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Abstract

We investigate whether the set of Kreps and Porteus (1978) preferences include

classes of preferences that are stationary, monotonic with respect to �rst order stochas-

tic dominance, and well-ordered in terms of risk aversion. We prove that the class of

preferences introduced by Hansen and Sargent (1995) in their robustness analysis is

the only one that ful�lls these properties. The paper therefore suggests a shift from

the traditional approach to studying the role of risk aversion in recursive problems.

We also provide applications, in which we discuss the impact of risk aversion on asset

pricing and risk sharing.
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1 Introduction

Since Koopmans (1960)'s early article, the assumption of preference stationarity plays a

central role in the modeling of intertemporal choice under uncertainty. For many problems,

it is indeed meaningful to assume that the agent's objective is independent of past events

and from the calendar year. Preference stationarity is then required to generate time

consistent planning.

The economic literature abounds in works focusing on stationary preferences. In de-

cision theory, Epstein (1983), Epstein and Zin (1989), Klibano�, Marinacci, and Mukerji

(2009) made signi�cant contributions extending Koopmans' initial contribution to more

general settings. The assumption of preference stationarity is even more present in applied

contributions, as it leads to recursive economic problems that can be tackled by using

dynamic programming methods. A substantial part of the macroeconomic literature relies

on models that assume stationary preferences.

However, imposing preference stationarity makes it di�cult to discuss the role of risk

aversion. In in�nite horizon settings, two distinct stationary preference relations cannot

�t simultaneously into the expected utility framework and be comparable in terms of risk

aversion. Discussing the role of risk aversion � while maintaining preference stationarity �

then involves either departing from the expected utility framework, as in Epstein and Zin

(1989), or considering preferences de�ned on smaller domains, as in Bommier (2012).1

Epstein and Zin's (1989) preferences are considered as the standard procedure to study

the role of risk aversion in intertemporal problems. These preferences extend the Kreps

and Porteus (1978) framework to a stationary setting, focusing on homothetic and weakly

separable preferences.2 They are found to be extremely useful, as well as being appreci-

ated for their tractability. However, such an approach has several shortcomings. First, as

emphasized in Chew and Epstein (1990), Epstein-Zin preferences generally fail to ful�ll

a property of monotonicity with respect to �rst order stochastic dominance, also called

ordinal dominance. With these preferences, an agent may end up choosing lotteries that

are �rst-order stochastically dominated by other available lotteries. Such preference non-

monotonicity may have unpleasant consequences. In particular, as shown in a two-period

setting by Bommier, Chassagnon and Le Grand (2012), Epstein-Zin preferences are not

1In Bommier (2012), consumption remains constant after a �nite amount of time. It is then possible to
�nd classes of stationary preferences that �t into the expected utility framework and are well-ordered in
terms of risk aversion.

2The property of �weak separability� refers to preferences over deterministic consumption paths. It
holds when the marginal rate of substitution between consumption at two di�erent dates is independent
of consumption at other dates.
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well-ordered in terms of aversion for marginal increases in risk. This may generate mis-

leading conclusions about the role of risk aversion in standard applied problems such as

the analysis of precautionary savings.

Our paper aims at identifying classes of stationary preferences, which disentangle or-

dinal and risk preferences, without having the above-mentioned shortcomings. In fact, we

explore the entire set of recursive preferences that are consistent with the Kreps-Porteus

framework and look for classes of preferences that ful�ll ordinal dominance and are prop-

erly suited to study risk aversion. Our representation results show that there is a single

class of preferences that ful�ll these requirements. These preferences are represented by

utility functions Vt solving the following recursion (t ≥ 0):

Vt =

{
(1− β)u(ct)− β

k log(Em
[
e−kVt+1

]
) if k 6= 0,

(1− β)u(ct) + βEm[Vt+1] if k = 0,
(1)

where β and k are two real scalars, u is an increasing real function, and Em[·] is the

expectation with respect to a measure m. The parameter k determines the degree of risk

aversion: a larger k is associated with a greater aversion for (marginal or non-marginal)

increases in risk. This class of so-called risk-sensitive preferences corresponds to the one

introduced by Hansen and Sargent (1995) in their approach to robustness analysis. As

noted by Tallarini (2000) and Hansen and Sargent (2007), this class intersects the Epstein-

Zin isoelastic preferences, when u is a log function (i.e., the intertemporal elasticity of

substitution is one) or when k = 0 and u is isoelastic.3 Otherwise, risk-sensitive and

Epstein-Zin preferences are of di�erent natures.

