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1 Introduction

A standard assumption in macroeconomics is that pricing decisions are taken by single-product

firms, but this assumption is clearly a simplification without empirical support. The empirical

counterpart of firms in the model may stir some debate, be they productive firms or stores; in either

case evidence against this assumption is strong. For productive firms, 98.5% of goods listed in the

Production Price Index (PPI) in the U.S. are produced by multi-product firms with an average of

about 5 goods per firm (Bhattarai and Schoenle, 2011).1 For stores, the Food Marketing Institute

reports that its members’ stores sold an average of almost 40, 000 different products in 2010.2

Relaxing the single-product assumption serves two main purposes. First, to check the robust-

ness of aggregate implications of price rigidities. Second, to explore the capacity of price rigidities

to deliver synchronization of price changes inside firms—an empirical fact documented by Lach

and Tsiddon (1996), Fisher and Konieczny (2000) and Bhattarai and Schoenle (2011).

In this spirit, this paper introduces multi-product firms into the rational inattention model. Pos-

tulated by Sims (1998, 2003), this theory suggests that firms facing a limited capacity to process

information may choose to allocate their "attention" away from monetary conditions when setting

their prices. As a result, rational inattention is a source of money non-neutrality alternative to

menu costs. Mackowiak and Wiederholt (2009) show quantitatively that this theory predicts aver-

age price changes consistent with the data together with small losses for firms due to the friction

and large real effects of money in the aggregate.3

In this paper we redo Mackowiak and Wiederholt’s exercise after augmenting their model to

multi-product firms. My main contribution is to highlight the economies of scale in the use of

information arising when firms have a limited information capacity. We mainly focus on the aggre-

1These are conservative estimates since not all goods firms produce are listed in the PPI.
2http://www.fmi.org/facts_figs/?fuseaction=superfact. The FMI’s members are 1,500 food retailers and whole-

salers in the U.S. accounting for 26,000 stores, 14,000 pharmacies and three-quarters of all retail food sales

(http://www.fmi.org/about/).
3Small losses is an important result. It means that firms have little incentive to invest on increasing their information

capacity. Thus, the friction remains active over time.
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gate implications of these economies of scale by showing that the ability of the rational inattention

model to quantitatively deliver money non-neutrality is severely undermined when firms produce

multiple goods. We also show that these economies of scale imply that the model is qualitatively

consistent with the synchronization of price changes inside firms. We use this latter result to justify

the key assumption behind my aggregate result.

To start, think on a multi-product, rationally inattentive firm. The firm must acquire aggregate

and idiosyncratic information to set its prices, e.g. about nominal aggregate demand and specific

demand and costs for each good it produces. Economies of scale in the use of information arise

because aggregate information is useful for the pricing decisions of all goods the firm produces

while idiosyncratic information is only useful for the good it is concerned with. Besides, the cost

of acquiring information in terms of information capacity is invariant to the number of decisions for

which this information is used. Hence, the more goods the firm produces, the more incentives the

firm has to acquire aggregate information. The overall effect of this force must be balanced with

other two forces. The more goods the firm produces, the more sources of idiosyncratic information

the firm must pay attention to. In addition, the information capacity of the firm may also depend

on the size of the firm as measured by the number of goods it produces.

Using a special case in which all underlying variables are white noise, we show analytically that

firms’ attention to aggregate information is increasing in the number of goods they produce relative

to the attention paid to idiosyncratic information. The more attention to the aggregate, the lesser

the real effects of a money shock. Strategic complementarity in pricing decisions amplifies this

effect. Moreover, since aggregate shocks are likely less volatile that good-specific shocks, shifting

attention from idiosyncratic to aggregate information increases firms’ expected losses per good

due to the mispricing induced by the friction. Increasing firms’ information capacity reduces such

losses by allowing firms to pay more attention to idiosyncratic information. But firms also pay

more attention to aggregate information, further reducing the money non-neutrality in the model.

When we numerically solve the model for a general specification of underlying variables, the

3



model still predicts average price changes consistent with the data (9.7% excluding sales, according

to Klenow and Kyvtsov, 2008) and small losses per good due to the friction. However, the real

effects of money are cut by four and last for a third of the time length when firms produce two

goods instead of one. Money becomes almost neutral when firms produce five goods or more.4

Alternative calibrations do not change this result. More weight to idiosyncratic variables in firms’

profits increases money non-neutrality, but also increases average price changes and firms’ losses

due to the friction. The same occurs when idiosyncratic variables are assumed more volatile.

A key assumption in the analysis is that idiosyncratic variables are good-specific, not firm-

specific.5 Here is where the prediction of the model regarding the synchronization of price changes

plays an important role. Although the model predicts comovement instead of synchronization,6

if only aggregate and firm-specific information are relevant for pricing decisions, prices would

perfectly comove inside firms for any number of goods they produce, which is counterfactual. We

extend the analysis to allow for aggregate, firm-specific and good-specific information. Now even

more attention is taken away from good-specific information as the number of goods firms produce

increases. Extra information capacity avoids the increase in firms’ losses due to the friction, but

some of this capacity is allocated to aggregate information. As a result, money non-neutrality is

still sharply decreasing in the number of goods firms produce.

Literature review. The economies of scale in the use of information highlighted in this paper have

not been stressed before in the fast-growing literature linking rational inattention and money non-

neutrality, e.g. Sims (2006), Woodford (2009), Mackowiak and Wiederholt (2010), Matejka (2011)

and Piacello and Wiederholt (2011). They are also unexplored in other applications of rational

inattention, such as asset pricing (Peng and Xiong, 2006), portfolio choice (Huang and Liu, 2007;

Mondria, 2010), rare disasters (Mackowiak and Wiederholt, 2011), consumption dynamics (Luo,

2008), home bias (Mondria and Wu, 2010), the current account (Luo, Nie and Young, 2010) and

4These are conservative estimates. If the calibration would target on keeping total firms’ losses due to the friction

in the same order of magnitude as those of single-product firms, my results were strongly reinforced.
5If idiosyncratic variables are firm-specific, firms can equally exploit the economies of scale in the use of informa-

tion by acquiring aggregate or idiosyncratic information.
6Prices in the data are staggered while in the model they change every period, so the analysis remains qualitative.
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foundations for Logit models (Matejka and Mckay, 2011). Besides, my work is complementary to

the study of multi-production in the menu cost model as in Sheshinski and Weiss (1992), Alvarez

and Lippi (2011), Bhattarai and Schoenle (2011) and Midrigan (2011). Despite being silent in an

answer, this paper poses the question of the effects of multi-production on the observation cost

model, e.g. Reis (2006). Finally, this paper stresses the difficulty of using rational inattention

to motivate exogenous dispersed information among agents regarding aggregate variables as in

Angeletos and La’O (2009), Lorenzoni (2009) and Albagli, Hellwig and Tsyvinski (2011).

Layout. Section 2 presents the multi-product, rational inattention model. Section 3 shows the

frictionless case. Section 4 analytically solves the model when underlying variables are white

noise. Section 5 illustrates the implications of multi-production. Section 6 introduces a special

case of persistent underlying variables. Section 7 numerically solves the model for a general

specification of underlying variables. Section 8 introduces firm-specific shocks to the white noise

case of Section 4. Section 9 concludes. An appendix contains derivations absent in the main text.

2 A model of multi-product, rationally inattentive firms

This section introduces an augmented version of the rational inattention model of Mackowiak and

Wiederholt (2009) that allows for multi-product firms.

