensive post-Chicago literature that can be organized around three distinct families of models

with different assumptions and outcomes, namely, ”rent-shifting” models, ”naked” exclusion

models, and ”downward competition” models.

Rent-shifting models (e.g., A&B 1987; Spier and Whinston 1995; Marx and Shaffer, 1999

and 2004) are based in an incumbency game between a dominant supplier, a buyer, and a

potential rival (e.g., entrant) in a sequential contracting environment. The incumbent has a

first-mover advantage when negotiating with the buyer. Quoting Marx and Shaffer (2004),

”...these parties will set the terms of their contract with an eye on extracting rents from the

potential rival.” In the presence of imperfect information, however, rent extraction will not be

complete and exclusion of some efficient rivals will emerge as a side effect. Naked-exclusion

models (e.g., Rasmussen et. al. 1991; Segal and Whinston 2000; Fumagalli and Motta 2006;

Spector 2011), on the other hand, assume that the potential rival requires of a minimum scale

of operation due to either scale or network economies. Then, if there are numerous unorganized

buyers, there is scope for entry deterrence as the incumbent needs to compensate and lock-

in only a subset of them in order to prevent the rival from achieving this minimum scale.3

Finally, downstream competition models (Simpson and Wickelgren 2007; Abito and Wright

2009; Asker and Bar-Isaac, 2013) show that when buyers are downstream competitors instead

of final buyers, signing an exclusive deal may be profitable even in the absence of coordination

problems and economies of scale. By preventing the entry of an upstream supplier, exclusive

deals soften competition downstream and avoid giving up rents to final consumers.

The potential exclusionary implications of non-linear pricing have been analyzed in all three

families of models. In a naked-exclusion setting, Karlinger and Motta (2012) found that rebates

have a higher exclusionary potential reducing the set of achievable socially efficient equilibria.

On the other hand, Asker & Bar-Isaac (2013) analyze how rebates and other mechanisms can

be used in a downstream competition model by a dominant firm to share its monopoly quasi-

rents with its retailers, effectively “bribing” them not to distribute a rival’s product. Finally,

Choné and Linnemer (2012), henceforth C&L, study general pricing schemes in a rent-shifting

model, extending Marx and Shaffer (1999) to imperfect information. They found that under

one dimensional uncertainty, two-part tariffs work similar to A&B exclusive contracts by setting

a tax or penalty on to the expansion of rivals, although again, at the expense of blocking some

3Compensations are not even required when consumers compete for them (Whinston, 2006).
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moderately efficient competitors. Because two-part tariffs and other nonlinear schedules are

typically seen as equivalent for the purposes of rent extraction, for example in the monopoly

pricing literature,4 it is tempting to extend the equivalence between A&B contracts and two-

part tariffs to any non-linear scheme such as rebates (see, e.g., Rey et. al. 2005).

Building upon the rent-shifting model of A&B, we investigate whether this equivalence does

indeed hold true more generally. We find that the existence of unconditional payments, or

more precisely, of an ex-ante commitment (e.g., liquidated damages) to transfer rents from the

retailer to the manufacturer is crucial for the equivalence to hold. Interestingly, such transfers

are either rarely observed or have not received much attention by antitrust authorities when

analyzing rebates and other forms of quantity discounts. More importantly, we found that non-

linear contracts that do not rely on such transfers (e.g., rebates) are highly unlikely to deter

efficient rivals from expanding, especially when the incumbent’s bargaining position, which can

be understood as some combination of bargaining power and outside option, is strong.

The intuition is that the first-best contract for the incumbent-buyer coalition is to charge a

very low marginal price in order to extract rents from efficient rivals and use high infra-marginal

prices to distribute surplus from the buyer to the incumbent. When unconditional transfers are

part of the contractual arrangement, like in two-part tariffs, the first-best contract is feasible

to implement because part of the transfer is done ex-ante, so a significant amount of those

high infra-marginal prices become sunk at the time the buyer negotiates with the expanding

rival. However, in the absence of such commitment, any transfer of surplus must be done

entirely through the spot market. This implies that these high infra-marginal prices are fully

internalized by the buyer at the time of purchase, who may refrain to buy any additional units

from the incumbent once he decides to buy from the expanding supplier. By placing a cap

on the price that can be charged for the infra-marginal units, the buyer’s ex-post participation

constraint makes rent distribution within the incumbent-buyer coalition much harder.5 It forces

the coalition to move away from the first-best contract towards contracts with less exclusionary

potential, that is, with higher marginal prices.

We also find that the stronger the bargaining position of the incumbent —for example, due

to the indispensable nature of its product— the larger the surplus that needs to be transfered

4But not necessarily in duopoly pricing as recently shown by Calzolari and Denicolo (2013).
5Note also that when unconditional payments are restricted, the standard approach in the literature for finding

the coalition optimum –the solution that maximizes overall surplus– is not longer valid. We return to this in
Section 3.

4



to him and, hence, the more difficult is for the coalition to implement a contract with an

anticompetitively low marginal price. Thus, a small contestable share makes the implementation

of an anticompetitive quantity contract less not more likely, as commonly believed (e.g., Mota,

2006).6 However, even if they do not prevent efficient rivals from expanding, quantity contracts

can still emerge in equilibrium as a way to extract rents from inefficient rivals, which limits the

amount of inefficient expansion that would otherwise occur in the absence of contracts.7

The contribution of the article is twofold. From a theoretical perspective, we question the

common view that in a rent-shifting environment non-linear contracts such as rebates work very

much like exclusive contracts in terms of deterring efficient entry/expansion. We go over the

underlying mechanism that makes this ”apparent” equivalence not only to break down but in

most cases to revert. And from a policy perspective, our results have important and clear-cut

antitrust implications for cases that are best captured by a rent-shifting environment. The

rest of the paper is organized as follows. We start the next section with a brief discusion of

Unilever v Chile, simply to illustrate what seems to make a good case for a ”rent-shifting”

analysis. We then present a simple model that follows A&B very closely (the only difference is

that instead of considering a large potential entrant, we consider a small rival that is already

in the market and at best can expand to serve a larger fraction of the total demand). In this

simple model, rebates are never anticompetitive and may arise only as a vehicle to extract rents

from inefficient rivals. In Section 3 we work with a more general formulation that considers

the full range of possible bargaining powers and outside options (i.e., payoffs in the absence of

contracts). This generalization allows us to better understand the forces behind the results of

the simple model and appreciate how general they seem to be. In section 4 we show that our

results also extend to a downward sloping demand. Finally in section 5 we discuss the antitrust

implications and contrast them with the implications of alternative models.

6In fact, Motta (2006, p. 372) explains ”...a better understanding of how to balance exclusionary and efficiency
effects of exclusive contracts is needed but it seems safe to assume that the former might dominate the latter
only if the firm using exclusive contracts has a very strong market position.” In a rent-shifiting environment, we
find the exact opposite.

7Absent of contracts, there is no inefficient entry in A&B because either supplier can serve the entire demand.
In our setting, the rival can at best serve a fraction of the total demand which gives rise to inefficient mixed-
strategy equilibria in the spot; very much like in the slot-competition model of Jeon and Meniccuci (2012). In
their paper, inefficiencies dissapear when firms are allowed to sell bundles while here when firms are allowed to
use non-linear prices in the spot.
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2 A Simple A&B Model

2.1 A motivating case

The rent-shifting model suits well for analysis of antitrust cases in which (i) buyers are relatively

big, so an entrant or expanding supplier can achieve a minimum scale of operation by serving

just one buyer; (ii) downstream competition is not that intense, so upstream competition does

not fully permeate into the downstream market; and (iii) the incumbent and buyer are not

entirely certain at the time of ”contracting” about the value that a rival’s product can add to

the market either in terms of lower costs or higher quality (or cannot discriminate among several

potential rivals of different characteristics). All three conditions seem to apply to Unilever v.

Chile.

Unilever has been accused of restricting the expansion of rivals in the wholesale market for

laundry detergents by agreeing to “all-unit” retroactive discounts with supermarket and other

distributors. Unilever has a market share of over 70% in the supermarket segment (its closer

competitor has 13% and there are many other small suppliers, some short-lived). Supermarket

sales make up for over 60% of sales, and of those supermarket sales, the vast majority is from

the three largest supermarket chains with shares of 35%, 28% and 24%, respectively. Any

of these supermarkets qualify as a large buyer (even to approach a small supplier to develop

its own private label). As for the intensity of competition at the retail level, we do not have

evidence on laundry detergents but we do on other items (e.g. instant coffee) showing the two

largest chains pricing well above wholesale prices (Noton and Elberg, 2013).8

These retroactive discounts are typically negotiated on a yearly basis without discriminating

among potential rivals, in part because the quality and cost of their products are unknown at

the time of contracting and likely to vary across suppliers depending on advertising and on

innovation efforts. There indeed appears to be some ”innovation” in production processes,

especially on powder detergents, that save on infraestructure requirements but at the cost of

providing a lower quality product (FNE 2013).

2.2 Model assumptions

There are three risk-neutral agents. A single buyer B demands one unit of an infinitely divisible

good at reservation value v. This good can be either supplied by a dominant, incumbent firm I

8Smith (2004) also documents for the UK supermarket industry high price-cost markups.
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or by a (small) expanding rival E, who is already in the market (or alternatively, whose entry

cost is 0).9 I has unlimited capacity to produce at constant marginal cost cI ∈ (0, v). E, on

the other hand, has constant marginal cost cE , but can sell at most λ ∈ (0, 1) of the good.

The literal interpretation of λ is that it corresponds to E’s installed capacity but an alternative

and more recent interpretation is that it represents the ”contestable share” of the market, that

is, the amount for which the customer may prefer and be able to find substitutes (European

Commission, 2009).

There are three periods: two contracting stages (t = 1, 2) followed by a spot market or

transaction stage (t = 3). As standard in the rent-shifting models, there is sequential contract-

ing. At t = 1, I makes a take-it-or-leave-it offer to B (as we will consider different type of

non-linear contracts, the specific form of the contract offered is specified below).10 At this time

cE is unknown to both I and B but it is common knowledge that it distributes according to the

cdf F (·), over the interval [0, c̄E ], where c < c̄E ≤ v and F/f is nondecreasing. It is important

to notice that what is relevant here is not the actual source of uncertainty —whether is E’s

cost and/or the buyer’s valuation for its product— but rather that the surplus created by the

relationship between E and B is unknown at the time when I and B are contracting. As usual

we also assume that contracts are not renegotiable ex-post, that is, after cE is revealed.

At t = 2 and after observing the contract signed by I and B, E is free to make a take-it-

or-leave-it offer to B for its λ units. At this moment cE becomes publicly known (whether the

uncertainty regarding cE is resolved at this time or at the opening of the spot market is less

relevant, as it is reasonable to allow the EB coalition to sign contingent schemes on cE absent

information asymmetries; the crucial issue is the absence of information asymmetries at this

stage). Finally, at t = 2 the transaction stage opens and B decides how much to buy from each

supplier. In the absence of contracts, I and E compete in the spot market by simultaneously

setting uniform prices,11 otherwise parties adhere to the price conditions established in the

9The unit-demand assumption makes the model easier to handle as it eliminates firms’ incentives for using
non-linear contracts to avoid allocative inefficiencies. In Section 4 we allow for a downward sloping demand
curve.

10In the simple model, and as in A&B, suppliers have all the bargaining power in their bilateral relations with
B. In section 3 we consider a Nash bargaining model that covers the full range of bargaining powers.

11The uniform price assumption is not only in the spot market of A&B but also in wholesale spot markets of
more recent papers (e.g., Hendricks and McAfee 2008; Jeon and Menicucci 2012). Nevertheless, in Section 3 we
relax this assumption as we allow parties to compete in the spot under different formats, for example, short-term
bilateral negotiations that may or not involve two part tariffs. The idea here is that more complex non-linear
contracts are usually negotiated on a long term basis (1 year), but otherwise parties can still engage in some
negotiation on a monthly/weekly basis, although simpler due to bargaining/transaction costs.

7



contracts.

Definition 1. A non-linear contract is said to be “anticompetitive” if it blocks the expansion

of an efficient rival, that is, the expansion of a rival with cost cE < cI .
12

While closer to the antitrust practice of what constitutes an anticompetitive contract, this

definition makes no precision about the welfare implications of an anticompetitive contract.

Such precision is unnecessary when in the absence of a contract entry is always efficient, as in

the A&B original model, in which case any anticompetitive contract reduces welfare. There can

be instances, however, of too much entry in the absence of a contract, in which case an exclusive

deal may indeed increase welfare by limiting inefficient entry (Whinston 2006, p. 188). While

it is true that this latter possibility complicates the welfare analysis of some of these contracts,

it is less relevant for our paper because our focus is to show when and why many of the non-

linear contracts we observe (e.g., rebates, quantity discounts) are hardly ever anticompetitive,

a sufficient condition for a contract not to be welfare reducing.

2.3 Agents’ outside options

We begin by characterizing I and B’s outside options, that is, their payoffs in the absence

of contracts. If I and B fail to sign a contract, will E and B sign one? Given its capacity

constraint, E cannot use B to shift rents from the incumbent using the quantity discounts or

rebates we have in mind.13 And given our inelastic demand, the best E can do is to offer a

linear price to B at this contracting stage. Thus, the problem faced by E at t = 2 is to either

make a price offer to B for its λ units or compete in the spot tomorrow, at t = 3. Suppose the

latter (below we show this is what happens in equilibrium).