In order to illustrate the gains of using a well-ordered speci�cation in terms of risk

aversion, we develop two applications. In the �rst one, we investigate how risk aversion

a�ects the risk-free rate and the market price of risk in a simple endowment economy.

Relying on risk-sensitive preferences, de�ned by the recursion (1), we prove that, under

fairly general conditions, a greater risk aversion means a lower risk-free rate and a larger

market price of risk. Such a �nding has clear-cut consequences when discussing key issues

such as the choice of a proper social discount rate to evaluate public policy. In particular,

the social discount rate should covariate negatively with the planner's risk aversion.

The second application focuses on risk sharing in a closed economy, in which two price-

taker agents endowed with risk-sensitive preferences face an identical risk. The market

equilibrium is characterized by a risk transfer from the less risk averse agent to the more

risk averse agent, implementing therefore an intuitive risk reallocation.

3The latter case also corresponds to the expected utility with time-separable preferences.
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The remainder of the paper is organized as follows. In the next section, we expose

the setting. Section 3 formalizes the notion of ordinal dominance and provides two rep-

resentation results related to recursive preferences ful�lling ordinal dominance. These

representation results can be viewed as the core contributions of the paper. Section 4

discusses the notion of comparative risk aversion and shows that preferences obtained in

Section 3 are well-ordered in terms of risk aversion. Section 5 deals with applications and

explores the role of risk aversion in an endowment economy and for risk sharing in a general

equilibrium setup. Section 6 discusses further properties of risk-sensitive preferences and

compares them with Epstein-Zin preferences. Section 7 concludes.

2 The setting

2.1 Preference domain

We consider preferences de�ned over the set of temporal lotteries in an in�nite horizon

setting. Time is discrete and indexed by t = {0, 1, . . .}. For the sake of simplicity, we

assume that per-period consumption is bounded. We note C = [c, c] ⊂ R++ the set of

possible instantaneous consumptions at any date t, where 0 < c < c. C is a compact Polish

space. We denote by C∞ the set of possible deterministic consumption paths, which is

also a compact Polish space (by Tychono�'s theorem). We construct the set of temporal

lotteries following Kreps and Porteus (1978) and Epstein and Zin (1989). Wakai (2007)

also provides a detailed and precise construction of a similar consumption space.

More precisely, we de�ne D0 as the set of all singleton subsets of C∞(with a slight

abuse of notation, D0 = C∞). Then, for all t ≥ 1 , we de�ne Dt by induction with:

Dt = C ×M(Dt−1),

where M(Dt−1) is the space of probability measures on Dt−1 endowed with the Prohorov

metric (metric of weak convergence).4 It can be noticed that for all t,Dt ⊂ Dt+1. Moreover,

we know that by induction all sets Dt are compact Polish spaces. The space of temporal

lotteries D is then de�ned by:

D = {(d1, . . . , dt, . . .) : ∀t ≥ 1, dt ∈ Dt and dt = gt(dt+1)} , (2)

where gt : Dt+1 → Dt is a projection on Dt, formally de�ned in Epstein and Zin (1989).

4More generally, for any metric space X, M(X) denotes the space of Borel probability measures on X
endowed with the weak convergence topology.
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To make it short, for all dt+1 ∈ Dt+1, the temporal lottery gt(dt+1) ∈ Dt generates the

same distribution of outcomes as dt+1 but the uncertainty vanishes in period t instead of

period t+ 1. The space D de�ned by (2) can be shown to be a compact Polish space and

homeomorphic to C ×M(D). Moreover, the set
⋃
t≥0Dt is dense in D.

For practical purposes, we introduce two notations that will be useful in the remainder

of the paper. First, since we often consider constant consumption paths, we denote by c∞

the element of C∞ providing the same consumption c ∈ C in every period. Second, for

any t ≥ 0, we de�ne the set ∆t by:

∆t =
⋃
τ≥0

Cτ ×Dt. (3)

While the set Dt gathers lotteries for which the uncertainty is resolved prior to the

beginning of period t, the set ∆t contains lotteries for which the uncertainty is resolved

within at most t successive periods (between period τ + 1 and period τ + t for some

τ ≥ 0). Lotteries in ∆t may therefore include an arbitrary number of initial periods

with a deterministic consumption before the uncertainty resolves. By construction, the

set ∆0 = D0 = C∞ is the set of deterministic consumption paths that we denote C∞

throughout the paper for the sake of clarity. It is also straightforward to check that

∆t ⊂ ∆t+1 for all t and that
⋃
t≥0 ∆t =

⋃
t≥0Dt. The set

⋃
t≥0 ∆t is thus dense into D.