Basic ingredients. An economy has a continuum of goods of measure one indexed by j ∈ [0, 1]

and a continuum of firms of measure 1
N

indexed by i ∈
[
0, 1

N

]
. Each firm i produces an exogenous

number N of goods randomly drawn from the pool of goods. Each good is produced by only one

firm. Denote ℵi the countable set of N goods produced by firm i.

Each good j contributes to the profits of its producing firm according to

π (Pjt, Pt, Yt, Zjt) , (1)

where Pjt is the (fully flexible) price of good j, Pt is the aggregate price, Yt is real aggregate
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demand, and Zjt is an idiosyncratic variable, all at time t. The function π (·) is assumed inde-

pendent of which and how many goods the firm produces, twice continuously differentiable and

homogenous of degree zero in the first two arguments.

Idiosyncratic variables Zjt are such that

∫ 1

0

zjtdj = 0, (2)

where small case generically denotes log-deviations from steady-state levels.

Nominal aggregate demand Qt is assumed exogenous and stochastic but satisfies

Qt = PtYt, (3)

where

pt =

∫ 1

0

pjtdj. (4)

The problem of the firm. The momentary profit function of firm i is

∑
n∈ℵi

π (Pnt, Pt, Yt, Znt) .

Denote sit the vector of all signals that firm i receives. As in Sims (2003), firms face a capacity

constraint in the "flow of information" that they can process at every period t,

I ({Qt, Zit} ; {sit}) ≤ κ (N) .

Without loss of generality, we allow the firm’s information capacity κ (N) to depend on the

number N of goods the firm produces. The function I ({Tt} , {Ot}) measures the information

contained in a vector of observable variables Ot, called "signals", regarding a vector of target
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variables Tt. For instance, if Tt and Ot are Gaussian i.i.d. processes, then

I ({Tt} , {Ot}) =
1

2
log2

(
1

1− ρ2
T,O

)
.

In words, the higher the correlation between Tt and Ot, the higher the information flow. The

vector of signals sit may be partitioned into N + 1 subvectors

{
sait, {snt}n∈ℵi

}
;

{qt, sait}, {znt, snt}n∈ℵi are Gaussian and independent of each other, not necessarily i.i.d. This

notation implicitly assumes that either the firm i only receives idiosyncratic information about the

goods it produces or simply the firm discards useless information. In addition, assume

s1
i = {si−∞, . . . , si1} ;

there exists an initial infinite history of signals such that all prices are stationary processes.

Therefore, the problem of the firm i may be represented as

max
{sit}∈Γ

Ei0

[ ∞∑
t

βt

{∑
n∈ℵi

π (P ∗nt, Pt, Yt, Znt)

}]
(5)

where

P ∗nt = arg max
Pnt

E [π (Pnt, Pt, Yt, Znt) | sit] (6)

subject to

I ({Pt, Yt} , {sait}) +
∑
n∈ℵi

I ({Znτ} , {snt}) ≤ κ (N) (7)

⇔ κa +
∑
n∈ℵi

κn ≤ κ (N) .

The firm’s pricing problem in (6) is static since prices are fully flexible. The firm, however,
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must consider its whole discounted expected stream of profits to decide how to allocate its in-

formation flow capacity, its "attention", among a set Γ of admissible signals. A signal must not

contain information about future realizations of its target variable and must be Gaussian, jointly

stationary and independent. If a firm chooses more precise signals about, for instance, {Pt, Yt}, the

information flow κa increases, reducing the information capacity to be allocated to other signals.

A target {Pt, Yt} is equivalent to {Qt} since Qt is the only source of aggregate uncertainty.

The pricing problem in (6) is independent of the number N of goods the firm produces. How-

ever, N enters the attention problem through three channels. First, the momentary objective in

(5) sums up the contribution to profits of the N goods the firm produces. This is the source of

the economies of scale in the use of information stressed in this paper. Second, the number of

variables that the firm must pay attention to increases with N in the left-hand side of (7). Finally,

the capacity constraint κ (N) in the right-hand side of (7) may or may not depend on N .

Equilibrium. An equilibrium is a collection of signals {sit}, prices {Pjt}, the price level {Pt}

and real aggregate demand {Yt} such that:

1. Given {Pt} , {Yt} and {Zjt}j∈[0,1], all firms i ∈
[
0, 1

N

]
choose the stochastic process of

signals {sit} at t = 0 and the price of goods they produce, {pnt}n∈ℵi for t ≥ 1.

2. {Pt} and {Yt} are consistent with (3) and (4) for t ≥ 1.

3 The frictionless case

Assume that κ (N)→∞, so the firm is able to choose infinitely precise signals regarding all target

variables. Hence, I only need to solve for (6).

To do so, we denote as Q̄ and Z̄j = Z̄ ∀j the non-stochastic steady state level of these variables.

The properties of π (·) imply

π1

(
1, 1, Yt, Z̄

)
= 0,
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which follows from the optimality of prices. This equation solves for the steady-state level of real

aggregate demand Ȳ , and (3) for the steady-state aggregate price level P̄ = Q̄/Ȳ .

A second-order approximation of the problem of firm i around the steady-state is

max
{pnt}n∈ℵi

∑
n∈ℵi

 π̂1pnt + π̂11

2
p2
nt + π̂12pntpt + π̂13pntyt + π̂14pntznt

+ terms independent of pnt.


with π̂1 = 0, π̂11 < 0, π̂12 = −π̂11 and all parameters identical for all goods and all firms. Hence,

the optimal pricing rule for each good j ∈ [0, 1] is

p♦jt = pt +
π̂13

|π̂11|
yt +

π̂14

|π̂11|
zjt ≡ ∆t +

π̂14

|π̂11|
zjt. (8)

Using equations (2), (4) and yt = qt − pt, this rule implies neutrality of money:

p♦t = qt.

Importantly, the multi-production assumption is so far innocuous.

4 The white noise case

Assume now that κ (N) is finite. Further, assume that qt and zjt—the log deviation from the steady-

state of nominal aggregate demand and the idiosyncratic component of each good’s profits—follow

white noise processes, respectively with variances σ2
q and σ2

j = σ2
z for j ∈ [0, 1]. This case has full

analytic solution which we use in section 5 to illustrate the implications of multi-production.

From (8), the optimal price p∗jt that solves (6) is

p∗jt = E [∆t | sait] +
π̂14

|π̂11|
E [zjt | sjt] , (9)
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where i is an arbitrary firm that produces good j, i.e., j ∈ ℵi.

The second-order approximation for the expected loss in profits of good j due to the friction is

π̃
(
p♦jt, pt, yt, zjt

)
− π̃

(
p∗jt, pt, yt, zjt

)
=
|π̂11|

2

(
p♦jt − p∗jt

)2
. (10)

To solve the allocation of attention problem, let pt = αqt, so

∆t =

[
α +

π̂13

|π̂11|
(1− α)

]
qt. (11)

In addition, signals chosen by firm i ∈
[
0, 1

N

]
are restricted to have the structure

sait = ∆t + εit,

snt = znt + ψnt,

where n ∈ ℵi, and σ2
ε and σ2

ψn are the variance of εit and ψnt.
7 Note that, since I am now charac-

terizing the problem of the firm, we change the good subindex from j to n.