Lemma 1. Let c∗ ≡ cI + (1−λ)(v− cI). The equilibria of the spot-market game in which firms

simultaneously set uniform prices can be characterized as follows:14

1. When cE ≥ c∗, there is a pure strategy Nash equilibrium with prices pI = pE = cE and

payoffs πI = cE − cI , πE = 0 and πB = v − cE < λ(v − cI).

12yeths is portant to make the distinction between a contract that is anticompetitive from a contract. Whinston
(2006).

13In principle it could using contracts with breach penalties. This would leave I with no rents, which is unlikely
when λ is small. We like to think that the contracts that the expanding rival and the buyer can sign, provided
I does not sign any, are non-linear schedules that work entirely through the spot market.

14Note that in the case of cE < c∗, as λ → 1, c∗ → cI and spot competition becomes efficient; moreover, E’s
price distribution collapses into a singleton, p∗E = cI , yielding the standard Bertrand outcome. We do not exactly
converge to the result in the A&B model because they assume that the entrant faces a positive, although very
small, fixed cost of entry.
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2. When cE < c∗, there are only mixed strategy equilibria with

(a) both firms randomizing over the support [c∗, v]

(b) and payoffs πeI(pI) = (1− λ)(v − cI), πeE(pE) = λ (c∗ − cE), and πeB < λ(v − cI).

Proof. See the Appendix.

Now, to understand E’s decision as to whether make a price offer at t = 2 or compete in the

spot at t = 3, consider first the case in which cE > c∗. Since the buyer will not accept any price

higher than cE from E, the latter is indifferent between selling at cE at t = 2 or going to the

spot market at t = 3; in either case he makes zero profits. Both the buyer and the incumbent

are also indifferent as to what E does. The second case, cE < c∗, is a bit more involved. If E

sets pE > c∗ at t = 2, it is optimal for I to undercut that price at t = 3 and leave E with zero

profits. Alternatively, if E sets pE ≤ c∗ at t = 2, it is not longer optimal for I to price right

below pE but rather to price at v and get the residual monopoly profit, (1− λ)(v − cI), which

is equal to the profit she would get when competing in the spot. So the best E can do is to set

pE = c∗, which yields the exact same payoff than any of the mixed-strategy equilibria in the

spot. Whether B accepts E’s offer pE = c∗ at t = 2 will depend on πeB ≷ λ(v − c∗); although

in any case its surplus will be less than λ(v − cI). Therefore, regardless of whether cE is lower

than, equal to or greater than c∗, E gains nothing by contracting at t = 2.

We can summarize this discussion as follows

Lemma 2. When the incumbent and the buyer fail to sign a contract at t = 1, their outside

options, denoted, respectively, by π̄I and π̄B, satisfy

π̄I = (v − cI)(1− λ) + [1− F (c∗)] {E(cE | cE > c∗)− c∗} ≥ (1− λ)(v − cI)

π̄B < λ(v − cI)

Proof. Immediate from the payoffs in Lemma 1.

2.4 A&B exclusive contracts and two-part tariffs

Consider first an A&B exclusive dealing contract (w, l) according to which —if accepted at

t = 1— the buyer commits to buy exclusively from the incumbent at t = 3 at the wholesale

price w. In case the buyer decides to buy some units from the expanding rival, he must pay the
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incumbent a per-unit penalty (or liquidated damages) l.15 At t = 1, the incumbent anticipates

that only those expanding rivals with costs cE ≤ w− l can, at t = 2, induce the buyer to agree

to purchase units from them because no buyer is willing to switch supplier at a unit-price higher

than w − l. Thus, the probability of expansion at the time of contracting is F (w − l).

The A&B contract the incumbent offers the buyer is then obtained from the following

problem

max
w,l

EπI(w, l) = [(1− λ)(w − cI) + λl]F (w − l) + (w − cI) [1− F (w − l)]

s.t. v − w ≥ π̄B (1)

which has solution

w∗ − l∗ = cI −
F (w∗ − l∗)
f(w∗ − l∗)

w∗ = v − π̄B

It is clear that w∗ − l∗ < cI and straightforward to verify that EπI(w∗, l∗) > π̄I and w∗ > cI .

As first shown by A&B, these exclusive deals are not only profitable for both the incumbent

and buyer to sign but they have anticompetitive implications in that they block the expansion

of some efficient rivals, those with costs cE ∈ [w∗− l∗, cI).16 The idea of an A&B contract is not

to block the expansion of all efficient rivals, but to extract rents from the expansion of the most

efficient ones, those with costs cE < w∗− l∗. In expectation, this efficient expansion reports the

incumbent profits equal to F (w∗ − l∗)[λl∗ − λ(w∗ − cI)] = λF (w∗ − l∗)(cI + l∗ − w∗).

A&B contracts are not the only way to extract rents from efficient rivals. Consider now a

two-part tariff contract (p, T ) according to which the buyer commits to buy from the incumbent

at t = 3 at the wholesale price p and to an unconditional lump-sum transfer of T , that is,

independent of how much B ends up buying from I (possibly T is paid at the signing of the

contract). Facing this contract, the only way for E to induce B to buy some units from him

is with a price pE ≤ p, which implies that the probability of expansion as of period 1 is equal

to F (p). Thus, irrespective of whether E expands or not, the buyer gets v − p − T in case of

15It makes no difference to consider a lump-sum penalty because the buyer will never breach, if at all, for less
than λ units.

16Note that if this A&B contract is not allowed there is too much entry, so it is not entirely clear from a
welfare perspective the right course of action here. Our analysis contributes to this welfare analysis by identifying
contracts for which this ambiguity disappears.
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signing the contract.

The two part-tariff (2PT) contract the incumbent offers the buyer is again obtained from

the problem

max
p,T

EπI(p, T ) = T + (1− λ)(p− cI)F (p) + (p− cI) [1− F (p)]

s.t. v − p− T ≥ π̄B

Denote by p∗ and T ∗ the solution to the incumbent’s 2PT problem. Relabing p as w − l

and T as l, it becomes clear that the 2PT problem reduces exactly to the A&B problem and

p∗ = w∗ − l∗ < cI and T ∗ = l∗. The two problems are equivalent in all respects, including

their anticompetitive implications, except for the timing of transfers (which is irrelevant under

risk-neutrality). In two-part tariffs the surplus transfer from the buyer to the incumbent is

done or commited ex-ante, before any expansion, while in A&B contracts is done ex-post, after

the expansion has actually ocurred.

The conceptual equivalence between A&B and two-part tariff contracts was first noted by

Marx and Shaffer (1999) in a perfect information setting and later extended by Choné and

Linnemer (2012) to an imperfect information environment. Intuitively, the optimal two-part

tariff is designed to extract rents from the most efficient rivals charging a low marginal price for

the contestable units p∗ < cI and to distribute those rents charging high inframarginal prices via

the up-front payment T ∗. Uncertainty regarding cE at the time of contracting prevents perfect

discrimination which generates the well-known side effect of blocking some efficient rivals.

Curiously, when analyzing the Standard Fashion case, Marvel (1982) argues that the emer-

gence of up-front charges with lower marginal prices after the outlaw of exclusivity contracts,

was evidence against any “anticompetitive” properties this exclusivity clauses might have had

in the first place. The equivalence between A&B contracts and two-part tariffs points other-

wise. More importantly, because two-part tariffs and other nonlinear schedules are typically

seen as equivalent for the purposes of rent extraction, for example in the literature of monopoly

pricing, it is tempting to extend the equivalence between A&B contracts and two-part tariffs

to other non-linear contracts (see for example Rey et. al. 2005). We show next however that

there is no such equivalence.
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2.5 Rebates

Following the contractual arrangements seen in some recent cases (e.g., Michelin II, Unilever,

etc), consider now the all-unit retroactive rebate contract (r,R, Q̄ = 1), where r is the listed

price, Q̄ is a pre-specified sales threshold above which the rebate applies, in this case is equal

to 1, and R is a lump-sum rebate.17 Under this contractual arrangement the buyer commits to

a price r when pruchasing q ∈ (0, Q̄) units from the incumbent and to r − R when purchasing

above that amount.

If B signs the contract, an expanding rival E can still induce B to buy λ units from him

if he is compensated for the forgone rebate. For that to be the case, E’s price offer pE must

satisfy

v − (1− λ)r − λpE ≥ v − r +R

or

pE ≤ r −
R

λ

If E decides to expand/enter it will offer exactly pE = r − R/λ, which sets the probability of

expansion at the time of contracting equal to F (r −R/λ).

The cutoff price r−R/λ is typically known as the effective price of the contestable demand

and represents the marginal cost the buyer faces when purchasing from an alternative supplier.

This price differs from r − R because the contestable share is smaller than the total demand,

which is what allows the incumbent to leverage its position. Indeed, it is relatively easy to

conceive a profitable, yet anticompetitive, rebate scheme when λ is particularly small

r − R

λ
< cI < r −R (2)

Since the smaller the contestable demand, the easier is for the incumbent to deter efficient

expansions (in the limit as λ → 0, it becomes virtually costless), it is not surprising the great

deal of attention and controversy around the estimation of the contestable demand that we

have seen in some recent cases; notably, Intel v. Commission.

17In Section 3 we explore the optimality of these two-step quantity discounts. Note also that in this inelastic-
demand setting we do not need to make any distinction between own-supply discounts and market-share discounts
that are a function of both how much the buyer purchases from the dominant supplier and how much from rival
suppliers. In Section 4 we make this distinction when we work with a downward sloping demand.
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Because the buyer pays r −R regardless, the incumbent now faces the following program

max
r,R

EπI(r,R) = (1− λ)(r − cI)F (r −R/λ) + (r −R− cI) [1− F (r −R/λ)] (3)

s.t. v − r +R ≥ π̄B

The first term is the profit from selling 1− λ units at price r, which happens with probability

F (r−R/λ), and the second term is the profit from selling all units at price r−R, which happens

with probability 1− F (r−R/λ). Now, relabeling r as p+ T/(1− λ) and R as λT/(1− λ), the

rebate program becomes

max
p,T

EπI(p, T ) = T + (1− λ)(p− cI)F (p) + (p− cI) [1− F (p)] (4)

s.t. v − p− T ≥ π̄B

which is the incumbent’s 2PT program.

This result explains the apparent equivalence between exclusive deals and two-part tariffs,

on the one hand, and between two-part tariffs and quantity discounts, on the other. From (3)

and (4), one can see that the rebate scheme works very much like a two-part tariff scheme,

that is, charging a very low marginal price for the contestable units and high prices for the

infra-marginal units which is what allows the distribution of rents among the members of the

incumbent-buyer coalition. One can also see from (3) that the rebate scheme works very much

like an A&B contract, that is, imposing a tax or penalty to the buyer when switching supplier

as the breaching clause in A&B is.

There is a missing element in all this comparison, however, that makes this apparent equiv-

alence to fall apart. Unlike A&B and 2PT contracts, the rebate contract is not equiped with

unconditional payments. The rebate scheme works entirely through the spot market in that

both the rent extraction and distribution are done ex-post during the transaction stage. This

subtle but crucial difference imposes an additional participation constraint on the buyer side.

In period 3, the buyer will not be purchasing units in equilibrium at prices above its reservation

price v, from either supplier. This requires that in equilibrium must hold

r −R < r ≤ v

However, it can be established that

13



Lemma 3. The solution to the ”unrestricted” rebate program (3), which we denote by (ru,Ru),

violates the buyer’s ex-post participation constraint, i.e., ru > v.

Proof. From the relabeling of variables in programs (3) and (4) and using

π̄B = v − p∗ − T ∗ yields

ru − v =
T ∗

1− λ
+ p∗ − v =

(
1

1− λ

)
[λ(v − p∗)− π̄B]

Furthermore, from Lemma 2 we know that π̄B < λ(v − cI), therefore

ru − v >
(

1

1− λ

)
[λ(v − p∗)− λ(v − cI)] =

(
λ

1− λ

)
(cI − p∗) > 0

which finishes the proof.

The rebate scheme (ru, Ru) does not allow for both optimal rent extraction and rent dis-

tribution because of the ex-post ”opportunistic” behavior of the buyer, or which is the same,

because of the absence of unconditional payments. Moving away from the first-best contract

—either (w∗, l∗) or (p∗, T ∗)— brings up three important questions: what is the optimal rebate

scheme the incumbent can offer the buyer while satisfying its ex-post participation constraint?

is it still anticompetitive? and if not, does it still pay the incumbent to sign it?

To answer these questions, let us add to the incumbent’s rebate program (3), the buyer’s

ex-post constraint r ≤ v. Let (r∗, R∗) denote the solution to this ”updated” program and

c∗E ≡ r∗ −R∗/λ the critical cost level below which a rival supplier expands.

Proposition 1. The rebate contract (r∗, R∗) is never anticompetitive, i.e., c∗E ≥ cI .

Proof. For I to offer the rebate contract (r∗, R∗), it must be true that EπI(r∗, R∗) ≥ π̄I ,

that is

[(r∗ − cI)(1− λ)− π̄I ] + λ(c∗E − cI)[1− F (c∗E)] ≥ 0 (5)

But we know that r∗ ≤ v, so (r∗− cI)(1− λ) ≤ (v− cI)(1− λ) ≤ π̄I . In turn, these inequalities

indicate that the first term in (5) is non-positive which requires the second term to be non-

negative

λ(c∗E − cI)[1− F (c∗E)] ≥ 0

And since F (c∗E) < 1, we have that c∗E ≥ cI .
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Lemma 4. The optimal rebate is characterized by r∗ = v and c∗E ∈ (cI , c̄E). Moreover, a

sufficient condition for the incumbent to find it profitable offer the contract is c̄E ≤ c∗.

Proof. See the Appendix.