2.2 Recursive Kreps-Porteus preferences

Our paper explores the set of recursive preferences de�ned on D that �ts into the frame-

work introduced by Kreps and Porteus (1978). We restrict our attention to monotonic

preferences. The elements c∞ and c∞ of D therefore provide respectively the lowest and

highest levels of utility. By utility normalization, there is no loss of generality in assuming

that a utility function U de�ned on D needs to ful�ll U(c∞) = 0 and U(c∞) = 1. This

leads to the following formal de�nition:

De�nition 1 (Kreps-Porteus recursive preferences) A utility function U : D → [0, 1],

such that U(c∞) = 0 and U(c∞) = 1 is said to be Kreps-Porteus recursive (henceforth KP-

recursive) if and only if there exists a continuously di�erentiable function W : (x, y) ∈
C× [0, 1] 7→W (x, y) ∈ [0, 1] with strictly positive partial derivatives Wx and Wy, such that

for all c0 ∈ C and m ∈M(D) :

U(c0,m) = W (c0, Em[U ]), (4)
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where Em[·] denotes the expectation with respect to the probability measure m.

The function W will be called an admissible aggregator for the KP-recursive utility

function. Moreover, a preference relation on D will be said to be KP-recursive if and only

if it can be represented by a KP-recursive utility function.

The most common example of KP-recursive utility function is the additive separable one:

U(c0,m) = (1− β)Em

[
+∞∑
i=0

βiu(ci)

]
,

where 0 < β < 1 and u : C → [0, 1] is a continuously di�erentiable function such that

u(c) = 0, u(c) = 1 and u′ > 0. For this additively separable speci�cation, equation (4)

holds when:

W (x, y) = (1− β)u(x) + βy. (5)

Another famous example of KP-recursive preferences is the Epstein-Zin isoelastic prefer-

ences, usually represented by utility functions ful�lling the following recursion (see Epstein

and Zin (2001) for example):5

V (c,m) =



[
(1− β)cρ + β(Em[V α])

ρ
α

] 1
ρ

if 0 6= ρ < 1, α 6= 0,

exp
(

(1− β) log(c) + β
α log(Em[V α])

)
if ρ = 0, α 6= 0,

[(1− β)cρ + β exp(ρEm[log(V )])]
1
ρ if 0 6= ρ < 1, α = 0,

exp ((1− β) log(c) + βEm[log(V )])) if ρ = α = 0,

(6)

with 0 < β < 1. The utility function V (c,m) is not KP-recursive in the sense of De�nition

1, but an equivalent representation obtained by choosing:6

U(c,m) =


V (c,m)α − cα

cα − cα
if α 6= 0,

log(V (c,m))− log(c)

log(c̄)− log(c)
if α = 0,

5The cases where α or ρ are equal to zero can be obtained as limit cases of the general one (α 6= 0 and
ρ 6= 0). We provide their explicit formulations because this makes it easier to see the link with risk-sensitive
preferences that are introduced later on.

6In the remainder of the paper, V refers to a non-normalized utility function, while U refers to a
normalized one.
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ful�lls the requirements of De�nition 1 with the following aggregator:

W (x, y) =



(
(1− β)xρ + β [y (cα − cα) + cα]

ρ
α

)α
ρ − cα

cα − cα
if 0 6= ρ < 1, α 6= 0,

exp (α(1− β) log(x) + β log(y (cα − cα) + cα))− cα

cα − cα
if ρ = 0, α 6= 0,

1
ρ log

(
(1− β)xρ + βc̄ρycρ(1−y)

)
− log(c)

log(c̄)− log(c)
if 0 6= ρ < 1, α = 0,

(1− β)
log(x)− log(c)

log(c̄)− log(c)
+ βy if ρ = α = 0,

(7)