Given that qt and zjt for j ∈ [0, 1] are white noise, the constraint in (7) becomes

1

2
log2

(
σ2

∆

σ2
ε

+ 1

)
+

1

2

∑
n∈ℵi

log2

(
σ2
z

σ2
ψn

+ 1

)
≤ κ (N) (12)

κa +
∑
n∈ℵi

κn ≤ κ (N)

The optimal pricing rule in (9) for a good n ∈ ℵi may be rewritten as

p∗nt =
σ2

∆

σ2
∆ + σ2

ε

sait +
π̂14

|π̂11|
σ2
z

σ2
z + σ2

ψn

snt (13)

=
(
1− 2−2κa

)
(∆t + εit) +

π̂14

|π̂11|
(
1− 2−2κn

)
(znt + ψnt) .

7Mackowiak and Wiederholt (2009) show that this structure of signals is optimal. This result is not affected by the

multi-production assumption.
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Therefore, the problem of a firm i may be reduced to

min
κa,{κn}n∈ℵi

∑
n∈ℵi

{ ∞∑
t=1

βt
|π̂11|

2
E
[(
p♦nt − p∗nt

)2
]}

→ min
κa,{κn}n∈ℵi

β

1− β
|π̂11|

2

[
2−2κaσ2

∆N +

(
π̂14

π̂11

)2 ∑
n∈ℵi

2−2κnσ2
z

]

subject to

κa +
∑
n∈ℵi

κn ≤ κ (N) .

which delivers the optimality condition

κ∗a = κ∗n + log2

(
x
√
N
)
, ∀n ∈ ℵi (14)

for x ≡ |π̂11|σ∆

π̂14σz
. This condition implies that all κn are identical, κ∗n = κ∗z for n ∈ ℵi, ∀i. In words,

all firms choose the same variance for the noise of idiosyncratic signals they are concerned with,

σψn = σψ for n ∈ ℵi,∀i. This condition in (14) along the information constraint implies

κ∗a =


κ (N) if x ≥ 2κ(N)

√
N
,

1
N+1

κ (N) + N
(N+1)

log2

(
x
√
N
)

if x ∈
(

2−κ(N)/N
√
N

, 2κ(N)
√
N

)
,

0 if x ≤ 2−κ(N)/N
√
N

.

(15)

All firms are identical, so the price of any good j ∈ [0, 1] follows

p∗jt =
(
1− 2−2κ∗a

)
(∆t + εit) +

π̂14

|π̂11|
(
1− 2−2κ∗z

) (
zjt + ψjt

)
(16)

where εit is the realization of the noise of the aggregate signal for the firm i that produces the good

j. Aggregating among all goods and all firms,

p∗t =
(
1− 2−2κ∗a

)
∆t =

(
1− 2−2κ∗a

) [
α +

π̂13

|π̂11|
(1− α)

]
qt
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which confirms the guess p∗t = αqt,

α =

(
22κ∗a − 1

)
π̂13

|π̂11|

1 + (22κ∗a − 1) π̂13

|π̂11|
. (17)

Summing up, a binding information constraint implies, in contrast to the frictionless case, that

an innovation qt in nominal aggregate demand—for instance, a monetary shock—has real effects.

This result holds for any finite κ (N); in fact, α → 1 when κ (N) → ∞. Moreover, the more

attention the firm pays to idiosyncratic information, the lower is κ∗a, so real effects of money

are stronger. Similarly, a higher complementarity in pricing decisions, a smaller π̂13

|π̂11| > 0, also

leads to stronger money non-neutrality. Equation (16) collapses to that found by Mackowiak and

Wiederholt (2009) whenN = 1. The next section explores the implications of allowing forN > 1.

5 Multi-product firms and rational inattention

We study now the white noise case solved above to illustrate the implications of multi-product

firms on the predictions of the rational inattention model.

5.1 Comparative statics with respect to N

Allocation of attention. Let for now focus on the optimality condition in (14) and treat x as an

exogenous parameter. We start the analysis by assuming that κ (N) = κ. Equation (14) implies

that the difference between the allocation of attention to aggregate information κ∗a with respect to

idiosyncratic information κ∗z is increasing in the number N of goods the firm produces,

κ∗a − κ∗z = log2

(
x
√
N
)
.

This result is a direct consequence of the increasing importance of aggregate variables in firms’
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total profits as N increases. Given an interior solution in (15), this force implies that κ∗a increases

with N unless κ∗z decreases by larger magnitude. This is exactly what happens when N is below

a given threshold. To see why, note that, after imposing the symmetry of attention to idiosyncratic

signals, the information flow constraint in (12) becomes

κ∗a +Nκ∗z = κ,

which captures the second key force that the multi-product firms’ assumption introduces into the

attention problem: The more goods the firm produces, the more sources of information the firm

must pay attention to. From the interior solution of (15) We obtain

∂κ∗a
∂N

=
log
(
x
√
N
)
− κ log 2 + 1

2
(N + 1)

(N + 1)2 log 2
,

such that
∂κ∗a
∂N

< 0 for N < N̂ , where N̂ solves log N̂ + N̂ = 2κ log 2− 2 log x− 1.

N ∈ N and log 2 < 0, so N̂ > 0 only if x > 0 is small enough. Since x ≡ |π̂11|σ∆

π̂14σz
, a

multi-product firm pays less attention to the aggregate than a single-product firm when |π̂11|σ∆ is

sufficiently small with respect to π̂14σz. This happens when the frictionless price in (8) is highly

sensitive to idiosyncratic variables ( π̂14

|π̂11| is high) and/or when such variables are highly volatile

relative to the compound aggregate variable ∆t (σ∆

σz
is small). Otherwise, the prices of multi-

product firms absorb a larger extent of an aggregate shock than those of single-product firms. In

particular, a corner solution κ∗a = κ is reached when
√
N ≥ 2κ

x
.

In either case, with κ (N) = κ, the allocation of attention to idiosyncratic information κ∗z is

unambiguously decreasing in N since

κ∗z =
1

N + 1
κ− 1

(N + 1)
log2

(
x
√
N
)
.

Allowing κ (N) to vary with N—specifically, to increase with N—does not affect qualitatively
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these results. The gap between κ∗a and κ∗z is still increasing in N according to (15). The marginal

effect of an increase in N on κ∗a is now

∂κ∗a
∂N

=
log
(
x
√
N
)
− κ log 2 + 1

2
(N + 1)

(N + 1)2 log 2
+
κ′ (N)

N + 1
, (18)

which makes more restrictive the conditions in x such that
∂κ∗a
∂N

< 0 for a given N . A corner

solution κ∗a = κ is reached now when
√
N ≥ 2κ(N)

x
. Regarding κ∗z,

∂κ∗z
∂N

becomes ambiguous, but, if

positive, it is smaller than
∂κ∗a
∂N

.

Fixed point and money neutrality. Consider now the endogeneity of x. Given that π̂13

|π̂11| > 0, α in

(17) is increasing in κ∗a. Hence, the reaction of aggregate prices to an innovation in q is increasing

in κ∗a, according to (9). In addition, from (11),

σ2
∆ =

[
π̂13

|π̂11|
+

(
1− π̂13

|π̂11|

)
α

]2

σ2
q. (19)

σ2
∆ is increasing in α if π̂13

|π̂11| < 1, i.e., if firms’ pricing decisions are strategic complements. As a

result, σ2
∆ is increasing in κ∗a. Taking into account this feedback effect, the equilibrium allocation

of attention jointly solves equations (15) and (17).

Figure 1 draws these two equations in the space (α, κa). The interior solution of (15) is drawn in

red, while (17) is drawn in blue. In addition, κa ∈ [0, κ (N)] and α ∈ [0, 1]; dashed lines represent

α = 1 and κa = κ (N). Equilibrium α is denoted as α∗1.