Proposition 1 and Lemma 4 convey two remarkable messages of the simple model: Rebates

are never anticompetitive, yet, they can emerge in equilibrium. The two results are intimately

connected. To get an intuition for the first result notice that it is the buyer the one that

directly appropriates the rents extracted from rivals when facing the low marginal prices set

by either I or E. In the absence of unconditional payments, it is ex-post unfeasible for B to

transfer a large fraction of those rents to I enough cover his outside payoff. When transfers are

so restricted, relative to the incumbent’s outside option, the incumbent will never agree on an

anticompetitive schedule.

As for the second result, notice that a higher effective price c∗E makes the transfer restric-

tion less demanding by closing the gap between the rent B captures from rivals and I’s outside

option. And because there is too much entry in the spot in case I and B do not sign a contract,

there might be still some scope for rent-shifting from moderately inefficient rivals. Understand-

ing why c̄E ≤ c∗ is a sufficient, but not necesary, condition to ensure that rebates emerge in

equilibrium shed further light on the latter. Given that rebates cannot be used to extract rents

from efficient rivals (Proposition 1) and that there are no allocative inefficiencies (inelastic de-

mand), the only reason to use rebates is to deter the expansion of some inefficient rivals. But

in doing so, the incumbent has actually two choices: (i) two, non-contingent instruments (the

two-step rebate contract) and (ii) an imperfect but contingent instrument (an ex-post uniform

price). When c̄E ≤ c∗, that is, when rivals are relatively efficient, choice (i) is the preferred one

by the incumbent.

The simple model has served to advance three of our main results, namely, (i) that un-

conditional payments are critical for the equivalence between exclusive dealing contracts and

non-linear contracts to hold in a rent-shifting environment; (ii) that in the absence uncon-

ditional payments contrats such as rebates and quantity discounts are highly unlikely to be

anticompetitive; and (iii) that these contracts can still emerge in equilibrium as a mean to

extract rents from inefficient rivals. In the next two sections we show how these results stand to

different extensions of the simple model including the consideration of more flexible non-linear

schedules, different bargaining powers and outside options, and a downward sloping demand.
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These extensions help not only appreciate how general the results of the simple model are but

also better understand the underlying forces that explain them.

3 General Setting

[TO BE EDITED AND COMPLETED]

We generalize our simple model in several directions except for the inelastic demand as-

sumption that we relax in Section 4. First, we allow the agents to have different bargaining

power in their bilateral relations, each modeled as a Nash barganing game (recall that negotia-

tions are sequential). We let η ∈ [0, 1] and β ∈ (0, 1] be the bargaining power of manufacturers

I and E respectively, in their relations with B. Second, we introduce reduced-form approach

to characterize the subgame when I and B fail to sign a contract. We let π̄I and π̄B take values

within a range of plausible values and where π̄I + π̄B = W̄ . For example, in the simple model,

as in A&B, outside payoffs were the result of a uniform-price setting game: π̄I ≥ (1−λ)(v− cI)

and π̄B < λ (v − cI), but W̄ < v − cI .

Alternatively, one could see still see manufacturers and buyers interacting on a short-term

basis using two-part tariffs (pi, Si). As it is shown in our online appendix, this would imply

that the incumbent and the buyer’s outside option would then be given by

π̄I = (1− λ)(v − cI) + λ[1− F (cI)] {E(cE | cE > cI)− cI}

π̄B = λ (v − cI)− λ[1− F (cI)] {E(cE | cE > cI)− cI}
(6)

and W̄ = v−cI . Or maybe neither of those options is satisfactory, since even in the transaction

stage there might still be scope to negotiate some sort of simple consensual deal, which could

result in completely different values for π̄I and π̄B.

The advantage of this reduced-form approach is that is allow us to omit how exactly outside

options are determined, and to focus instead on the mechanisms underlying rent-shifting when

non-linear contracts are used. It must be noted however, that the basic idea underlying this

approach is the same as previously discussed: if the negotiations of complex non-linear contracts

fail, the parties involved still have incentives to engage afterwards in some form of relationship,

although of simpler nature. Let then EπI and EπB be I’s and B’s expected payoffs if they agree

on a “complex” schedule at t = 1, and denote EWIB ≡ EπI + EπB. The above discussion then

translates on requiring at a minimum, that the maximum value EWIB can achieve is greater
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than W̄ . In other words, that the best non-linear contract possible at t = 1, does generates

positive surplus for the IB coalition in aggregate terms. This for example immediately rules the

case where β = 0, as it would imply that I and B jointly could achieve perfect rent extraction

or discrimination agains rivals, so obviously, there is no space for signing an imperfect contract

“ex-ante”.

Finally, we do not assume an a priori shape for the contract being negotiated between I

and B in the first period.18 Throughout the remaining sections of the article both market-share

and own-supplied contracts, T (qI , qE) and T (qI), will be analyzed. However, as it will be clear

shortly, in the inelastic demand model both types are equivalent. The distinction between

market-share and own-supplied discounts, will only be relevant once we introduce a downward

slopping demand in section ?.

3.1 A General (Non-)Equivalence Result

We begin by deriving the optimal non-linear contract for the I −B coalition, using the “coali-

tional” approach outlined by Marx & Shaffer (1999), and Choné & Linnemer (2012). This

approach, which omits any transfers problems, has been at the center of the arguments claim-

ing the conceptual equivalence between exclusive dealing contracts and non-linear contracts.

The equilibrium is found by backward induction: first we found the optimal quantities

purchased by B to each supplier at the transaction stage conditional on T (qI , qE) or T (qI)

depending on the case, and on pEqE . Then, we characterize the optimal schedule negotiated at

t = 2 that maximizes the joint surplus of the E − B relationship. Finally, we found the non-

linear contract T (qI , qE) or T (qI) that maximizes the (expected) surplus of the IB coalition at

t = 1.

As our simple example already hinted, a crucial issue in the negotiation between I and B

is whether the non-linear contract has an unconditional transfer or not. We already showed

that when unconditional payments are allowed, then the equivalence between exclusive dealing

contracts and non-linear contract does hold, and therefore this latter were indeed “anticompet-

itive” in the sense that they blocked more efficient rivals. In this section then, we will focus

exclusively on the opposite limiting case where all transfers must be done entirely through the

spot market/transaction stage.

18As we already discussed, given the inelastic demand assumption, simple linear prices are optimal in the E−B
relationship.
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Now, because only the marginal penalties TqE (qI , qE), and prices T ′(qI), and not the total

amounts affect the extraction of rents, then both, market share contracts and own-supplied

discount, must satisfy the equilibrium constraint T (0, qE) = 0 or T (0) = 0. If that were not the

case, then B would always refrain from buying additional units to the incumbent after E made

a sufficiently attractive offer. Hence, from the I − B coalition’s perspective, all schedules that

do not satisfy this condition are weakly dominated by ones that do, as they do not distort rent

extraction from rivals and give the coalition the option of selling more units19.

Moreover, notice that since both cI and cE are less than v, then the marginal price of both

I’s and E’s schedules must be below v. That is, TqI (qI , qE) ≤ v or T ′(qI) ≤ v for all qI ∈ [0, 1]

and that pE ≤ v20. This is because units that are offered at marginal prices higher than v are

never purchased in equilibrium, so any schedule violating the aforementioned condition, will be

weakly dominated by one that does not21.

This two conditions combined imply that the equilibrium schedule agreed on by I and

B must satisfy that T (qI , qE) ≤ vqI or that T (qI) ≤ vqI for all qI ∈ [0, 1], and any qE .

Moreover, summed with our inelastic demand assumption they also translate onto the fact

q∗I + q∗E = 1, where q∗I and q∗E are the equilibrium quantities bought by the consumer from I

and E at the transaction state respectively. Hence, when the incumbent and the buyer agree on

an (equilibrium) own-supplied contract to implement q∗I they are indirectly choosing q∗E at the

same time, and therefore this is equivalent as if they had the power to select both. Consequently,

under the inelastic demand assumption, both market share discount and own-supplied contracts

in this setting are equivalent22. Indeed, in the case of own-supplied contract the problem faced

by B at t = 2 is

max
qE ,qI

qI+qE≤1

πB = vqI + (v − pE) min(λ, qE)− T (qI) (7)

Hence, conditional on pE (and equilibrium condition T (0) = 0), the marginal price of the I−B

schedule T ′(·) determines both q∗I and q∗E .

Suppose then, without loss of generality, that I and B agree on the market-share discount

19Notice that the recent literature studying own-supplied and market-share contract usually assume that this
schemes do not involve unconditional payment. For example, the equilibrium conditions T (0, qE) = 0 and
T (0) = 0 are also imposed in Calzolari & Denicolo (2013)

20Remember that, given our inelastic demand assumption, without loss of generality we could work assuming
that contract between E and B consisted on a linear price

21This Proposition 2, from Choné & Linnemer (2012)
22Disposable costs do not play a role, in contrast to for example Choné & Linnemer (2012) as we do not have,

using their terminology, “super-efficient” rivals in this model.
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T (qI , qE) that satisfies all the equilibrium conditions previously discussed. What is the optimal

contract negotiated between E and B? Notice that when this bargaining takes place, there

is no space for posterior opportunistic behavior from the consumer’s side, as both parties are

bargaining under full information. Then this coalition selects the optimal qE(cE) conditional

on the schedule T (·) that maximizes the sum of the surpluses to be obtained by each party at

the transaction stage WEB = πB + ΠE , with ΠE ≡ qE(pE − cE) and πB ≡ v − pEqE − T (qI)

max
qE≤λ

WEB = v − cEqE − T (qI , qE) (8)

The price pE(cE) on the other hand is chosen such that the transaction stage outcome gives

each party the corresponding rents as dictated by the Nash Bargaining solution we assumed,

with β as E’s relative bargaining power against B. Disagreement payoff on the other hand are

given by v − T (1, 0) (the surplus B obtains if he purchase the entire production to I) and 0

for B and E respectively. Hence if we denote ∆WEB ≡ WEB − v + T (1, 0) as the net surplus

generated by this relationship, the optimal p∗E(cE) is given by either of the following conditions

Π∗E(cE) = β[T (1, 0)− cEq∗E(cE)− T (qI , q
∗
E(cE))] = β∆W ∗EB(cE)

π∗B(cE) = (1− β)∆W ∗EB(cE) + v − T (1, 0)
(9)

Finally, given the optimal schedule negotiated by the EB coalition, I and B decide theirs.

However, at t = 0 the exact value of cE is not known, and therefore the particular contract

that E and B will end up signing cannot be determined a priori23, E will therefore end up with

some ex-ante informational rents. More formally, the IB coalition chooses the optimal schedule

T (·) in order to maximize the joint expected surplus they will obtain from the transaction stage

EWIB = EπI + Eπ∗B, where

EπI =

∫ c̄E

0
{T (qI(cE), qE(cE))− cIqI(cE)} f(cE)dcE

Eπ∗B = E[(1− β)∆W ∗EB(cE)] + v − T (1, 0)

(10)

It is possible to prove (see lemma also 5), that, given the absence of bilateral inefficiencies EWIB

23In some sense, this is hidden information problem
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can be rewritten as

EWIB = E[(v − cI)qI(cE) + (v − cE)qE(cE)]− EΠE(cE) (11)

In other words, total rents being appropriated by the IB coalition are equal to the total expected

surplus less the share the rival, by inducing the opportunistic behavior of B once cE is known,

is obtaining.

However, using the envelope theorem we have ∂ΠE/∂cE = −βqE , so

EΠ∗E = ΠE(c̄E) +

∫ c̄E

0
βqEF (cE)dcE (12)

And moreover, given qI(qE) = 1 − q∗E(cE), the problem faced by the IB coalition can be

rewritten as the following lemma states:

Lemma 5. The “coalitional” problem faced by the IB coalition can be written as:

max
qE(cE)

EWIB = v − cI −
∫ c̄E

0

[
(cE − cI) +

βF (cE)

f(cE)

]
qE(cE) f(cE)dcE −ΠE(c̄E) (13)

Subject to (1) both participation constraints, and that (2) q′E(cE) ≤ 0

Proof. See Appendix

The surplus created in this transaction is ∆W ∗IB = EW ∗IB − π̄B − π̄I = EW ∗IB − W̄ , and the

corresponding payoffs to B and I, Π∗B = (1 − η)∆W ∗IB + π̄B, Π∗I = η∆W ∗IB + π̄I . Hence, T (·)

must not only implement the optimal allocation rule q∗E(cE) and q∗I (cE) = 1− q∗E(cE), T (·) but

must also ensure that Eπ∗B = Π∗B, and EπI = Π∗I .

Now, before characterizing the optimal non-linear pricing scheme chosen by the IB coalition,

we introduce the notion of “simple” allocation rules that will play an important role in our

analysis.

Definition 2. An allocation qE(·) : [0, c̄E ]→ [0, λ] is said to be “simple at c∗E” if

q∗E(cE) =

 λ if cE ∈ [0, c∗E ]

0 otherwise
(14)

For these allocation rules, only two amounts become relevant for the incumbent: the one

when the realization of cE is relatively low and it receives T (1−λ, λ), as there is entry/expansion;
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and the amount T (1, 0) it gets when cE turns out to be high and B purchases his entire demand

from him24. Moreover, all the relevant price schedules that implement this sort of allocations

share the following properties:

Lemma 6. Consider any market-share discount T (qI , qE) that satisfies TqI (qI , qE) ≤ v and

T (qI , qE) ≤ vqI for all qI ∈ [0, 1] and any qE, and define pe(qE) as

pe(qE) ≡ T (1, 0)− T (1− qE , qE)

qE
(15)

Then,

1. If T (·) induces a simple allocation at c∗E then pe(λ) = c∗E.

2. Moreover, if

(a) pe(qE) is non-decreasing in qE for all qE ∈ [0, λ]

And,

(b) pe(λ) = c∗E.