Even though the above examples (standard additive expected utility and Epstein-Zin pref-

erences) are only two particular cases among a number of other possibilities, they are by

far the most widely used in economics. However, they are inappropriate to study the role

of risk aversion.7

Our purpose in the current paper is to look for classes of KP-recursive preferences that

ful�ll ordinal dominance and are suitable to discuss the role of risk aversion. We prove that

this leads to preferences that can be represented by a utility function V (c,m) ful�lling:

V (c,m) =

{
(1− β)u(c)− β

k log(Em
[
e−kV

]
) if k 6= 0,

(1− β)u(c) + βEm[V ] if k = 0,
(8)

for some function u. This speci�cation was �rst introduced in Hansen and Sargent (1995)

as a tractable way to have a risk-adjusted measure of cost in a problem of optimal con-

trol. In Hansen, Sargent and Tallarini (1999), such a speci�cation was used to represent

the preferences of robust decision makers.8 Due to the parallel between robustness and

risk-sensitivity analysis, which is discussed in Hansen, Sargent and Tallarini (1999), these

preferences might indi�erently be called robust preferences or risk-sensitive preferences.

Along the paper, we use the latter terminology (risk-sensitive preferences), which is more

commonly used in the recent literature, as for example in the survey of Backus, Rout-

ledge and Zin (2005).9 Here again, the utility representation in (8) does not ful�ll the

7See Bommier, Chassagnon and Le Grand (2012).
8�Robust agents� worry about possible model misspeci�cations, and account for them in their decisions.

Hansen and Sargent (2007) provide a self-contained description of robustness applications in economics.
9The terminology robust preferences is now more often used to refer to max-min preferences.
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requirements of De�nition 1. But the utility function U de�ned by:

U(c,m) =


e−kV (c,m) − e−ku(c)

e−ku(c) − e−ku(c)
if k 6= 0,

V (c,m)− u(c)

u(c)− u(c)
if k = 0,

represents the same preferences as V and ful�lls De�nition 1 requirements with the aggre-

gator:

W (x, y) =


e−k(1−β)(u(x)−u(c))

[
1 + y(e−k(u(c)−u(c)) − 1)

]β − 1

e−k(u(c)−u(c)) − 1
if k 6= 0,

(1− β)
u(x)− u(c)

u(c)− u(c)
+ βy if k = 0,

(9)

Choosing u(c) = log(c) in equation (9) yields exactly the same aggregator as in (7) with

ρ = 0 and α = −k. Thus, when the intertemporal elasticity of substitution is equal to one,

Epstein-Zin preferences and risk-sensitive preferences coincide with each other, as was no-

ticed by Tallarini (2000) for example. The class of risk-sensitive preferences also intersects

with Epstein-Zin's one when k = 0 and u is isoelastic and concave. This corresponds to

the standard additively separable model with a constant positive intertemporal elasticity

of substitution. In all other cases, risk-sensitive preferences di�er from Epstein-Zin's ones.

We now introduce the notion of ordinal dominance and show how it restricts our at-

tention to risk-sensitive preferences.

3 Recursive preferences ful�lling ordinal dominance

3.1 De�nition of ordinal dominance

The basic idea of ordinal dominance is that an individual should not prefer a lottery that is

stochastically dominated at the �rst order by another one. When considering �atemporal

uncertainty setting� � in the sense that uncertainty is always resolved with the same timing

� the notion of ordinal dominance is relatively standard and can be found for example in

Chew and Epstein (1990).

In order to de�ne �rst order stochastic dominance over temporal lotteries, we proceed

by induction on the sets ∆t for t = 0, 1, . . . for which the uncertainty is resolved in t

consecutive periods of time, between dates τ + 1 and t + τ for some τ ≥ 0. For sake

of simplicity, a typical element of ∆t (t ≥ 1) is still denoted (c,m), where c ∈ Cτ+1 for

some τ ≥ 0 and m ∈ M(Dt−1). The set C∞ = ∆0 of deterministic consumption paths
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is assumed to be endowed with a preference relation �0. We de�ne a notion of ordinal

dominance FSD1 on ∆1 as follows:
∀ ((c,m), (c′,m′)) ∈ ∆1 ×∆1, (c,m) FSD1 (c′,m′)⇔

c, c′ ∈ Cτ for some τ ≥ 1 and

∀x ∈ C∞, m ({x′ ∈ C∞|(c, x′) �0 x}) ≥ m′ ({x′ ∈ C∞| (c′, x′) �0 x})

(10)

By construction of FSD1, comparisons are restricted to lotteries that have an identical

timing of resolution of uncertainty. The de�nition of FSD1 states that a temporal lottery

in ∆1 dominates at the �rst order another temporal lottery in ∆1 with the same timing

of uncertainty resolution if for any outcome x ∈ C∞, the probability that a realization

of (c,m) is preferred to x is greater than the probability that a realization of (c′,m′) is

preferred to x. This de�nition of �rst order stochastic dominance is the same as that of

Chew and Epstein (1990).