Suppose now that N increases. Equation (17) is invariant in N but the intercept of (15) may

decrease or increase while its slope is decreasing with N . The green line in Figure 1 depicts the

case of a higher intercept of (15), so equilibrium α is now α∗2. Importantly, both functions (15) and

(17) are increasing in α, hence an interior solution is highly sensitive to changes in parameters,

for instance in N . As a result, the effect of N on κ∗a studied when x is treated as exogenous is

amplified by an indirect effect of κ∗a on σ2
∆ in the same direction.

Volatility of prices. Most macroeconomic studies modeling firms’ pricing decisions focus on the
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average size of price changes for numerical exercises.8 In fact, we do the same in section 7 when

we solve numerically the general model. However, for illustrative purposes, we focus now on the

variance of individual prices—for which there is a closed form solution.

κ∗a and κ∗z pin down the variance of aggregate and idiosyncratic signals, σ2
ε and σ2

ψ, according

to (12). Denoting σ2
p as the time variance of the individual prices, (16) implies

σ2
p =

(
1− 2−2κ∗a

)
σ2

∆ +

(
π̂14

π̂11

)2 (
1− 2−2κ∗z

)
σ2
z. (20)

which is increasing in κ∗a, κ
∗
z but also in σ2

∆ and σ2
z. Increasing N affects the volatility of prices

since it affects κ∗a, κ
∗
z and σ2

∆.

Comovement of prices inside firms. According to (16),

corr(p∗nt, p
∗
−nt) =

(
1− 2−2κ∗a

)
σ2

∆/σ
2
p

for n,−n ∈ ℵi. Prices inside a firm comove because aggregate information is a common input for

the pricing rule of all goods the firm produces. An important result for the subsequent analysis is

that this comovement is increasing in κ∗a, so it is also increasing in N if
∂κ∗a
∂N

> 0.

Firms’ expected losses. Another important dimension in the analysis is the per-good expected loss

in profits each period that firms bear because of their limited information capacity. After imposing

κ∗n = κ∗z ∀n ∈ ℵi, the firms’ per-good expected momentary loss due to the friction is

|π̂11|
2

[
2−2κ∗aσ2

∆ +

(
π̂14

π̂11

)2

2−2κ∗zσ2
z

]
,

which is quickly decreasing in κ∗a and κ∗z.

8For instance, Golosov and Lucas (2007), Mackowiak and Wiederholt (2009) and Midrigan (2011).
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5.2 A numerical illustration

We now conduct three exercises for the white noise case solved so far to further illustrate the effect

of multi-production on the predictions of the rational inattention model. In all exercises we solve

for the fixed point between equations (15) and (17).

Exercise 1: Baseline calibration. For numerical exercises, Mackowiak and Wiederholt (2009)

choose

π̂14

|π̂11|
= 1;

π̂13

|π̂11|
= .15;κ = 3;σq = 2.68%.

π̂14

|π̂11| = 1 means that aggregate and idiosyncratic variables qt and {zjt}j∈[0,1] have the same

weight in profits; π̂15

|π̂11| = .15 implies strong strategic complementarity in pricing decisions; κ = 3

means that, if all attention is devoted to one target variable, the variance of the noise of the signal

is 1
63

of the variance of the target variable; and σq = 2.68% is obtained from U.S. quarterly data.

Solving the model for a general specification of qt and {zjt}j∈[0,1], Mackowiak and Wiederholt

(2009) find that calibrating σz = 11.8σq matches the average price observed in microlevel data. In

this calibration, the attention to aggregate information is κ∗a = .19, which implies that aggregate

prices absorb on impact only 2.8% of an innovation in nominal aggregate demand qt. They also

find that firms suffer small expected momentary losses in profits per-good due to the friction.

we find, for the white noise case, that calibrating σz = 11.8σq yields a corner solution κ∗a = 0

and microlevel moments cannot be matched. we thus focus on matching the aggregate predictions

of Mackowiak and Wiederholt (2009), which we obtain by calibrating σz = 1.166σq. The implied

volatility of prices σp is 3.1% and firms’ expected per-good loss due to the friction is 3.6 × 10−5

per period. we use these numbers as fictional targets for the exercises in this section.

Table 1 summarizes results when N is increased with κ(N) = 3. In particular, it reports results

for

N = {1, 2, 5, 10, 100, 1000} .

16



This choice responds to the interpretation of N . If one thinks that productive firms are the rel-

evant decision makers for price setting, one may be interested in a low N . Bhattarai and Schoenle

(2011) report that most firms produce between 2 and 10 goods listed in the PPI with an average

of about 5. This is a conservative estimate since firms may produce goods that are not listed in

the PPI. In contrast, if one has in mind stores, a high N is informative. The FMI reports that, in

average, its members’ stores sold about 40, 000 goods in 2010.9 Thus, N = 100 or 1000 are also

conservative estimates, which may be interpreted as the number of clusters of goods with highly

correlated idiosyncratic shocks within clusters but not so much between clusters.10

Table 1 shows that α increases five times when N goes from 1 to 2, from 2.8% for N = 1 to

α = 15.5% for N = 2. A corner solution with κ∗a = 3 and α = 90.4% is reached for N ≥ 100.

In words, money non-neutrality is greatly undermined for N > 1. In addition, the attention to

idiosyncratic information falls quickly as N increases. The volatility of prices σp decreases with

N , from 3.1% for N = 1 to 2.4% for N ≥ 100. Consistently, firms’ average momentary loss due

to the friction quickly increases as the attention shifts with N to aggregate information.

Exercise 2: Using σz as free variable. As N increases, we keep all parameters identical to the

exercise 1 but we use idiosyncratic volatility σz to match price volatility σp = 3.1% obtained in

the exercise 1 for N = 1. Table 2 summarizes the results.

For N = 2, σp falls below 3.1% in the exercise 1; σz must increase to 1.26σq to restore σp =

3.1%. The increase in σz shifts attention to idiosyncratic information, so κ∗a and κ∗z are respectively

smaller and higher than in the exercise 1 for N = 2. As a result, real effects of money increase

since α decreases to 10.9% with respect to the exercise 1 for N = 2, but it is still four times higher

than α = 2.8% when N = 1. Firms’ momentary loss due to the friction remains similar to that of

exercise 1 for N = 2, which is five times higher than when N = 1 (3.6× 10−5).

As N increases, the assumed volatility of idiosyncratic variables σz must increase quickly to

keep σp = 3.1%, reaching 19.9 times σq when N = 1000. This high volatility allows to keep

9See footnote 1.
10I introduce aggregate, firm-specific and good-specific shocks in Section 8.
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reasonably high real effects of a money shock, with α about 20%. However, the little attention

to idiosyncratic information and the high volatility of idiosyncratic variables deliver momentary

losses quickly increasing in N . The average loss per good due to noise reaches implausible levels

up to five orders of magnitude higher when N = 1000 than when N = 1.

Exercise 3: Using κ(N) as free variable. we keep the target on σp = 3.1% for calibration as N

increases, but we now use the information capacity constraint κ(N) as free variable. we keep σz

and all other parameters as in the exercise 1. Table 3 summarizes the results.

When N = 2, κ (N) = 4 matches σp = 3.1%, so κ∗a = 1.1 and α = 36.7%. Firms’ loss due

to the friction is similar to that obtained in exercise 1 for N = 2. However, prices now absorb a

proportion twelve times higher of a nominal aggregate demand shock than when N = 1.

Similarly, firms’ expected per-good losses stay in the same range as N increases. But since

the attention to idiosyncratic information κ∗z decreases quickly with N , κ (N) must increase also

quickly to match σp = 3.1%. As a result, prices absorb 59% of a money shock for N = 5; 71%

for N = 10; 94% for N = 100; and 99% for N = 1000.