Then T (qI , qE) implements a simple allocation at c∗E

Proof. For own-supplied contracts the lemma is analogous. Just replace T (1, 0) for T (1), and

T (1− qE , qE) for T (1− qE). For the proof, see Appendix.

pe(λ) represent the “effective price” the consumer internalizes when buying qE to the rival.

Hence, all pricing schedules that implement simple allocations at c∗E , have pe(λ) equal to that

same value. We now complete the characterization of the optimal non-linear contract the IB

coalition agree upon.

Proposition 2. The optimal market-share discount (without unconditional payments) that

maximizes the surplus created by the IB coalition, ∆WIB, is characterized by:

1. TqI (qI , qE) ≤ v, for all qI ∈ [0, 1] and any qE

2. T (0, qE) = 0 for all qE

24T (1− λ) and T (1) in own-supplied discounts

21



3. T (qI , qE) induces a simple allocation at c̃E, where c̃E satisfies:

f(c̃E)(c̃E − cI) + βF (c̃E) = 0 (16)

Proof. For own-supplied contracts the lemma is analogous. For the proof, see the Appendix.

As expected, and due to the existence of imperfect information at the time when I and B

are contracting, the optimal schedule sets to B an average penalty of cI − pe(λ) for each unit

he purchases from the E, and hence acts as a tax over entry in the same way as a breaching

clause in an exclusive dealing contract. As in A&B model, this distort the entry decision of

moderately more efficient rivals, generating the well-known side effect of inefficient foreclosure.

Hence the optimal schedule in this setting is “anticompetitive”.

Given that the optimum is a simple allocation, then the (private) efficiency of the coalition

can be entirely summarizes by the “cut-off” type ĉE = c̃E . Hence, the maximum surplus

generated by the transaction can be denoted ∆W ∗IB ≡ ∆WIB(c̃E). Notice moreover, that

setting β = 1 above, we obtain the same cutoff c̃E as in our simple example.

Moreover, since market-share are equivalent to own-supplied contract in this setting, and

the optimal schedule only needs to induce a simple allocation, there are apparently several

schemes that can achieve the coalition’s optimum. Indeed, using the second part of Lemma 6,

examples of own-supplied contracts that would in principle work include:

1. “Unconditional” Two-Part Tariffs (T = T ∗, p∗ = c̃E), where T ∗ is a lump-sum payment

made immediately, and p∗ the marginal price charged:

pe2PT (qE) =
T ∗ + c̃E − T ∗ − (1− qE)c̃E

qE
= c̃E ∀ qE ∈ [0, λ] (17)

2. Incremental Discounts (P = P ∗ ≤ v, P ∗d = c̃E), where P ∗ is the price per-unit of the first

1− λ units, and P ∗d = c̃E the price of each additional unit purchased:

peInc.D(qE) =
(1− λ)P ∗ + λc̃E − (1− λ)P ∗ − (λ− qE)c̃E

qE
= c̃E ∀ qE ∈ [0, λ] (18)

3. Conditional, “all-unit” retroactive rebates (Pr = P ∗r ∈ [c̃E , v], R∗ = λ(P ∗r − c̃E), Q̄∗ = 1),

where Pr is the “price list”, R the (monetary amount of the) discount, and Q̄ the pre-
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specified threshold that triggers the rebate:

peRet.D(qE) =
P ∗r − λ(P ∗r − c̃E)− (1− qE)P ∗r

qE
=
λc̃E − P ∗r (λ− qE)

qE
(19)

So

∂peRet.D
∂qE

=
λ(Pr − c̃E)

qE
≥ 0 ∀ qE ∈ [0, λ]

peRet.D(λ) = c̃E

(20)

However in this setting this characterization is incomplete as it crucially omits the issue of

rent distribution.

Proposition 3. When T (0, qE) = 0, there exists a unique π̄∗I (η) ∈ (0, (1− λ)(v − cI)) defined

as:

π̄∗I (η) = (v − cI)(1− λ) + λ(c̃E − cI)[1− F (c̃E)]− η∆WIB(c̃E) (21)

Which is decreasing for all η ∈ [0, 1], such that the schedule T (qI , qE) satisfying

1. The coalition optimality conditions

2. And simultaneously that:

EπI =

∫ c̄E

0
{T (q∗I (cE), q∗E(cE))− cIq∗I (cE)} f(cE)dcE = Π∗I (22)

Exists if and only if π̄I ≤ π̄∗I (η)

Proof. Obviously π̄∗I (η) is decreasing in all η, since ∆WIB(c̃E) > 0 by assumption. Moreover,

notice that π̄∗I (η) can be written as

π̄∗I (η) = π̄∗I (η = 0)− η∆WIB(c̃E) (23)

For the rest see the Appendix.

Proposition 3 states that when unconditional payments are not allowed and I’s outside

option is sufficiently large, the coalition is unable to find an schedule that achieves both the

(unconstrained) maximization of the surplus created by the coalition, and that simultaneously
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transfers the corresponding payment to the incumbent through the spot market. This in marked

contrast to exclusive dealing contracts and “unconditional”-tranfer schedules.

Intuitively, non-linear pricing schemes/exclusive dealing contracts in this model are designed

to charge a very low marginal price in order to extract efficiency rents from E, while using very

high infra-marginal prices to distribute its share of the surplus to the incumbent. Hence, the

greater its outside option π̄I , higher the infra-marginal prices charged. When unconditional

payments are allowed (e.g. in “unconditional” two-part tariffs), the scheme works smoothly as

the transference is done at any event, or “ex-ante”, implying that a significant amount of those

high infra-marginal prices, which turn marginal when E expands, are sunk, so the behavior of

the consumer conditional on E expanding, remains unaltered. However, when unconditional

payments are not allowed/available, all the surplus transference must be executed through the

transaction stage. This in turn implies that the totality of the high infra-marginal price is

internalized by the consumer, who opportunistically refrains from buying any additional units

from I once buying from E, making harder the rent distribution among the members of the

I − B coalition. This also implies that optimal non-linear schedule in this restricted scenario

cannot solved using the coalition approach consisting on maximizing the sum of the parties’

profits. Indeed this approach is valid only when transfers are not bounded, and/or when transfer

restriction is not binding.

The best way to see it, and that will actually turn to be useful once we begin characterizing

the optimal schedule taking into account transfer restrictions, is by returning to the primitive

problem underlying Nash’s bargaining solution. That is selecting a T (qI , qE) to maximize the

Nash product

(EπI − π̄)η(EπB − π̄B)1−η (24)

Subject to EπI ≥ π̄I , EπB ≥ π̄B, T (qI , qE) ≤ vqI , for all qI ∈ [0, 1], and any qE ; qE(cE) ∈ [0, λ]

and q′E(cE) ≤ 0 for all cE ∈ [0, c̄E ]. It is possible to prove then, that if we omit the transfer

restriction the solution to the problem is equivalent to maximize the sum of the surpluses.

This is intuitive: when transfers are not restricted, the coalition first select the schedule that

maximizes the overall surplus and only afterwards deals with the distribution of rents.

The problem arises once the transfer restriction begins to be active, as some sort of distortion

over the optimal schedule must be executed in order to ensure the correct distribution of rents.

This not only may modify the nature of the schedule in hand, but may also destroy enough

coalitional rents so that signing an “ex-ante” agreement may not be optimal for both parties.
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This insights will play a key role in the next section when we discuss the nature of the optimal

agreement when transfer are indeed restricted.

The conclusion is that the apparent equivalence between exclusive dealing in rent shifting

models and “ex-post” quantity discounts is much more subtle than originally thought. The

crucial issue is the existence of unconditional transfers, and therefore they cannot be ana-

lyzed/treated lightly as similar practices before verifying their existence and other features of

the contracting setting (i.e. bargaining powers and disagreement payoffs).

3.2 Optimal Contract without Unconditional Payments

We now characterize the optimal non-linear contract when unconditional payments are unfea-

sible. The problem faced by the IB coalition is then to choose an allocation rule qE(cE) that

maximizes the Nash product:

max
qE(cE)

(EπI − π̄)η(EπB − π̄B)1−η (25)

Subject to EπI ≥ π̄I , EπB ≥ π̄B, T (qI , qE) ≤ vqI , for all qI ∈ [0, 1], and any qE ; qE(cE) ∈ [0, λ]

and q′E(cE) ≤ 0 for all cE ∈ [0, c̄E ]. Where (see proof lemma 5):

EπI = v − cI −W ∗EB(c̄E)−
∫ c̄E

0

{
cE − cI +

F (cE)

f(cE)

}
q∗E(cE)f(cE)dcE

EπB =

∫ c̄E

0
(1− β)qE(cE)F (cE)dcE + (1− β)W ∗EB(c̄E) + β[v − T (1, 0)]

(26)

As we mentioned in the previous section, is relatively straightforward to show that if the

transfer restriction is not binding, that is if π̄I ≤ π̄∗I (η), the solution coincides with A&B.

We therefore restrict our attention to the region where π̄I > π̄∗I (η). Now, even if the transfer

constraint is active, the optimal schedule necessarily satisfies:

Lemma 7. There exists a threshold α such that the optimal schedule q∗E(cE) = 0 for all cE ≥ α.

Proof. See Appendix

The previous characterization allows us to write the problem faced by the IB coalition in

a more tractable way. In particular, collapsing the constraint T (qI , qE) ≤ vqI , for all qI ∈ [0, 1]

in a restriction over a single constant.

Lemma 8. The problem faced by the IB coalition can be rewritten as:
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max
qE(cE)

(EπI − π̄)η(EπB − π̄B)1−η (27)

Subject to EπI ≥ π̄I , EπB ≥ π̄B, T (1 − qE(0), qE(0)) ≤ v (1 − qE(0)) and any qE(0) ∈ [0, λ];

qE(cE) ∈ [0, λ] and q′E(cE) ≤ 0 for all cE ∈ [0, ċE ]. Where:

EπB = v − T (1− qE(0), qE(0))−
∫ ċE

0

{1− (1− β)[1− F (cE)]}
f(cE)

q∗E(cE)f(cE)dcE

EπI = T (1− qE(0), qE(0))− cI −
∫ ċE

0

{
cE − cI −

[1− F (cE)]

f(cE)

}
q∗E(cE)f(cE)dcE

(28)

Proof. See Appendix.

We now try to shed some light about the solution to this problem. Let’s start considering

the unrestricted solution to the maximization problem when we only take into account the

buyer. That is, when we maximize EπB− π̄B. The solution to this relaxed program is qE(cE) ≡

0, which may initially seems counterintuitive since it completely avoids entry. However, the

expansion of E is blocked not because B wants to restrict competition between manufacturers,

but because the schedule implementing such allocation must involve a very low marginal price,

which increases the buyer’s surplus. If we consider the unrestricted maximization of the seller’s

surplus, EπI − π̄, we find qE(cE) = λ for cE ≤ ċE and qE(cE) = 0 for cE > ċE . Since

blocking expansion is costly (the incumbent must charge a low marginal price) and there is

no recoupment, I allows inefficient entry (since ċE > cI). Define then π̄∗∗∗I ≡ EπI(ċE) as the

profits the incumbent gets with an a schedule that induces a simple allocation at ċE . Given

that π̄∗∗∗I is the maximum value EπI can attain, if I’s outside option is greater than such value,

the incumbent would never agree on an ex-ante schedule. We further restrict attention to all

π̄I ∈ [π̄∗I (η), π̄∗∗∗I ].

In both cases, the solution to the relaxed problem satisfies the implementability condi-

tion (qE is weakly decreasing). These solutions, however, may fail to satisfy the participation

constraints. We now tackle the characterization of the optimal solution in these two extreme

cases.

Lemma 9. Consider a pair of outside options (π̄I , π̄B).

1. Suppose that η = 1 and consider ĉE = min {ċE , δ}, where δ is the solution to

λ(v − δ) + λ(1− β)F (δ)[δ − E(cE | cE ≤ δ)] = π̄B
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If a solution exists, then it is given by T ∗(1−λ, λ) = v(1−λ) and q∗E(cE) = λ if cE ≤ ĉE,

and 0 otherwise.

2. Suppose that η = 0 and consider čE the solution to

(1− λ)(v − cI) + λ (čE − cI)[1− F (čE)] = π̄I

If a solution exists, then it is given by T ∗(1−λ, λ) = v(1−λ) and q∗E(cE) = λ if cE ≤ čE,

and 0 otherwise.

Proof. See Appendix.

As we mentioned before, the preferred solution of the incumbent (without taking into ac-

count participation constraints) involves inefficient entry, while the preferred solution of the

buyer is one without entry. In order to satisfy participation constraints, both solutions allow

for some entry. What is natural, though, is that the solution with η = 0 involves more entry

than the solution with η = 1. In fact, such a condition guarantees the existence of a solution

in both extreme cases. 25

Lemma 10. If čE ≤ ĉE then the problem has a solution for η = 0 and η = 1.

It is important to remark that in both extreme cases, the solution is a “simple” allocation

rule. It involves either full entry or no entry at all. We now show that this result extends to

a general bargaining position η. Moreover, we show that the solution involves a level of entry

that is in between the levels for η = 0 and η = 1.