To extend this �rst order dominance relationship to all ∆t, we proceed as follows:

Given a relation of �rst order stochastic dominance FSDt on ∆t, we de�ne a relation of

�rst order stochastic dominance FSDt+1 on ∆t+1 as follows (t ≥ 1):
∀ ((c,m), (c′,m′)) ∈ ∆t+1 ×∆t+1, (c,m) FSDt+1 (c′,m′)⇔

c, c′ ∈ Cτ for some τ ≥ 1 and

∀x ∈ ∆t, m ({x′ ∈ Dt|(c, x′) FSDt x}) ≥ m′ ({x′ ∈ Dt|(c′, x′) FSDt x})

(11)

The interpretation of (11) is very similar to the de�nition of FSD1 in (10), except that for

FSDt+1, we compare probabilities that lottery realizations of (c,m), which are elements

of ∆t, �rst order dominate a given x ∈ ∆t. Actually, the de�nition (10) can be seen as a

particular case of the recursive de�nition (11), where FSD0 is set equal to �0. Moreover,

it is straightforward to check that if for some t ≥ 0 we have x, y ∈ ∆t such that xFSDty

then we also have xFSDt+1y. The partial order FSDt+1 can therefore be considered as

an extension of FSDt making it possible to compare elements of ∆t+1.

Our relation of stochastic dominance only depends on preferences over deterministic

outcomes. As a consequence, two agents endowed with the same ordinal preferences always

agree on whether a temporal lottery stochastically dominates another one, a property that

turns out to be essential for comparing risk aversion. Nevertheless, since the notion of

stochastic dominance may depend on ordinal preferences, we readily implicitly admit that

risk aversion is only comparable among agents that have the same ranking over determin-
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istic consumption paths. In that respect, we follow most of the literature on comparative

risk (and ambiguity) aversion, including Kilhstrom and Mirman (1974), Epstein and Zin

(1989), Chew and Epstein (1990) and Klibano�, Marinacci, and Mukerji (2009).

By construction, our de�nition of �rst order stochastic dominance is only valid for

lotteries that resolve in a �nite amount of time, but as
⋃
t≥0 ∆t =

⋃
t≥0Dt is dense into

D, it is su�cient to de�ne a strong enough notion of ordinal dominance:

De�nition 2 (Ordinal dominance) Consider a relation of preferences � on D. Denote

�0 its restriction to C∞, from which the relations of �rst order stochastic dominance FSDt

are de�ned as in (10) and (11). The relation of preferences � is said to ful�ll ordinal

dominance, if for all t ≥ 0 and all (c,m) and (c′,m′) ∈ ∆t, the following implication holds:

(c,m) FSDt (c′,m′)⇒ (c,m) � (c′,m′).

Ordinal dominance imposes some coherence between the relation of preferences � and

its restriction �0 to the set of deterministic consumption space C∞; or, put di�erently,

between risk preferences and ordinal preferences. However, this remains quite a minimal-

ist assumption and simply states that an individual prefers a lottery which stochastically

dominates another one at the �rst order. In the expected utility framework, ordinal domi-

nance is equivalent to assuming that the von-Neumann Morgenstern utility index (used to

compute expected utility) is non-decreasing with respect to the order that is used to de�ne

�rst order stochastic dominance. In dimension one, with preferences over lotteries with

outcomes in R+ (endowed with its natural order), ordinal dominance involves assuming

that the utility index is a non-decreasing function.

The property of ordinal dominance seems to be no less desirable for temporal lotteries,

even if its expression is less obvious. In particular, the monotonicity of the aggregator W ,

assumed in De�nition 1, is not su�cient to ensure that preferences ful�ll ordinal dominance.