Notice that firms’ expected momentary losses per good due to the friction are still higher than

when N = 1. If the calibration would target on losses, either σz should decrease or κ(N) should

increase even more with N . Both cases imply higher attention to aggregate information, so such

exercise would enforce results obtained here.

Discussion. Exercise 1 has another two parameters where calibration may be arguable. One is

π̂13

|π̂11| = 15. This choice implies high strategic complementarity, which ensures a high level of

unresponsiveness of aggregate prices to an aggregate demand shock. There is no much room to

decrease π̂13

|π̂11| ; e.g., Woodford (2003) suggests that π̂13

|π̂11| ∈ [.1, .15].

The other is π̂14

|π̂11| = 1—aggregate and idiosyncratic variables have the same weight in the

contribution of one good to firms’ profits. One of the key forces that multi-production introduces

to the attention problem is that aggregate information becomes more important in firms’ total

profits. Thus, one may think that increasing π̂14

|π̂11| should solve the calibration problem.
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In the joint solution of κ∗a and α∗, equation (15) depends on π̂14

|π̂11| through x ≡ |π̂11|σ∆

π̂14σz
while

equation (17) is independent of π̂14

|π̂11| . Since σ∆ is governed by σq and α, increasing π̂14

|π̂11| has the

same aggregate implications as increasing σz. In terms of σp, an increase in π̂14

|π̂11| is also equivalent

to an increase in σz, according to (20). Exercise 2 shows that increasing σz delivers high per-good

losses due to the friction when N > 1.

Tables 4A and 4B report results after redoing exercises 2 and 3 for π̂14

|π̂11| = 2. Table 4A shows

that the required increase in σz to match σp = 3.1% as N increases is less steep, but firms’ per-

good losses still quickly increase with N . Table 4B shows that the required increase of κ(N) is

also less steep, but still prices absorb a high proportion of a shock in qt for N ≥ 100. Real effects

of money are high (α = 0) for N ≤ 5, but information capacity κ (N) must be very low to match

σp = 3.1%, so per-good losses due to the friction are high relative to the exercise 1.

5.3 Summary

This section presents in a simplified framework the main messages of this paper, so it deserves a

detailed summary. Section 5.1 shows analytically that firms’ attention to aggregate information is

increasing in the number of goods firms produce unless under very restrictive conditions about the

volatility and importance in profits of idiosyncratic variables relative to aggregate variables. Firms’

attention to idiosyncratic information decreases in the number of goods firms produce unless in-

formation capacity increases fast enough, in which case the attention to aggregate information

increases more. Strategic complementarity in pricing decisions amplifies these effects. Besides,

the volatility of prices is increasing in the attention paid to either type of information; the expected

cost of the friction per good produced is decreasing in firms’ overall attention; and the correlation

of price changes inside firms increases in firms’ attention to aggregate information.

Section 5.2 numerically show that taking the process of nominal aggregate demand from the

data and targeting on moments regarding price changes (in this case, σp) and expected costs of

the friction for each good similar to those of single-product firms impose enough discipline for
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calibrations. Only setting information capacity increasing in N yields satisfactory results, which

implies low money non-neutrality. Natural candidates to solve the calibration problem, such as

increasing volatility or importance in profits of idiosyncratic relative to aggregate variables, do not

yield satisfactory results since they imply too high price volatility and expected cost of the friction.

6 The auto-regressive case

Assume now that the process of qt is such that ∆t is AR (1) with persistency ρ∆. Idiosyncratic

variables {zjt}j∈[0,1] are also AR (1) with persistency ρj = ρz. This case allows to introduce

persistency keeping at least partial analytical solution. In a nutshell, all results qualitatively remain.

The starting guess is now

pt =
∞∑
l=0

αlvt−l, (21)

where vt ≡ {vt−l}∞l=0 is the history of nominal aggregate demand innovations.

Given the structure of signals, optimal prices under rational inattention follow

p∗jt = E
[
∆t | stai

]
+

π̂14

|π̂11|
E
[
zjt | stj

]
= ∆̂it +

π̂14

|π̂11|
ẑjt

for any j ∈ [0, 1]. This rule is equivalent to (9) with the only difference that the producing firm we

uses the whole history
{
stai, s

t
j

}
of its observed aggregate and idiosyncratic signals.

The loss of profits for deviations from the frictionless prices due to the friction is still governed

by (10). The firm’s problem may be cast in two stages. In the first stage, the firm chooses

min
∆̂it,{ẑnt}n∈ℵwe

∑
n∈ℵwe

{ ∞∑
t=1

βt
|π̂11|

2
E
[(
p♦nt − p∗nt

)2
]}

→ min
∆̂it,{ẑnt}n∈ℵwe

β

1− β
|π̂11|

2

{
E
(

∆t − ∆̂it

)2

N +

(
π̂14

|π̂11|

)2 ∑
n∈ℵwe

E (znt − ẑnt)2

}
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subject to

we
({

∆t, ∆̂it

})
≤ κa,

we ({znt, ẑnt}) ≤ κn, for n ∈ ℵwe

κa +
∑
n∈ℵwe

κn ≤ κ(N)

after assuming, for simplicity, that there is an univariate signal for each target variable.

For the second stage, the firm must choose the signals structure that delivers ∆̂∗it, {ẑ∗nt}n∈ℵwe .

Proposition 4 in Mackowiak and Wiederholt (2009) shows that many information structures meet

this condition, including "target plus noise" signals which volatilities are pinned down by κa and

{κn}n∈ℵwe . These results are not affected by the multi-production assumption.

Multi-production affects the allocation of attention by the same three forces studied above. First,

aggregate information becomes more important for firms as the number N of goods they produce

increases. This force is captured in the first term in the objective. Second, the more goods the firm

produces, the more idiosyncratic signals the firm must pay attention to. This force is captured here

in the number of constraints and in the left-hand side of the last constraint. Third, the information

capacity in the right-hand side of the last constraint may depend on N .

This problem may be further manipulated. Following Sims (2003),11 the solution of

min
b,c
E (Tt −Ot)

2

where Tt is a target variable and Ot is an observable variable, subject to

Tt = ρTt−1 + aut,

Ot =
∞∑
l=0

blut−l +
∞∑
l=0

clεt−l,

κ ≥ we ({Tt, Ot})
11Also in Proposition 3 of Mackowiak and Wiederholt (2009).
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implies the value of the objective

E (Tt −O∗t )
2 = σ2

T

1− ρ2

22κ − ρ2
.

Using this result, the firms’ problem in the first stage may be represented as

min
κa,{κn}n∈ℵwe

β

1− β
|π̂11|

2

[
σ2

∆

1− ρ2
∆

22κa − ρ2
∆

N +

(
π̂14

π̂11

)2 ∑
n∈ℵwe

1− ρ2
z

22κz − ρ2
z

σ2
z

]

subject to

κa +
∑
n∈ℵwe

κn ≤ κ(N)

which is identical to the firms’ problem in the white noise case if ρ∆ = ρz = 0.

Its optimality condition is

κ∗a + f (ρ∆, κ
∗
a) = κ∗z + f (ρz, κ

∗
z) + log2 x

√
N (22)

with x ≡ |π̂11|σ∆

π̂14σz
and f (ρ, κ) = log2 (1− ρ22−2κ).

Notice that f (0, κ) = 0. Hence, (22) collapses to (14) when qt and {zjt}j∈[0,1] are white noise.