Proposition 4. For a given η ∈ [0, 1], and a given pair (π̄I , π̄B) such that π̄I > π̄∗I (η), a

solution to the general problem exists if and only if čE ≤ ĉE. Moreover the optimal schedule

satisfies T (1 − λ, λ) = v(1 − λ), and there exists c∗E(η, π̄I) ∈ [čE , ĉE ], such that the optimal

allocation induced by such schedule, is given by

q∗E(cE) =

 λ if cE ∈ [0, c∗E(η, π̄I)]

0 otherwise
(29)

Proof. See Appendix

25In fact, it is possible to show that the condition čE ≤ ĉE is equivalent to the gains from trade being big
enough.
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Given the simple nature of the solution, then the “anticompetitive” nature of a non-linear

contract in this setting is entirely summarized on the optimal cutoff c∗E(η, π̄I). This simple

solution allow us to characterize very neatly sufficient conditions to ensure when contract are

anticompetitive or not. In particular, notice the optimality conditions imply the optimal payoff

to each party are given by

EπB(c∗E) = λ (v − c∗E) + λ(1− β)F (c∗E)[c∗E − E(cE | cE ≤ c∗E)]

EπI(c∗E) = (1− λ)(v − cI) + λ (c∗E − cI)[1− F (c∗E)]
(30)

Then if π̄I ≥ (1 − λ)(v − cI) ≡ π̄∗∗I ∈ (π̄∗I (η), π̄∗∗∗I ), which is equivalent to čE = cI , then

“anticompetitive” contracts cannot arise in equilibrium, as they do not satisfy I’s participation.

Hence, π̄I ≥ π̄∗∗I is sufficient to ensure that anticompetitive contracts are not signed. Contracts

with c∗E ≥ cI however, can emerge in this setting and be optimal if čE = cI < ĉE .

The above discussion help us partition the set of potential π̄I in different regions, which

share different properties. In particular if π̄I is between (0, π̄∗I (η)), even without unconditional

payments, the optimal schedule is equivalent to the A&B exclusive dealing contract. On the

other hand, when π̄I ∈ [π̄∗I (η), π̄∗∗I ] the sufficient conditions already derived do not apply,

so we need a finer characterization. If π̄I ∈ [π̄∗∗I , π̄
∗∗∗
I ] then non-linear contracts cannot be

anticompetitive, but may still emerge if čE ≤ ĉE . And finally if π̄I > π̄∗∗∗I then with certainty

no contract is signed at t = 0. This is summarized in figure 1.

[ FIGURE 1 ]

In our simple example, in that case we had

π̄LI = (v − cI)(1− λ) + [1− F (c∗)] {E(cE | cE > c∗)− c∗} ≥ (1− λ)(v − cI) = π̄∗∗I (31)

Hence when transfer were restricted, anticompetitive contract could emerge in equilibrium.

Moreover, it is straightforward to prove that c̄E ≤ c∗ is sufficient to ensure that čE = cI < ĉE

when π̄I = π̄LI , and hence in that scenario contracts where used only to extract rents from

more inefficient rivals. Since in the simple example we were assuming η = 1, then the optimal

schedule will induce a simple allocation at ĉE .

On the other hand, if firms can use two-part tariffs to compete at the transaction stage

without contracts, then π̄2PT
I = (1−λ)(v− cI)+λ[1−F (cI)] {E(cE‖ cE > cI)− cI}, however it
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is easily proven that such expression is greater than π̄∗∗∗I . Hence in this setting, if unconditional

payments are unfeasible no contract will ever be signed in t = 0 between I and B, i.e. čE > ĉE

for π̄I = π̄2PT
I , and any Ū , since čE in this case is greater than ċE , the upper bound of ĉE .

Intuitively, when I can use two-part tariffs in the spot market, it allows it to appropriate an

important fraction of the total surplus generated as this 2PT are contingent on cE (since cE is

known already at this stage) while giving enough pricing flexibility due to its two instruments.

Hence, if transfers are restricted, the distortion over the ex-ante schedule needed to transfer

that amount of rents is so important, than the total surplus generated by the ex-ante scheme

is not sufficient to satisfy both participation constraints, i.e. “gains from trade” are entirely

depleted.

Returning to the general formulation, we still need to characterize the optimal non-linear

contract when π̄I ∈ [π̄∗I (η), π̄∗∗I ]. While it is not possible to determine exactly whether a contract

in this region is anticompetitive for a given pair of outside options, without further specifying

the distribution of E’s costs, we can determine when is more likely for a contract in this region

the be anticompetitive. For this we use the following lemma:

Lemma 11. c∗E(η, π̄I) is increasing in η and π̄I

Proof. See Appendix

Hence if we define a bargaining position as a combination (η, π̄I), the main implication of

the model is that without unconditional payments, the stronger the bargaining position of the

incumbent against the buyer, the less likely the resulting contract is anticompetitive. This

result goes against the common belief that the stronger the incumbent, the more likely is the

foreclosure of efficient rivals. Indeed, if I’s good is a “must-stock” item (and transfers are

restricted) this makes exclusion harder by improving I’s bargaining position, not easier as in

other models. The intuition behind this result should already be clear by now.

[ FIGURE 2]

That the bargaining position of the incumbent relative to the buyer affects the anticompet-

itive potential of the non-linear contract is a novel, although expected, feature of the model,

especially considering that results in this section are driven by the difficulty of transferring rents

between the members of the IB coalition.
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4 Downward Sloping Demand

In this section we revisit our non-equivalence result when unconditional payments are not

allowed in the case of a downward sloping demand D(p) with inverse demand function P (q).

We keep the perfect substitutability between both goods though, while outside options are

again given by π̄I and π̄B with π̄I + π̄B = W̄ .

We moreover made that rather standard assumptions that D(p) is such, that πMI ≡ (pI −

cI)D(pI) is an strictly concave function of pI that achieves a unique global optimum pMI , the

monopoly price. Finally, we denote S(q) as

S(q) ≡
∫ q

0
P (s)ds (32)

Revisiting the (Non-)Equivalence

Suppose the incumbent offers a market share discount T (qI , qE) to B. We will solve the problem

faced by I and B at t = 1 using, as before, the coalitional approach and then show that when

unconditional payments are not allowed, the solution is only valid when π̄ is in a neighbourhood

near 0.

Given T (qI , qE) the EB coalition solves:

max
qE∈[0,λ]
qI≥0

WEB(qI , qE) = S(qI + qE)− cEqE − T (qI , qE) (33)

So again by envelope theorem we have:

EΠ∗E = ΠE(c̄E) +

∫ c̄E

0
βqEF (cE)dcE (34)

Therefore, the IB coalition problem is

max
qE(cE)∈[0,λ]
qI(cE)≥0

EWIB =

∫ c̄E

0

[
S(qI(cE) + qE(cE))− cIqI(cE)− cEqE(cE)− βqE(cE)

F (cE)

f(cE)

]
f(cE)dcE −ΠE(c̄E)

(35)

The surplus created in this relationship is ∆W ∗IB = EW ∗IB − π̄B − π̄I = EW ∗IB − W̄ , so the
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corresponding payoffs to each party involved Π∗B = (1− η)∆W ∗IB + π̄B and Π∗I = η∆W ∗IB + π̄I .

The solution to problem (35), is clearly “bang-bang” as the following lemma proposition states:

Proposition 5. The optimal allocation rule in the downward sloping demand case, is given by

(q∗I (cE), q∗E(cE)) =

 (D(cI)− λ, λ) if cE ≤ c̃E

(D(cI), 0) otherwise
(36)

Where c̃E is uniquely and implicitly defined by

f(c̃E)(c̃E − cI) + βF (c̃E) = 0 (37)

Proof. See Appendix.

As it is shown in the Appendix, one way to implement the above outcome is with a three-

part exclusive contract (pi, ti,K) exclusionary contract, where the marginal price for I’s units pi

is set at cI , ti the per-unit liquidated damage clause is set at cI− c̃E , and K is an unconditional

sum paid immediately once the contract is signed.

Then, the EB coalition finds optimal to purchases the entire capacity λ to E, and the

remaining units D(cI)− λ to the incumbent whenever cE ≤ pi − ti = c̃E , or to purchase D(cI)

units exclusively to the incumbent when cE > c̃E . That is (K∗, p∗i , t
∗
i ) implements the optimum

prescribed by the coalition approach.

Regarding non-linear contracts, notice that with a downward-sloping demand there is a

need for additional instruments. Indeed, a single marginal price (as for example in the case of

own-supplied discounts), is not sufficient to implement the coalitional optimum, as it cannot

extract rents (i.e. marginal price below cI) without sacrificing own-supplied efficiency (i.e.

marginal price equal to cI). Therefore, own-supplied are no longer equivalent as market-share

contracts. Only this latter can, omitting rent transfer issues, implement the optimum using its

two-instrument to separate the rent-extraction from the own-supply efficiency motive. Indeed,

any market share contract that implements the coalition optimum, must satisfy the following

properties

Lemma 12. If the market share discount T (qI , qE) implements the coalition optimum then

1. T (qI , qE) is separable in qI and qE, and the marginal price for I’s unit is cI : T (qI , qE) =

cIqI + ξ(qE)
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2. And be(λ) ≡ ξ(λ)−ξ(0)
λ is equal to cI − c̃E

Proof. See Appendix.

Regarding their equivalence with three-part generalized A&B contracts (pi, ti,K), again the

crucial issue with market-share contracts is whether there is an unconditional payment or not.

When this are not allowed we then need to check whether the consumer still buys additional

units from I once he decides to purchase also from E. This puts an upper bound over the total

penalty imposed from buying units elsewhere.

Indeed, if the consumer only buys from E he receives
∫ λ

0 P (q)dq − PE(λ), where PE(λ)

depends on β the relative bargaining power on the EB relationship. While if he buys additional

units from I he gets
∫ D(cE)

0 P (q)dq − PE(λ)− cI [D(cI)− λ]− ξ(λ). Hence ξ(λ) is bounded by:

∫ λ

0
P (q)dq − PE(λ) ≤

∫ D(cI)

0
P (q)dq − PE(λ)− cI [D(cI)− λ]− ξ(λ)

=⇒ ξ(λ) ≤
∫ D(cI)

λ
P (q)dq − cI [D(cI)− λ] (38)

We then have the following result:

Proposition 6. When the penalty ξ(qE) is paid only conditional on dealing with I, there exists

a unique π̄D∗I (η) strictly between 0 and
∫ D(cI)
λ P (q)dq − cI [D(cI)− λ] defined as:

π̄∗I (η) =

∫ D(cI)

λ
P (q)dq − cI [D(cI)− λ] + λ(c̃E − cI)[1− F (c̃E)]− η∆WIB(c̃E) (39)

Which is decreasing for all η ∈ [0, 1], such that a market share discount T (qI , qE) satisfying

1. The coalition optimality conditions

2. And simultaneously:

EπI =

∫ c̄E

0
{T (q∗I (cE), q∗E(cE))− cIq∗I (cE)} f(cE)dcE = Π∗I (40)

Exists if and only if π̄I ≤ π̄D∗I (η)

Proof. See the Appendix.
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Hence as it is easily seen, results are easily generalized in this direction. The only difference,

is the need of more complex non-linear contracts, as own-supply efficiency is not immediately

guaranteed as in the inelastic demand model.

5 Discussion

[TO BE COMPLETED]

The literature has usually relied on exclusive dealing models to analyze the anticompetitive

effect of rebates and other non-linear contracts, as the underlying mechanisms are usually

regarded as conceptually the same. They have been treated almost as equal from an antitrust

perspective (cite examples). Our results show that there is no such equivalence, however.

In particular, at least in the rent-shifting family of models there is one critical assumption

explaining why the equivalence falls apart but that has remained unnoticed: the existence of

unconditional payments, or more generally, of an ex-ante credible commitment to transfer rents.

This is interesting since in practice rebates and other types of non-linear contracts do not

usually involve such kind of binding commitments, or at least they have not been documented

in the most prominent cases. Two complementary hypothesis can explain this: either uncondi-

tional payments have not received the attention they deserve, and/or such rent transfer is not

nakedly executed but masked under alternative principal-agent rationales. For example, instead

of using “up-front” lump-sum payments or signing liquidated damage clauses, which could raise

antitrust suspicious, rent transfers may be achieved more subtly using payments to supposedly

boost advertising efforts. Alternatively, the relationship between the dominant manufacturer

and the buyer/downstream retailer may be of a long-term and repeated nature, which could

partially discourage the opportunistic behavior from this latter, making the transfer restriction

less severe despite the absence of such explicit payments.
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APPENDIX

Proof of Lemma 1

Part 1.

Claim 1. If cE ≥ cI+(1−λ) (v−cI) = c∗, then pI = cE, pE = cE is a pure-strategy equilibrium.

Proof. Suppose first that pI = v and pE = v. Obviously then, I has incentives to deviate to

p′I = v − ε and sell both units because as it obtains π′I = v − cI − ε > (1 − λ)(v − cI) = π′I .

But if p′I = v− ε, then E has incentives to undercut its price to p′E = v− 2ε and obtain strictly

positive profits. This undercutting dynamic continues until pE = cE and pI = cE − ε ≈ cE ,

where πI = cE−cI . But when pE = cE , I also has the alternative to act as a residual monopoly,

whose optimal price comes from

πB(Split Purchases) = λ(v − cE) + (1− λ)(v − pI) = λ(v − cE) = πB(Only to E) (41)

That is charging a price of pRMI = v to obtain profits of πRMI = (1−λ)(v−cI). Hence, pI = cE ,

pE = cE is a pure-strategy equilibrium only when cE − cI ≥ (1 − λ)(v − cI), that is when

cI + (1− λ) (v − cI) = c∗

Part 2. The second part is more involved.

Claim 2. If cE < c∗ = cI + (1− λ) (v − cI), then no pure strategy equilibrium exists.