In addition, f (ρ, κ) is weakly negative, increasing in κ and decreasing in ρ. Therefore, keeping

x and N constant, more attention is given to aggregate signals relative to idiosyncratic signals,

we.e., κ∗a − κ∗z increases, when the compound aggregate variable ∆t is less persistent relative to

the idiosyncratic variable, we.e. when |ρ∆| − |ρz| is lower.

The solution of κ∗a given x may be obtained combining equation (22) and the constraint

κ∗a +Nκ∗z = κ (N)

which remains invariant to the introduction of persistency into the attention problem.

Allocation of attention. The result in the white noise case that κ∗a − κ∗z is increasing in N for a
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constant x remains here. Note that

f (ρ∆, κ
∗
a)− f (ρz, κ

∗
z) = log2

(
1− ρ2

∆2−2κ∗a

1− ρ2
z2
−2κ∗z

)

is increasing in κ∗a − κ∗z. Therefore, κ∗a − κ∗z is increasing in N in (22) but to a lesser extent than

in the white noise case in (14). The higher is either |ρ∆| or |ρz|, the weaker is the effect of N

on κ∗a − κ∗z. Since the constraint is invariant to the introduction of persistency, the allocation of

attention has the same properties than in the white noise case.

Fixed point and money neutrality. Now not only x is endogenous, but also ρ∆. In addition,

prices are allowed to respond to the whole history of innovations in nominal aggregate demand.

Therefore, there is no closed form solution for parameters in the guess in (21) given the allocation

of attention; we.e, there is no explicit counterpart to equation (17).

However, this relationship remains independent of N . Thus, despite persistence in qt and

{zjt}j∈[0,1] may add non-linearity in the allocation of attention and persistence in the response

of aggregate prices to nominal shocks, the ways in which N affects the predictions of the rational

inattention model is still captured by the optimality condition (22).

The rest of the statistics, such as the magnitude of price changes and losses due to the friction,

are better studied in the quantitative exercise that follows.

7 The general case

we now solve numerically the model studied in this paper for a general specification of the log-

deviation of nominal aggregate demand qt and idiosyncratic variables at the good level {zjt}j∈[0,1].
12

As in section 5.2, we use the parameters used by Mackowiak and Wiederholt (2009):

π̂14

|π̂11|
= 1;

π̂13

|π̂11|
= .15;κ (N = 1) = 3;σq = 2.68%.

12The appendix displays the analytic problem and describes the solution algorithm.
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we add now their assumed process for qt: AR(1) with persistency ρq = .95 and standard

deviation σv = 1% for its innovation vt.
13 This process is approximated by a MA(20):

qt =
20∑
k=0

ρq

(
1− k

20

)
vt−k (23)

The process for {zjt}j∈[0,1] is assumed to follow the same MA (20) structure than qt with an

innovation 11.8 times more volatile that vt. Each period is meant to be a quarter.

ForN = 1, we replicate exactly the results of Mackowiak and Wiederholt (2009). The attention

allocation is κ∗a = .08 and κ∗z = 2.92. The average size of price changes is 9.7% in line with the

findings of Klenow and Kryvtsov (2008). Firms’ expected losses due to the friction are small,

.0021Y per quarter,14 so κ(1) = 3 allows firms to track well optimal frictionless prices and thus

firms have little incentives to increase their information capacity if such decision were endogenous.

Importantly, real effects of money are strong and long lasting: Prices respond weakly and slowly

to an innovation in qt. Figure 2 draws this response. The black line represents the response of

frictionless prices after a shock of magnitude .01 in qt—according to (23), this response decreases

linearly to die after 20 quarters. The blue line represents the response of prices under rational

inattention for N = 1. Prices absorb only 2.8% of the shock on impact with a maximum of 17.6%

of the shock 10 quarters after the impact (at this point, 55% of the shock remains in the response

of frictionless prices) to die after 20 quarters. The accumulated response of prices of rationally

inattentive firms for N = 1 is only 22% of the accumulated response of frictionless prices.

For N ≥ 2, the information capacity κ (N) is calibrated to be

κ (N) = κ∗a (N = 1) +N × κ∗z (N = 1) . (24)

In words, the optimal allocation of attention when N = 1 is feasible for the firm for any N .

13These estimates are obtained from GNP quarterly data spanning 1959:1–2004:1.
14This result comes from equation (10) after assuming |π̂11| = 15Y , which is consistent with the calibration.
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This calibration ensures similar firms’ expected losses per good due to the friction for any N .

Figure 2 draws in red the response of prices of rationally inattentive firms for N = 2. In-

formation capacity is κ(2) = 5.9; its allocation is κ∗a = .3 and κ∗z = 2.8 for information about

each good the firm produces. The average size of price changes is still 9.7%. Firms’ expected

losses per good and quarter due to the friction are .0023Y . Prices absorb on impact 13% of the

shock with a maximum of 60% after 7 quarters; the response of prices is almost identical to the

response of frictionless prices thereafter. The accumulated response of prices is 70.2% of the ac-

cumulated response of frictionless prices. In few words, non-neutrality is largely undermined, in

both magnitude and duration: The response of output is cut by four and its duration by three.

Similarly, Figure 2 draws in green the response of prices of rationally inattentive firms for

N = 5. Information capacity is κ(5) = 14.6, so κ∗a = .6 and κ∗z = 2.8 for each good. Firms’

expected losses per good and quarter are .0023Y . Prices absorb 30% of the shock on impact

with a maximum of 70% only 3 quarters after the shock; prices response is almost identical to

the response of frictionless prices thereafter. The accumulated response of prices is 87% of the

accumulated response of frictionless prices. Money non-neutrality almost disappears.

Figure 3 draws responses of prices for N = 10, 100 and 1000 (in red, green and magenta) and

the response of frictionless prices and prices of rationally inattentive firms for N = 1 (in black

and blue). Average price changes are 9.7% and firms’ losses per good and quarter are .0023Y . For

N = 10, prices absorb 53% of the shock on impact and their response is almost identical to the

response of frictionless prices after 2 quarters. Money is fully neutral for N = 100, 1000.

Discussion. As in section 5, some parameters may be manipulated to try to improve these results.

Such attempts are unsuccessful; the same happens here. Setting π̂14

|π̂11| = 2 for N = 2, real effects

of money are large (κ∗a = .06), but the implied average size of price changes doubles (19.4%)and

firms’ losses quadruples (.0077Y ) those when π̂14

|π̂11| = 1. If in addition the volatility of idiosyncratic

variables is cut by half, all results are restored, including the low real effects of money.

When the volatility of idiosyncratic variables is doubled for N = 2, results are identical to
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doubling π̂14

|π̂11| . As in section 5, increasing σz is isomorphic to increasing π̂14

|π̂11| . When we cut

information capacity for N = 2 from κ (2) = 5.9 to 4, we obtain κ∗a = .05, average size of price

changes equals 9.6%, but firms’ losses are large, .0075Y .

These exercises target on low firms’ expected per-good losses due to the friction. The argument

to keep losses low is to keep incentives low for firms to increase their information capacity if such

decision were endogenous. This is a conservative criterion; the total cost of the friction increases

with the number N of decisions that firms must take, in this case, pricing of goods produced.

The cost of acquiring information is independent of N ; it is likely that investment in information

capacity is also independent of N . Targeting on total losses would strongly reinforce my results.

8 Firm-specific and good-specific information

Relevant idiosyncratic variables in firms’ profits are so far good-specific. This means that multi-

product firms can only exploit the economies of scale in the use of information, which are in

the core of this paper, by acquiring aggregate information. This section introduces firm-specific

variables to make two points. First, good-specific variables are necessary to generate increasing

comovement of prices inside firms in the number of goods they produce. Second, if good-specific

variables are relevant for pricing decisions, all results remain.

Comovement and synchronization of price changes. Lach and Tsiddon (1996), Fisher and

Konieczny (2000) and Bhattarai and Schoenle (2010) document the synchronization of price changes

inside firms. For instance, Bhattarai and Schoenle (2010) report that prices of a two-product firm

have 30% probability to change in the same direction at the same time. When firms produce 3

goods, this probability increases to 37%. One difficulty of the rational inattention model is that

it predicts prices changing every period while in reality prices change only infrequently. Hence,

synchronization is not a well defined concept inside the model.

Abstracting from this issue and interpreting synchronization as comovement, two desired fea-
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tures the model should generate are prices imperfectly comoving inside firms and increasing co-

movement in the number of goods firms produce. The model is able to generate these features if

good-specific shocks are relevant for pricing decisions. To show this point, we first replace good-

specific by firm-specific information in the model. Then we allow aggregate, good-specific and

firm-specific information to interact.

Aggregate and firm-specific information. Assume that a firmwe ∈
[
0, 1

N

]
observes signals about

qt and firm-specific shocks {fit}we∈[0, 1
N ] in profits instead of good-specific shocks {zjt}j∈[0,1] in

the setup of section 4 and 5—when all variables are white noise and univariate signals have the

structure "fundamental plus noise". The firm’s objective now is

min
κa,κf

β

1− β
|π̂11|

2

[
2−2κaσ2

∆N +

(
π̂14

π̂11

)2

2−2κfσ2
fN

]

where κf is the attention given to the signal about fit and σf is the volatility of fit for all we. The

information capacity constraint now is

κa + κf ≤ κ (N) .

From the three forces introduced by multi-production into the attention allocation problem—

on the objective, on the left-hand side of information capacity constraint and on κ (N) in the

right-hand side of this constraint—only the effect on κ (N) remains active. Calibrating κ (N)

consistently with (24) yields κ∗a (N) = κ∗a (1); the allocation of attention is invariant in N .

Individual prices follow a process

p∗nt =
(
1− 2−2κ∗a

)
(∆t + εit) +

π̂14

|π̂11|
(
1− 2−2κ∗f

)
(fit + ϑit)

for n ∈ ℵwe and we ∈
[
0, 1

N

]
, where ϑit is the noise of the signal for fit. Thus, prices inside firms

perfectly comove:

corr
(
p∗nt, p

∗
−nt
)

= 1 for all n,−n ∈ ℵwe.
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In contrast, if in the setup of Section 5—when idiosyncratic shocks are good-specific—we

calibrate κ (N) consistently with (24), the optimality condition in (14) implies

κ∗a (N) =
1

2

[
κ (1) + log2

(
x
√
N
)]
. (25)

Individual prices follow (16). Prices’ comovement now is

corr(p∗nt, p
∗
−nt) =

(
1− 2−2κ∗a(N)

)
σ2

∆/σ
2
p < 1.

which is increasing in N if κ∗a (N) is increasing in N .

As a result, an interior solution for the optimal allocation of attention to good-specific infor-

mation is necessary for the rational inattention model to generate imperfect comovement of prices

inside firms together with increasing comovement as firms produce more goods.

Aggregate, firm-specific and good-specific information. As a robustness check, assume now

that the setup of section 4 is augmented to include firm-specific variables {fit}we∈[1, 1
N ] and good-

specific variables {zjt}j∈[0,1]. The contribution of profits of good n ∈ ℵwe for its producing firm

we is

π (Pnt, Pt, Yt, Znt, Fit) ;

its approximation up to a second-order around zero log deviations from steady state is

π̂1pnt +
π̂11

2
p2
nt + π̂12pntpt + π̂13pntyt + π̂14pntzjt + π̂15pntfit + terms independent of pnt.

The firms’ problem is now

min
κa,{κn}n∈ℵwe ,κf

β

1− β
|π̂11|

2

[
2−2κaσ2

∆N +

(
π̂14

π̂11

)2 ∑
n∈ℵwe

2−2κnσ2
z + +

(
π̂15

π̂11

)2

2−2κfσ2
fN

]

s.t. κa +
∑
n∈ℵwe

κn + κf ≤ κ (N) .
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Following the spirit of (24), we calibrate κ (N) to be

κ (N) = κ∗a (N = 1) +N × κ∗z (N = 1) + κ∗f (N = 1) , (26)

so the optimal allocation to aggregate information is

κ∗a =
1

3

[
κ (1) + log2

(
x1

√
N
)

+ log2 (x2)
]

where x1 ≡ |π̂11|σ∆

π̂14σz
and x2 ≡ |π̂11|σ∆

π̂15σf
. Comparing with (25), firm-specific shocks to profits affect

the attention paid by firms to the aggregate. But the implications of multi-production remain

strong: 2
3

of the already shown large effects on mitigating money non-neutrality obtained when

idiosyncratic shocks are good-specific. Importantly, the volatility of fit plays no role. These

results depend on an interior solution for the optimal allocation of attention to the good-specific

signal, which in turn is necessary to get the desired properties of prices’ comovement inside firms.

Intuitively, the story is not very different from above. Aggregate and firm-specific information

becomes more important for firms relative to good-specific information as N increases. If infor-

mation capacity is invariant toN , even more attention than above is taken away from good-specific

signals with N . Thus, firms’ per-good losses due to the friction rapidly increase with N . Setting

κ (N) as in (26) prevents losses to spike up by giving more information capacity to the firm as N

increases. The firm chooses to allocate some of this extra capacity to aggregate information (as

well as to firm-specific information). As a result, multi-product firms’ prices respond quicker than

single-product firms to an innovation in nominal aggregate demand qt.

9 Conclusions

This paper highlights the importance of economies of scale in the use of information arising in

the rational inattention model. In this model, agents must optimally allocate their limited capacity
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to process information. we explore the effects of these economies of scale on the implications of

the model regarding money neutrality by using the work of Mackowiak and Wiederholt (2009)

as benchmark. Multi-product firms exploit these economies of scale by acquiring aggregate in-

formation since this type of information is useful for firms to take all their pricing decisions, as

opposed to good-specific information which is only useful for the pricing of the good for which the

information is concerned with. Hence, firms’ capacity allocated to process aggregate information

increases in the number of goods they produce. we quantitatively show that this effect reduces

significantly the ability of model to deliver large real effects of money when firms are allowed to

produce multiple goods. The introduction of firm-specific information does not change this result

as long as good-specific information remains relevant for pricing decisions. Additionally, these

economies of scale allow the model to predict increasing comovement of prices inside firms in the

number of goods they produce—which is a feature qualitatively consistent with the data.

The economies of scale in the use of information find application in the wide variety of contexts

in which the rational inattention model has been used. we leave these applications for future

research.
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Appendix: General problem and its solution

This appendix displays the analytical representation of firms’ problem in the setup of section 7 and

explains the numerical algorithm applied. Both, the analytical representation and the numerical

algorithm, are extensions of Mackowiak and Wiederholt (2009).

The MA representations of qt and {zjt} are

qt =
20∑
l=0

alvt−l, (27)

zjt =
20∑
l=0

blζt−l, (28)

for j ∈ [0, 1], where {vt} and
{
ζjt
}

are innovations following Gaussian independent processes.