Proof. If pE < pI , firm E has incentives to rise its price; if cE < pI < pE , firm E has the

incentive to undercut I’s price; if pI ≤ pE = cE , the incumbent prefers to act as a residual

monopoly given that cE ∈ [cI , c
∗); and if pI = pE = v the incumbent has incentives to undercut

E’s price. Hence all possible candidates for pure-strategy equilibrium are discarded.

For the following claims, let {r,R} and {z, Z} the boundaries of the supports of the distri-

butions of E and I respectively.

Claim 3. If cE < c∗, in any mixed strategy equilibrium πeI(pI) = (1− λ)(v − cI) = πRMI

Proof. Realizing that πeI(pI) ≥ πRMI is straightforward, as the incumbent can always secures

for itself at least the residual monopoly profits by charging the residual monopoly price, this
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also implies that pI ≥ c∗ so z ≥ c∗. Proving however that in any equilibrium πeI(pI) ≤ πRMI , is

far more involved.

Now, it is easy to realize that in any mixed strategy equilibrium both firms must be ran-

domizing because otherwise, the rival has incentives to slightly undercut with probability one.

Now notice that

πeI(pI) = P(pI ≤ pE)(pI − cI) + P(pI > pE)(1− λ)(pI − cI)

= (1− λ)(pI − cI) + λ(pI − cI)P(pI ≤ pE)
(42)

Suppose then that πeI(pI) > πRMI , this implies

[(1− λ)(pI − cI)− (1− λ)(v − cI)] + λ(pI − cI)P(pI ≤ pE) > 0 (43)

So P(pI ≤ pE) > 0 for all pI admissible, since (1 − λ)(pI − cI) ≤ (1 − λ)(v − cI) = πRMI . In

particular, this must hold for pI = Z, which means that πeE(R) = 0 (either Z < R, or Z = R

and R has an atom).

Hence, defining S ⊆ [Z,R] the support of E’s distribution must be either S or {cE} ∪ S,

with an atom θ at cE . However the support S cannot be equilibrium as I has the incentives

to play pI = Z with probability one, a contradiction. On the other hand, {cE} ∪ S, cannot be

equilibrium either because

πeI(pI) = θ(pI − cI) + (1− θ)(1− λ)(pI − cI) (44)

So πeI(z) = πeI(Z)⇐⇒ z = Z, again implying the I plays a singleton with prob. 1.

Hence, assuming πeI(pI) > πRMI always leads to a contradiction, so πeI(pI) ≤ πRMI also,

implying that πeI(pI) = πRMI = (1− λ)(v − cI).

Claim 4. If cE < c∗, in any mixed strategy equilibrium r = z ≤ v

Proof. If z > v, then I would get null profits which contradicts the previous claim. Now,

because z ≤ v, then r ≥ z because otherwise, πE(r) = λ(r − cE) < πE(r + ε) = λ(r + ε − cE)

for an ε > 0 but arbitrarily small, so E would be better off by deviating a playing r + ε with

prob. 1.
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However, if z < r then πI(z) = z − cI < πI(z + ε) = z + ε − cI for a ε > 0 but arbitrarily

small, which again is a contradiction. Hence r = z < v.

Claim 5. If cE < c∗, in any mixed strategy equilibrium πeE(pE) = λ (c∗ − cE)

Proof. That πeE(pE) ≥ λ (c∗ − cE) follows from the fact that E can always secure such payoff

by playing pE = c∗ − ε ≡ c∗ without risking being undercut by I.

However, yet again, showing that πeE(pE) ≤ λ (c∗−cE) is not that straightforward. Suppose

on the contrary that πeE(pE) > λ (c∗ − cE), that is

[1− P(pI ≤ pE)]λ(pE − cE) > λ(c∗ − cE) =⇒ pE > c∗, ∀ pE (45)

Hence z = r > c∗. However, z > c∗ can only be equilibrium, if the distribution over which

E randomizes is atomless at r, otherwise, I would be strictly better off by charging a price

c∗ < pI = r − ε < r, with probability one. But if z = r > c∗, and r is atomless we would have

that πeI(z = r) = z − cI > c∗ − cI = (1− λ)(v − cI), contradicting claim 3. Hence r > c∗ leads

to a contradiction, implying that πeE(pE) ≤ λ (c∗ − cE). Therefore πeE(pE) = λ (c∗ − cE).

Claim 6. If cE < c∗, there exists a mixed strategy equilibrium.

Proof. We will prove existence by constructing a mixed strategy equilibrium. Suppose E ran-

domizes over the connected interval [c∗, v] using the pdf.

g(x) =
c∗ − cI

λ (x− cI)2
=

(1− λ) (v − cI)
λ (x− cI)2

(46)

Now,

πeI(pI) = [1−G(pI)](pI − cI) +G(pI)(1− λ)(pI − cI) (47)

So using g(x) we have,

1. If pI ∈ [c∗, v] =⇒ πeI(pI) = c∗ − cI = (1− λ)(v − cI) = πRMI , and invariant in pI .

2. If pI < c∗ =⇒ πeI(pI) = pI − cI < c∗ − cI = πRMI

3. If pI > 0 =⇒ πeI(pI) = 0 < πRMI
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Hence, given the way E randomizes, any distribution with a support being a subset of

[c∗, v] is a best reply from I’s perspective. Suppose for example that I also randomizes over the

interval [c∗, v], but using the pdf.

h(x) =


c∗−cE
v−cE if x = v

c∗−cE
2 (x−cE)2

= cI+(1−λ) (v−cI)−cE
(x−cE)2

if x ∈ [c∗, v]
(48)

Which indeed satisfies the conditions for being a best-reply from I’s perspective. Then,

πeE(pE) = λ(pE − cE) [φ+ (1− φ) {1−H(pE)}] (49)

So given h(x) we have:

1. If pE ∈ [c∗, v] =⇒ πeE(pE) = λ(c∗ − cE), and invariant in pE .

2. If pE < c∗ =⇒ πeE(pE) = λ(pE − cE) < λ(c∗ − cE)

3. If pE > pRMI =⇒ πeE(pE) = 0 < λ(c∗ − cE)

Hence any distribution over [c∗, v] is a best reply function from E’s perspective, in particular

g(x) =
c∗ − cI

λ (x− cI)2
=

(1− λ) (v − cI)
λ (x− cI)2

(50)

Consequently, the following represents a mixed strategy Nash equilibrium of the spot competi-

tion subgame:

1. Firm E randomizes over [c∗, v], using the atomless pdf.:

g(x) =
c∗ − cI

λ (x− cI)2
=

(1− λ) (v − cI)
λ (x− cI)2

(51)

2. Firm I randomizes over [c∗, v], with atom at v according to the pdf:

h(x) =


c∗−cE
v−cE if x = v

c∗−cE
2 (x−cE)2

= cI+(1−λ) (v−cI)−cE
(x−cE)2

if x ∈ [c∗, v]
(52)
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Claim 7. If cE < c∗ any mixed strategy equilibrium is (weakly) welfare inefficient for all cE,

while strictly inefficient for all cE 6= cI .

Proof. First, notice that because Z ≤ v, in all mixed strategy equilibria the consumer buys 1

unit with prob. 1.

Now, suppose cE < cI , then the maximum welfare achievable is W ∗ = v − λcE − (1− λ)cI .

However, total (expected) welfare (across realization) in any mixed strategy equilibrium would

be

W e = P(pI ≤ pE)(v − cI) + [1− P(pI ≤ pE)] {v − λcE − (1− λ)cI} (53)

Then, given that v − cI < v − λcE − (1− λ)cI and P(pI ≤ pE) ∈ (0, 1) (since both firms must

be randomizing), we get W e < W ∗.

On the other hand, if cE ∈ (cI , c
∗) maximum welfare achievable is W ∗ = v− cI . While total

expected welfare would again be W e. Hence, given that P(pI ≤ pE) ∈ (0, 1) and v−λcE − (1−

λ)cI < v − cI , again W e < W ∗.

Finally, if cI = cE it is straightforward to see that W e = W ∗.

The only thing left to prove is that πeB < λ (v − cI).

Claim 8. If cE < c∗, in any mixed strategy equilibrium πeB < λ (v − cI).

Proof. Suppose cE ≤ cI . Then W ∗ = v − λcE − (1− λ)cI , and

W e = πeI + πeE + πeB

= (1− λ)(v − cI) + λ(c∗ − cE)− πeB
(54)

But we know W e ≤W ∗, which implies

πeB ≤ λ (v − c∗) = λ2(v − cI) < λ(v − cI) (55)

On the other hand, suppose cE ∈ (cI , c
∗). Then W ∗ = v − cI , while W e is the same as

above. But again W e ≤W ∗, which implies

πeB ≤ λ(v − cI)− λ(v − c∗) < λ(v − cI) (56)

Hence, in any case πeB < λ(v − cI).
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Proof of Lemma 4

The problem at hand is

max
r∗,c∗E

EπRI = (r∗ − cI)(1− λ) + λ(c∗E − cI)[1− F (c∗E)] (57)

Subject to v− r∗+λ(r∗− c∗E) ≥ π̄B, and r∗ ≤ v. Obviously, at least one of the restriction must

be binding, since otherwise the unconstrained optimization of the incumbent expected profits

leads to a violation of the consumer participation. On the other hand, this latter constraint

cannot be the only one active, because it would imply a r∗ > v as we already showed. Hence

in any case r∗ = v.

This implies that the incumbent’s expected payoff EπRI (c∗E) = (v−cI)(1−λ)+λ(c∗E−cI)[1−

F (c∗E)] and that B’s participation constraint can be rewritten as λ(v − c∗E) ≥ π̄B.

On the other hand, we already saw “anticompetitive” rebates cannot emerge in equilib-

rium as they violate the incumbent’s participation constraint. It remains to see whether non-

anticompetitive contracts can emerge in equilibrium. That is, if ∃ c∗E > cI , such that both

participation constraints are met simultaneously. To tackle this we use the following claim.

Claim 9. If c̄E ≤ c∗, then EπRI (c∗E) ≥ π̄I and simultaneously λ(v−c∗E) ≥ π̄B, only if c∗E belongs

to the non-empty interval [a, b] ⊂ (cI , v)

Proof. Using the fact that r∗ = v, and the expression for π̄I given by lemma 1, I’s participation

constraint can be rewritten as

[
1− F (c∗)

1− F (c∗E)

]
{E(cE | cE > c∗)− c∗} ≤ λ(c∗E − cI) (58)

On the other hand, the consumer’s participation constraint can be rearranged as λ(c∗E − cI) ≤

λ(v−cI)− π̄B. Combining both inequalities we have that necessary condition for the emergence

of non-anticompetitive contracts is that

[
1− F (c∗)

1− F (c∗E)

]
{E(cE | cE > c∗)− c∗} ≤ λ(v − cI)− π̄B (59)

Intuitively the fulfillment of the above condition is equivalent to asking that the contract setting

c∗E generates positive surplus for the IB coalition i.e. there is scope for “trade”. The condition

then is immediately satisfied when c̄E ≤ c∗, since the left side is 0, while the right hand strictly

positive as λ(v − cI) > π̄B.
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However, we still have to check each condition individually. The incumbents participation

requires that [
1− F (c∗)

1− F (c∗E)

]
{E(cE | cE > c∗)− c∗} = 0 ≤ λ(c∗E − cI) (60)

While the consumer’s condition asks for λ(c∗E − cI) ≤ λ(v − cI) − π̄B. Therefore, there ∃ c∗E
greater, but sufficiently close to cI , that satisfies both conditions. So define then the non-empty

interval [a, b] as all such values. It is easily seen then [a, b] ⊂ (cI , v). Hence, both conditions

are simultaneously satisfied for all c∗E ∈ [a, b].

Finally, in order to show that c∗E < c̄E (so the upper bound is not really v as the above

claim stated), notice that the consumer participation constraint is less active the lower c∗E . On

the other hand, differentiating EπRbI (c∗E) with respect to c∗E we get:

∂EπRI
∂c∗E

= λ[1− F (c∗E)− f(c∗E)(c∗E − cI)] (61)

Hence, EπRbI attains its unconstrained maximum at a c∗E < c̄E . Therefore, the incumbent would

never choose a c∗E c̄E , since it decreases its payoff and makes the consumer participation harder

to satisfy.

Therefore, using all the results above we have that the optimal rebates without unconditional

payments in this case is given by r∗ = v, c∗E ∈ (cI , c̄E), and that a sufficient condition for its

emerge in equilibrium is that c̄E ≤ c∗.

Proof of Lemma 5

The expected profit and total surplus I and B obtain from dealing through the spot market

are given by:

EπI =

∫ c̄E

0
{T (qI(cE), qE(cE))− cIqI(cE)} f(cE)dcE

EπB = E[(1− β)∆W ∗EB + v − T (1, 0)]

(62)

Moreover, we have that

W ∗EB(cE) = max
qE≤λ

WEB = v − cEqE − T (qI , qE) (63)
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Se we have the usual implementation condition q′(cE) ≤ 0 given by the second order condition

of the above problem. Using then the envelope theorem:

EW ∗EB = W ∗EB(c̄E) +

∫ c̄E

0
qE(cE)F (cE)dcE (64)

So

EπB = E[(1− β)∆W ∗EB + v − T (1, 0)]

=

∫ c̄E

0
(1− β)qE(cE)F (cE)dcE + (1− β)W ∗EB(c̄E) + β[v − T (1, 0)]

(65)

Moreover, we know that

EW ∗EB =

∫ c̄E

0
{v − cE q∗E(cE)− T (qI(cE), q∗E(cE))} f(cE)dcE (66)

Therefore, using (64) and (66) we get can obtain an expression for
∫ c̄E

0 T (qI(cE), q∗E(cE))f(cE)dcE

as function of the allocation rule [qI(cE), q∗E(cE)]. Replacing then in EπI , and using the fact

that qI(cE) = 1− q∗E(cE) we get:

EπI = v − cI −W ∗EB(c̄E)−
∫ c̄E

0

{
cE − cI +

F (cE)

f(cE)

}
q∗E(cE)f(cE)dcE (67)

Using then (65) and (67), and realizing that Π∗E(c̄E) = β[W ∗EB(c̄E) − v + T (1, 0)], we get

that

EWIB = v − cI −
∫ c̄E

0

[
(cE − cI) +

βF (cE)

f(cE)

]
qE(cE) f(cE)dcE −ΠE(c̄E) (68)

Hence the problem faced by the IB coalition, is to choose a suitable allocation rule q∗E(cE)

that maximizes (68) subject to both participation constraints, and that q∗
′
E (cE) ≤ 0 for all

qE ∈ [0, λ].

Proof of Lemma 6

Since T (qI , qE) satisfies TqI (qI , qE) ≤ v and T (qI , qE) ≤ vqI for all qI ∈ [0, 1] and any qE , we

know that qI = 1− qE . Therefore, the E −B coalition solves:

max
qE≤λ

WEB = v − cEqE − T (1− qE , qE) (69)
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And the surplus created by it is

∆W ∗EB(cE) = W ∗EB(cE)− v + T (1, 0) = T (1, 0)− cEq∗E(cE)− T (1− q∗E(cE), q∗E(cE)) (70)

The EB coalition will not be active in equilibrium (q∗E(cE) = 0) if and only if ∆WEB(cE) < 0,

for all qE ∈ [0, λ].

Part 1. Now, suppose T (qI , qE) implements a simple allocation at c∗E , but (1/λ)[T (1, 0) −

T (1− λ, λ)] > c∗E , and consider cE = c∗E + ε Notice that if qE(cE) = λ, then

∆WEB(cE) = T (1, 0)− (c∗E + ε)λ− T (1− λ, λ) > 0⇐⇒ T (1, 0)− T (1− λ, λ)

λ
− c∗E > ε (71)

Which is true for a sufficiently small ε. Hence a if the entrant has marginal cost cE ∈ [c∗E , c
∗
E+ε],

he will also sell an strictly positive amount in equilibrium. The argument is analogous for

(1/λ)[T (1, 0)− T (1− λ, λ)] < c∗E ,

Part 2. Take any T (qI , qE) such that pe(qE) is non-decreasing in qE for all qE ∈ [0, λ] and

pe(λ) = c∗E , and rewrite the surplus as ∆WEB = qE [pe(qE)−cE ]. Therefore, the E−B coalition

problem is

max
qE≤λ

∆WEB = qE [pe(qE)− cE ] (72)

Noticing that pe(qE) is maximized at qE = λ we get that if cE ≤ c∗E = pe(λ), ∆WEB is

maximized at λ, and moreover that surplus is non-negative ∆WEB∗ = λ[c∗E − cE ] ≥ 0, so all

types cE ≤ c∗E will choose q∗E(cE) = λ. On the other hand, if cE > c∗E , then pe(qE) ≤ c∗E < cE

for all qE ∈ [0, λ], so ∆WEB is strictly decreasing in qE , implying that all types cE > c∗E will

chose q∗E(cE) = 0. Hence, the allocation induced by this price schedule is simple at c∗E .

The proof for own-supplied contracts, is equivalent.

Proof of Proposition 2

Conditions 1 and 2 have already been derived, so we focus here on 3. The problem faced by

the coalition, ignoring for the moment any constraints, is

max
qE

EWIB = v − cI −
∫ c̄E

0

[
(cE − cI) +

βF (cE)

f(cE)

]
q∗E(cE) f(cE)dcE −ΠE(c̄E) (73)
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Therefore doing point-wise optimization, and given the monotonic hazard rate assumption,

there exists a unique c̃E ∈ [0, c̄E ] given by f(c̃E)(c̃E−cI)+βF (c̃E) = 0, which fully characterizes

the optimal allocation:

q∗E(cE) =

 λ if cE ∈ [0, c̃E ]

0 otherwise
(74)

This allocation indeed satisfies the constraint q′E(cE) ≤ 0. Hence the optimal schedule

chosen by the I − B coalition induces a simple allocation rule at c̃E . Given lemma 6, this

implies that pe(λ) = c̃E , leaving entrants with type cE ∈ [c̃E , c̄E ] with zero surplus. Hence

ΠE(c̄E) = 0.

Finally, both participation constraints are obviously met given out Nash-Bargaining solu-

tion, and the fact that EW ∗IB > π̄B + π̄I = W̄ by assumption.

Proof of Proposition 3

Suppose T ∗(qI , qE) satisfies the optimality conditions. We already saw, that conditions 1. and

2. implied T ∗(qI , qE) ≤ vqI for all qI ∈ [0, 1] and any qE . Assume also, on the contrary, that

π̄I > π̄∗I (η).

Given that the optimal scheme induces a simple allocation at c̃E , the profits the incumbent

gets from the spot market transactions are

EπI =

∫ c̄E

0
{T ∗(1− q∗E(cE), q∗E(cE))− cI(1− q∗E(cE))−} f(cE)dcE

= {T ∗(1− λ, λ)− (1− λ)cI}F (c̃E) + {T ∗(1, 0)− cI} [1− F (c̃E)]

(75)

But T ∗(·) must necessarily fulfill

pe(λ) ≡ T ∗(1, 0)− T ∗(1− λ, λ)

λ
= c̃E =⇒ T ∗(1, 0) = T ∗(1− λ, λ) + λc̃E (76)

So replacing in EπI :

EπI = T ∗(1− λ, λ)− (1− λ)cI + λ(c̃E − cI)[1− F (c̃E)] (77)
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But because T (·) must also appropriately distribute rents, we need EπI = Π∗I . Therefore

T ∗(1− λ, λ)− (1− λ)cI + λ(c̃E − cI)[1− F (c̃E)] = η∆WIB(c̃E) + π̄I

=⇒ T ∗(1− λ, λ) = π̄I + η∆WIB(c̃E) + (1− λ)cI − λ(c̃E − cI)[1− F (c̃E)]
(78)

But then,

T ∗(1− λ, λ)− v(1− λ) = π̄I + η∆WIB(c̃E)− (1− λ)(v − cI)− λ(c̃E − cI)[1− F (c̃E)]

= π̄I − π̄∗I (η) > 0
(79)

By assumption. Hence T ∗(1− λ, λ) > v(1− λ), but this condition contradicts T ∗(qI , qE) ≤ vqI

for all qI ∈ [0, 1] and any qE . The converse is analogous.

Proof of Lemma 7

We have

EπI = v − cI −W ∗EB(c̄E)−
∫ c̄E

0

{
cE − cI +

F (cE)

f(cE)

}
q∗E(cE)f(cE)dcE

EπB =

∫ c̄E

0
(1− β)qE(cE)F (cE)dcE + (1− β)W ∗EB(c̄E) + β[v − T (1, 0)]

(80)

However, ∂W ∗EB(cE)/∂cE = −qE(cE) so

W ∗EB(c̄E) = W ∗EB(0)−
∫ c̄E

0
qE(cE)dcE (81)

But W ∗EB(0) = v − T (1− qE(0), qE(0)), hence

W ∗EB(c̄E) = v − T (1− qE(0), qE(0))−
∫ c̄E

0
qE(cE)dcE (82)

So replacing in (65) and (67) we get

EπB = v − T (1, 0) + (1− β)[T (1, 0)− T (1− qE(0), qE(0))]−
∫ c̄E

0
(1− β)[1− F (cE)]qE(cE)dcE

EπI = T (1− qE(0), qE(0))− cI −
∫ c̄E

0

{
cE − cI −

[1− F (cE)]

f(cE)

}
q∗E(cE)f(cE)dcE

(83)

Now, it is easy to see EπB is maximized by qE(cE) = 0 for all cE ∈ [0, c̄E ]. On the other

44



hand, EπI is maximized by qE(cE) = λ for all cE ≤ ċE , and qE(cE) = 0 for all cE > ċE , where

this latter is defined implicitly by f(ċE)(ċE − cI) − [1 − F (·cE)] = 0, and therefore is strictly

between cI and c̄E . Hence neither the incumbent or the consumer will push for qE(cE) > 0 for

cE ∈ (ċE , c̄E ], and therefore the optimal schedule necessarily satisfies that qE(cE) = 0 for all

cE ≥ α = ċE .

Proof of Lemma 8

A crucial issue in this transfer restriction setting, is that the only way qE(cE) = 0 for all

cE > ċE is for Π∗E(cE) = β[W ∗EB(cE) − v + T (1, 0)] ≤ 0 for all cE ’s in the relevant region.

By monotonicity of Π∗E(cE), this is equivalent as asking Π∗E(ċE) = 0. But since W ∗EB(ċE) =

v − T (1− qE(0), qE(0))−
∫ ċE

0 qE(cE)dcE , this implies that

T (1, 0)− T (1− qE(0), qE(0)) =

∫ ċE

0
qE(cE)dcE (84)

So replacing this latter condition in EπB and EπI , and using the fact that qE(cE) = 0 for all

cE > ċE is optimal, we get:

EπB = v − T (1− qE(0), qE(0))−
∫ ċE

0

{1− (1− β)[1− F (cE)]}
f(cE)

q∗E(cE)f(cE)dcE

EπI = T (1− qE(0), qE(0))− cI −
∫ ċE

0

{
cE − cI −

[1− F (cE)]

f(cE)

}
q∗E(cE)f(cE)dcE

(85)

And the contraint T (qI , qE) ≤ vqI , for all qI ∈ [0, 1] can be simplified to T (1− qE(0), qE(0)) ≤

v(1− qE(0)).

Proof of Lemma 9

[To be completed]

Proof of Lemma 10

When η = 0, the candidate given by lemma 9 states T (1− λ, λ) = v(1− λ) and that qE(cE) is

simple at čE , where this latter satisfied

(1− λ)(v − cI) + λ (čE − cI)[1− F (čE)] = π̄I (86)

This candidates satisfies the implementability condition, the transfer restriction and the in-
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cumbent’s participation constraint (which is binding in this case). Therefore, the only condition

missing is whether it also satisfies B’s participation. In other words, this would be a solution if

λ(v − čE) + λ(1− β)F (čE)[čE − E(cE | cE ≤ čE)] ≥ π̄B (87)

Now ĉE is defined by ĉE = min {ċE , δ}, where δ is the solution to

λ(v − δ) + λ(1− β)F (δ)[δ − E(cE | cE ≤ δ)] = π̄B

Suppose then δ ≤ ċE , so ĉE = δ, and that čE ≤ ĉE = δ. Then, B’s participation constraint

would be

λ(v− čE)+λ(1−β)F (čE)[čE−E(cE | cE ≤ čE)] ≥ λ(v−δ)+λ(1−β)F (δ)[δ−E(cE | cE ≤ δ)]

(88)

Which will obviously be fulfilled as čE ≤ δ, and f(x) = λ(v−x)+λ(1−β)F (x)[x−E(cE | cE ≤ x)]

is decreasing in x.

On the other hand, if ċE < δ so ĉE = ċE this implies that

λ(v − ċE) + λ(1− β)F (ċE)[ċE − E(cE | cE ≤ ċE)] > π̄B (89)

And therefore, if čE ≤ ĉE = ċE , then

λ(v − čE) + λ(1− β)F (čE)[čE − E(cE | cE ≤ čE)]

≥ λ(v − ċE) + λ(1− β)F (ċE)[ċE − E(cE | cE ≤ ċE)] > π̄B (90)

Therefore, if čE ≤ ĉE , the problem with η = 0 has a solution. An analogous proof can be

used for the case of η = 1.

Proof of Proposition 4

Part 1: Existence. Fix and η ∈ [0, 1], and a combination of outside option (π̄I , π̄B), and

remember that W̄ = π̄I + π̄B.

Suppose čE ≤ ĉE . Then, any schedule T (·) with T (1−λ, λ) = v(1−λ) that induces a bang-

bang allocation at c∗E ∈ [čE , ĉE ] satisfies both participation constraints, and the implementation
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condition q′(cE) ≤ 0 for all cE . Hence a solution exists.

For the converse, suppose q∗E(cE) : [0, c̄E ] → [0, λ] solves the general problem (27) for a

given (η, π̄I , π̄B), and define as in the text Eπ∗I ≡ EπI(qE(cE ; η = 1)). Now, because q∗E(cE)

solves the general problem, we have Eπ∗I ≥ EπI(q∗E(cE)) ≥ π̄I , and that EπB(q∗E(cE)) ≥ π̄B.

Hence Eπ∗I + π̄B ≥ π̄I + π̄B = W̄ .

Now, if ĉE = ċE the results follows immediately, since čE is defined by

(1− λ)(v − cI) + λ (čE − cI)[1− F (čE)] = π̄I (91)

Where f(x) = (1− λ)(v − cI) + λ (x− cI)[1− F (x)] is increasing in x for all x ≤ ċE , and given

that π̄I ≤ π̄∗∗∗I . Consequently čE ≤ ċE = ĉE .