Given the definition of ∆t in (8), yt = qt − pt and the guess

pt =
20∑
l=0

αlvt−l

yield

∆t =

(
1− π̂13

|π̂11|

) 20∑
l=0

αlvt−l +
π̂13

|π̂11|

20∑
l=0

alvt−l. (29)

The problem of firm we ∈
[
0, 1

N

]
has two stages. In the first stage, the firm must choose

conditional expectations for ∆t and {znt}n∈ℵwe to minimize the deviation of prices with respect to

frictionless optimal prices

min
∆̂it,{ẑnt}n∈ℵwe

∑
n∈ℵwe

{ ∞∑
t=1

βt
|π̂11|

2
E
[(
p♦nt − p∗nt

)2
]}

subject to the information capacity constraint. This problem is equivalent to

min
∆̂it,{ẑnt}n∈ℵwe

{
E
[(

∆t − ∆̂it

)2
]
N +

(
π̂14

|π̂11|

)2 ∑
n∈ℵwe

E
[
(znt − ẑnt)2]}

subject to (27), (28), (29), and the information capacity constraint, which takes the form

− 1

4π

∫ π

−π
log2

[
1− C∆,∆̂we

(ω)
]
dω − 1

4π

∑
n∈ℵwe

∫ π

−π
log2 [1− Czn,ẑn (ω)] dω ≤ κ (N)
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where the functions inside the square brackets are called coherence,

C∆,∆̂we
(ω) =

G(e−iω)G(eiω)
H(e−iω)H(eiω)

G(e−iω)G(eiω)
H(e−iω)H(eiω)

+ 1
,

where G (eiω) = g0 + g1e
iω + g2e

i2ω + ... and H (eiω) = h0 + h1e
iω + h2e

i2ω + ...

Czn,ẑn (ω) =

Rn(e−iω)Rn(eiω)
Sn(e−iω)Sn(eiω)

Rn(e−iω)Rn(eiω)
Sn(e−iω)Sn(eiω)

+ 1
,

where R (·) and S (·) are defined similar to G (·) and H (·).

The solution must have the form

∆̂∗it =
20∑
l=0

g∗l vt−l +
20∑
l=0

h∗l εt−l,

ẑ∗nt =
20∑
l=0

r∗nlvt−l +
20∑
l=0

s∗nlεnt−l for n ∈ ℵwe.

To find these coefficients, the problem is partitioned in two. First, solve

min
∆̂it

E
[(

∆t − ∆̂it

)2
]
N = min

g,h

[
20∑
l=0

(al − gl)2 +
20∑
l=0

h2
l

]
N

s.t. − 1

4π

∫ π

−π
log2

[
1− C∆,∆̂we

(ω)
]
dω = κa.

The optimality conditions are

gl : 2 (al − gl)N = − µa
4π log (2)

∫ π

−π

∂ log
[
1− C∆,∆̂we

(ω)
]

∂gl
dω,

hl : 2hlN =
µa

4π log (2)

∫ π

−π

∂ log
[
1− C∆,∆̂we

(ω)
]

∂hl
dω

where µa is the Lagrangian multiplier. This system plus the constraint yield the coefficients

{g∗ (κa, N)} and {h∗ (κa, N)} and thus ∆̂it (κa, N). Similarly, coefficients {r∗n (κn, N)} and
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{s∗n (κn, N)} and thus ẑnt (κn, N) for n ∈ ℵwe solve the problem

min
∆̂it

E
[
(znt − ẑnt)2] = min

g,h

[
20∑
l=0

(bl − rl)2 +

20∑
l=0

s2
l

]

s.t. − 1

4π

∫ π

−π
log2 [1− Czn,ẑn (ω)] dω = κn.

Finally, the coefficients of g∗, h∗, r∗, s∗, are obtained solving

min
κa,{κn}n∈ℵwe

{
E
[(

∆t − ∆̂it (κa, N)
)2
]
N +

(
π̂14

|π̂11|

)2 ∑
n∈ℵwe

E
[
(znt − ẑnt (κn, N))2]}

s.t. κa +
∑
n∈ℵwe

κn ≤ κ (N) .

which gives κ∗a (N) and κ∗n (N) = κ∗z (N) since the problem is symmetric for all n ∈ ℵwe.

The second stage of the problem is to obtain optimal signals structures that deliver ∆̂∗it =

∆̂it (κ∗a (N) , N) and ẑ∗nt = ẑnt (κn (N) , N). Since we am interested in the aggregate implications

of the model, we do not solve this part. However, Mackowiak and Wiederholt (2009) show that

there always exist multiple signal structures that yield these results (Proposition 4).

Numerically, we first start from a guess for
{
α

(0)
l

}20

l=0
. Then we obtain κ∗a (N) and κz (N) by

solving the non-linear system of first-order conditions using the Levenberg-Marquardt algorithm.

Then we compute optimal prices and get a new sequence
{
α

(1)
l

}20

l=0
. we iterate upon convergence.

35



Tables and Figures

N 1 2 5 10 100 1000

κ∗a .13 .58 1.08 1.51 3 3

α 2.8% 15.5% 34.5% 51.7% 90.4% 90.4%

κ∗z 2.87 1.21 .38 .15 0 0

σp 3.1% 2.9% 2.3% 2% 2.4% 2.4%

loss 3.6× 10−5 2.1× 10−4 6.1× 10−4 8.3× 10−4 9.6× 10−4 9.6× 10−4

Table 1 – Exercise 1, white noise

N 1 2 5 10 100 1000

κ∗a .13 .43 .58 .63 .66 .67

α 2.8% 10.9% 15.5% 17.1% 18.5% 18.6%

κ∗z 2.87 1.29 .48 .24 .02 .002

σz/σq 1.17 1.26 1.63 2.14 6.34 19.9

loss 3.6× 10−5 2.2× 10−4 1.0× 10−3 2.4× 10−3 2.8× 10−2 2.8× 10−1

Table 2 – Exercise 2, white noise

N 1 2 5 10 100 1000

κ∗a .13 1.1 1.69 2.05 3.38 4.98

α 2.8% 36.7% 58.7% 70.7% 94.2% 99.3%

κ∗z 2.87 1.42 .88 .65 .29 .22

κ (N) 3 4.0 6.1 8.6 31.9 202.7

loss 3.6× 10−5 1.7× 10−4 3.2× 10−4 4.2× 10−4 6.6× 10−4 7.2× 10−4

Table 3 – Exercise 3, white noise

N 1 2 5 10 100 1000

κ∗a .13 .43 .58 .63 .66 .67

α 2.8% 10.9% 15.5% 17.1% 18.5% 18.6%

κ∗z 2.87 1.29 .48 .24 .02 .002

σz/σq .58 .63 .81 1.07 3.17 9.95

loss 3.6× 10−5 2.2× 10−4 1.0× 10−3 2.4× 10−3 2.8× 10−2 2.8× 10−1

Table 4A – Exercise 2 for π̂14

|π̂11| = 2, white noise
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N 1 2 5 10 100 1000

κ∗a 0 0 0 .44 2.2 3.82

α 0% 0% 0% 11.1% 75.2% 96.8%

κ∗z .21 .21 .21 .20 .11 .05

κ (N) .21 .41 1.0 2.43 12.8 58.7

loss 3.0× 10−3 3.0× 10−3 3.0× 10−3 3.0× 10−3 3.4× 10−3 3.6× 10−3

Table 4B – Exercise 3 for π̂14

|π̂11| = 2, white noise

Figure 1 – Equations (15) and (17) in the space (α, κa)
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Figure 2 – Response of aggregate prices to a shock in qt
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Figure 3 – Response of aggregate prices to a shock in qt
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