We focus then on the case where ĉE = γ. We therefore have:

čE : (1− λ)(v − cI) + λ(čE − cI)[1− F (čE)] = π̄I

ĉE : λ(v − ĉE) + λ(1− β)F (ĉE)[ĉE − E(cE | cE ≤ ĉE)] = W̄ − π̄I
(92)

Consequently

W̄−λ(v−ĉE)−λ(1−β)F (ĉE)[ĉE−E(cE | cE ≤ ĉE)] = (1−λ)(v−cI)+λ(čE−cI)[1−F (čE)] (93)

But using the fact that Eπ∗I = (1 − λ)(v − cI) + λ(ĉE − cI)[1 − F (ĉE)], and that λ(v − ĉE) +

λ(1− β)F (ĉE)[ĉE − E(cE | cE ≤ ĉE)] = π̄B, we have

W̄ − [Eπ∗I + π̄B] = λ(čE − cI)[1− F (čE)]− λ(ĉE − cI)[1− F (ĉE)] (94)

But, W̄ ≤ Eπ∗I + π̄B so λ(čE − cI)[1 − F (čE)] ≤ λ(ĉE − cI)[1 − F (ĉE)]. Finally, since λ(r −

cI)[1− F (r)] is increasing in r for all r ≤ ċE , we conclude ĉE ≥ čE .

Part 2: Characterization. Because the extreme cases with η = 0 and η = 1 have already

been characterized, we focus on η ∈ (0, 1). Now, fix η ∈ (0, 1), and a pair of outside options

(π̄, π̄B) such that π̄I > π̄∗I (η), and that čE < ĉE (the case with čE = ĉE is trivial). First

notice that neither participation constraints can be binding as the objective functional goes to

zero, and therefore can be easily dominated with, for example, a bang-bang allocation rule with

c∗E ∈ (čE , ĉE). Moreover, the constraint T (1− qE(0)) ≤ v(1− qE(0)) since otherwise we would

arrive at the A&B “coalitional” solution. But since π̄I > π̄∗I (η), this violates the aforementioned
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constraint.

Now, using calculus of variation over the unconstrained function (25), the Euler-Lagrange

equation for the general problem involving a composition of functionals (see also Castillo et.

al. 2008) is

−η Γ

(EπI − π̄)

{
cE − cI −

[1− F (cE)]

f(cE)

}
− (1− η) Γ

(EπB − π̄B)

[
1− (1− β)F (cE)

f(cE)

]
∀cE ∈ [0, ċE ] (95)

Where, Γ ≡ (EπI − π̄)η(EπB − π̄B)1−η. This condition can be rewritten as θH(cE), with

θ ≡ Γ[η (EπB − π̄B) + (1− η)(EπI − π̄)]

(EπI − π̄)(EπB − π̄B)
> 0

H(cE) ≡ −
{

(1− γ)(cE − cI)− 2
[1− F (cE)]

f(cE)

(
1

2
− γ
)

+
γ βF (cE)

f(cE)

} (96)

Where

γ ≡ (1− η) (EπI − π̄)

η (EπB − π̄B) + (1− η)(EπI − π̄)
∈ (0, 1) (97)

And where the sign of the point-wise derivative is given by H(cE). Notice that the allocation

rule q(·) : [0, ċE ] → [0, λ] enters only as a constant in EπI and EπB through γ. Hence given

q(·), the Euler-Lagrange equation is independent of qE(cE).

Now,

H(0) = −
[
−(1− γ)cI −

2

f(0)

{
1

2
− γ
}]

H(ċE) = −γ[1− (1− β)F (ċE)]

f(ċE)

H ′(cE) = −
{

(1− γ)− 2

(
1− F (cE)

f(cE)

)′(1

2
− γ
)

+ γ β

(
F (cE)

f(cE)

)′} (98)

Therefore, when η is near 1, γ is near 0 implying that H(0) > 0, H(ċE) < 0 and H ′(cE) ≤ 0,

and therefore the optimal allocation is given

q∗E(cE) =

 λ if cE ∈ [0, x∗]

0 otherwise
(99)

Which is indeed implementable, and where x∗ is implicitly defined by

(1− γ(x∗))(x∗ − cI)− 2
[1− F (x∗)]

f(x∗)

(
1

2
− γ(x∗)

)
+
γ(x∗) βF (x∗)

f(x∗)
= 0 (100)
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With

γ(x∗) =
(1− η) (EπI(x∗)− π̄)

η (EπB(x∗)− π̄B) + (1− η)(EπI(x∗)− π̄)
(101)

And, where, because q∗E(cE) is bang-bang and T ∗(1− λ) = v(1− λ), EπB(x∗) and EπI(x∗) are

EπB(x∗) = λ (v − x∗) + λ(1− β)F (x∗)[x∗ − E(cE | cE ≤ x∗)]

EπI(x∗) = (1− λ)(v − cI) + λ (x∗ − cI)[1− F (x∗)]
(102)

The more troublesome case is when η is in a neighbourhood of 0, and therefore γ may

be higher that 1/2 and therefore H(cE) may not be monotonous (the “irregular” case). We

therefore rely on Myerson’s ironing to show the the optimal allocation rule must still be bang-

bang with a single cutoff.

Suppose then that instead of being bang-bang, q∗E(cE) has a continuously decreasing section

between k and K. If H(cE) ≥ 0 for all cE ∈ [k,K] then the above schedule is dominated by

one that induces qE(cE) = λ in the whole interval. On the other hand, if H(cE) ≤ 0 for all

cE ∈ [k,K], then q∗E(cE) is dominated by one that makes qE(cE) = 0 for all cE ∈ [k,K].

Finally, suppose that H(cE) changes sign one or many times in [k,K]. First notice that

if H(cE) ≥ 0 for all cE ∈ [k, k1], for a k2 sufficiently close but greater than k, then q∗E(cE)

allocation is dominated by qE(cE) = λ for all cE ∈ [k, k1]. On the other hand, if H(cE) ≤ 0

for all cE ∈ [k2,K], for a k2 sufficiently close, but less than K, then the q∗E(cE) allocation is

dominated by qE(cE) = 0 for all cE ∈ [k2,K]. The interesting case then is when H(cE) is

negative in [k, k3] and positive in [k5,K] for some k3 > k and k5 < K. Now a continuously

decreasing q(·) cannot be solution to the above case, since it is choosing higher qE(cE) in [k, k3]

than in any subsequent subinterval where H(cE) is positive (for example in [k5,K]). Hence the

solution in this case is either bang-bang or a decreasingly step function. But since H(cE) does

not depend on cE , if the area... [To be completed]

Consequently all the above candidates are dominated by a bang-bang schedule with a cutoff

y∗ being one of roots of H(cE) = 0 in which the function cE intersects the x-axis from above.

Therefore, in both the regular (η near 1), and irregular (η near 0) cases, the solution to the

problem is bang-bang.

Proof of Lemma 11

We will only analyze the effect of η, since the proof for π̄ is completely analogous.
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By proposition 4 , we know that the cutoff c∗E(η, π̄I) is given by one of the roots of

H(c∗E) = (1− γ(c∗E))(c∗E − cI)− 2
[1− F (c∗E)]

f(c∗E)

(
1

2
− γ(c∗E)

)
+
γ(c∗E) βF (c∗E)

f(c∗E)
= 0 (103)

And that, at such c∗E , H ′(c∗E) ≤ 0. Where

γ(c∗E) =
(1− η) (EπI(c∗E)− π̄)

η (EπB(c∗E)− π̄B) + (1− η)(EπI(c∗E)− π̄)
(104)

And

EπB(c∗E) = λ (v − c∗E) + λ(1− β)F (c∗E)[c∗E − E(cE | cE ≤ c∗E)]

EπI(c∗E) = (1− λ)(v − cI) + λ (c∗E − cI)[1− F (c∗E)]
(105)

It is straightforward to prove that γ(c∗E) is increasing in c∗E , and that it is decreasing in the

direct effect of η. Hence, by the implicit function theorem we have

∂c∗E
∂η

=
(∂γ/∂η)A(c∗E)

−H ′(c∗E)− (∂γ/∂c∗E)A(c∗E)
(106)

Where

A(c∗E) ≡ c∗E − cI − 2

(
1− F (c∗E)

f(c∗E)

)
−
βF (c∗E)

f(c∗E)
(107)

Now, notice that the condition (103) can be rewritten as

[
c∗E − cI −

(
1− F (c∗E)

f(c∗E)

)]
− γA(c∗E) = 0 (108)

Moreover
[
c∗E − cI −

(
1−F (c∗E)

f(c∗E)

)]
< 0 since c∗E ≤ ċE , so −γA(c∗E) > 0, implying that A(c∗E) < 0.

Consequently, given that A(c∗E) < 0, −H ′(c∗E) ≥ 0, (∂γ/∂η) < 0 and (∂γ/∂c∗E) > 0, then

(∂c∗E/∂η) > 0.

Proof of Proposition 5

By point-wise optimization we have:

∂

∂qI(cE)
= P (qI(cE) + qE(cE))− cI

∂

∂qE(cE)
= P (qI(cE) + qE(cE))− cE − β

F (cE)

f(cE)

(109)
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Therefore:

1. qE(cE) = λ, and P (qI(cE) + λ)− cI = 0 =⇒ qI(cE) = D(cI)− λ, if

f(cE)(cI − cE)− βF (cE) ≥ 0 (110)

2. And qE(cE) = 0, and P (qI(cE))− cI = 0 =⇒ qI(cE) = D(cI), if

f(cE)(cI − cE)− βF (cE) < 0 (111)

Optimal three-part contract with fixed breaching clause

Suppose instead the incumbent offered a contract (K, pi, T ), where T is a fixed sum paid if B

decides to buy at least some unit elsewhere. To keep things simple, lets take A&B assumption

of η = β = 1, though it will be clear that the argument is easily generalized to arbitrary

bargaining powers.

In this setting, E expands and sells all its units whenever cE ≤ pi − T
λ . The consumer

surplus on the other hand is in any event S(D(pi))− piD(pi)−K, and therefore the program

that determines the optimal contract is:

max
(K,pi,T )

EπI = F

(
pi −

T

λ

)
{λti + (pi − cI)[D(pi)− λ]}+

[
1− F

(
pi −

T

λ

)]
(pi− cI)D(pi) +K

(112)

Subject to S(D(pi)) − piD(pi) −K ≥ π̄B. Which has solution p∗i = cI , T
∗ = λ (cI − c̃E) and

K = S(D(pi)) − piD(pi) − π̄B. Hence, it is easily verified that the optimal (K, pi, T ) contract

implements the coalition optimum.

Proof of Lemma 12

Part 1. Suppose T (qI , qE) implements the IB coalition optimum. Given the market share

discount, lets analyze the EB coalition problem:

max
qE∈[0,λ]
qI≥0

WEB(qI , qE) = S(qI + qE)− cEqE − T (qI , qE) (113)
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And first derivatives

∂

∂qE
= P (qI + qE)− cEqE − TqE (qI , qE)

∂

∂qI
= P (qI + qE)− TqI (qI , qE)

(114)

Now, the IB optimum has two distinct properties: q∗I (cE) is interior, and q∗I (cE) + q∗E(cE) =

D(cI). Hence using (114) we need

cI = TqI (qI , qE) (115)

But integrating across qI we have

cIqI = T (qI , qE)− T (0, qE) (116)

And relabeling T (0, qE) as ξ(qE), we get that T (qI , qE) = cIqI + ξ(qE) necessarily.

Part 2. Suppose T (qI , qE) = cIqI + ξ(qE) implements the coalition optimum, but that

(1/λ)[ξ(λ)−ξ(0)] < cI− c̃E , and consider a type cE = c̃E+ε. Notice then that if qE(c̃E+ε) = λ,

then

∆WEB(c̃E + ε) = λ

[
(cI − c̃E)− ε−

{
ξ(λ)− ξ(0)

λ

}]
> 0⇐⇒ (cI − c̃E)−

{
ξ(λ)− ξ(0)

λ

}
> ε

(117)

Which is true for a sufficiently small ε. Hence all entrants with marginal cost cE ∈ [c̃E , c̃E + ε],

will also sell an strictly positive amount in equilibrium, and hence T (qI , qE) = cIqI + ξ(qE)

does not implement the coalition’s optimum. An analogous argument can be made to show

that (1/λ)[ξ(λ)− ξ(0)] > cI − c̃E , again leads to a contradiction.

Proof of Proposition 6

Let T (qI , qE) = cIqI + ξ(qE) be a market share discount that satisfies IB optimality conditions

and distributes rent accordingly, but suppose on the contrary that π̄I > π̄D∗I .

We have that

EπI =

∫ c̄E

0
{T (q∗I (cE), q∗E(cE))− cIq∗I (cE)} f(cE)dcE

= ξ(λ)F (c̃E) + ξ(0)[1− F (c̃E)](cI − c̃E)

(118)
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However, given that T (qI , qE) implements the IB optimum, then

ξ(λ)− ξ(0)

λ
= c̃E =⇒ ξ(0) = ξ(λ)− λ(cI − c̃E) (119)

Hence, EπI = ξ(λ)− λ[1− F (c̃E)](cI − c̃E).

Moreover, given that T (qI , qE) also distributes rent accordingly we have:

EπI = ξ(λ)− λ[1− F (c̃E)](cI − c̃E) = Π∗I = η∆W ∗IB + π̄I

=⇒ ξ(λ) = η∆W ∗IB + π̄I + λ[1− F (c̃E)](cI − c̃E) (120)

But,

ξ(λ)−
∫ D(cI)

λ
P (q)dq + cI [D(cI)− λ]

= η∆W ∗IB + λ[1− F (c̃E)](cI − c̃E) + π̄I −
∫ D(cI)

λ
P (q)dq + cI [D(cI)− λ] = π̄I − π̄D∗I (η) > 0

(121)

So in case cE < c̃E , the buyer ends up purchasing zero units to I, and therefore T (qI , qE) does

not satisfies the IB optimality conditions, a contradiction.
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Figure 1: Implicit Regions

Figure 2: Optimal c∗E(η) - η2 > η1
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