For example, Chew and Epstein (1990) explain that Epstein-Zin isoelastic preferences do

not ful�ll ordinal dominance, though the aggregator is monotonic. Bommier, Chassagnon

and Le Grand (2012), as well as Section 6.2 of the current paper highlight some counter-

intuitive results derived when preferences do not ful�ll ordinal dominance.

3.2 Representation results

The present section sets forth two representation results, a�ording the paper's central

contribution. The �rst result shows that imposing recursivity and ordinal dominance

readily leaves us with a small set of KP-recursive preferences.
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Proposition 1 (Representation result) A KP-recursive preference relation ful�lls or-

dinal dominance if and only if it can be represented by a KP-recursive utility function that

admits an aggregator W : (x, y) ∈ C × [0, 1] 7→W (x, y) ∈ [0, 1] taking one of the following

forms:

1.

W (x, y) = a(x) + b(x)y, (12)

where a, b : C → [0, 1] are two continuously di�erentiable functions such that a(c) =

0, a(c) + b(c) = 1 and for all x ∈ C, a′(x) > 0, a′(x) + b′(x) > 0 and 0 < b(x) < 1.

2.

W (x, y) =
1− e−k(1−β)u(x)(1− (1− e−k)y)β

1− e−k
, (13)

where 0 < β < 1, k 6= 0 and u : C → [0, 1] is a continuously di�erentiable function

with a strictly positive derivative such that u(c) = 0 and u(c) = 1.

Moreover, for any such aggregator, there corresponds a unique KP-recursive preference

relation.

Proof: See appendix.

Preferences obtained with (12) are in fact of the expected utility kind and correspond

to those introduced in continuous time by Uzawa (1968), and discussed further in discrete

time by Epstein (1983). Preferences obtained with the aggregator (13) correspond to risk-

sensitive preferences. Moreover, in the limit case when k approaches zero, the aggregator

(13) converges to the one in (12) with a constant function b and therefore leads to the class

of additively separable utility functions.

Proposition 1 shows that imposing ordinal dominance leads us to restrict our attention

to preferences à la Uzawa or to risk-sensitive preferences. However, preferences à la Uzawa

turn out to be of little help in studying the role of risk aversion, as they do not make it

possible to disentangle ordinal and risk preferences. Indeed, the following result shows that

risk-sensitive preferences are the only potential candidates to study risk aversion.

Proposition 2 (Comparability of preferences) Consider two KP-recursive preference

relations �A and �B on D, which ful�ll the ordinal dominance property and whose restric-

tions on C∞ are identical. Then:

� either both preference relations are identical: �A =�B,
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� or preferences relations �A and �B can be represented with KP-recursive utility

functions, with admissible aggregators WA and WB such that for i = A,B and

(x, y) ∈ C × [0, 1]:

W i(x, y) =

{
1−exp(−ki(1−β)u(x))(1−y(1−e−ki ))β

1−e−ki , ki 6= 0,

(1− β)u(x) + βy, ki = 0,

where 0 < β < 1, kA, kB ∈ R and u : C → [0, 1] is a continuously di�erentiable

function with a strictly positive derivative and u(c) = 0, u(c) = 1.

Proof: See appendix.

Proposition 2 shows that imposing ordinal dominance and non-trivial comparability of

preferences reduces the sets of possible aggregators to those of risk-sensitive preferences.

The class of risk-sensitive preferences is thus the only one � within the set of KP-recursive

preferences � that may provide an appropriate basis to study the role of risk aversion.

One aspect of risk-sensitive preferences is that they are weakly separable, providing

over C∞ the same ranking as the standard additive utility function with constant dis-

counting.10 Interestingly enough, this property of weak separability was not introduced

as an assumption � as it was for example in Epstein and Zin (1989), Chew and Epstein

(1990) or Klibano�, Marinacci, and Mukerji (2009). However, it is found to be a necessary

condition to study the role of risk aversion while assuming preference stationarity. Fur-

ther insight into why weak separability of preferences is a pre-requisite for comparing risk

aversion of stationary preferences will be provided in Section 6.1.

The result of Proposition 2 is obtained without making precise statements regarding

the meaning of comparative risk aversion. We now show that risk-sensitive preferences

are indeed well-ordered in terms of risk aversion, even though we use strong notions of

comparative risk aversion such as the one in Bommier, Chassagnon and Le Grand (2012).

4 Comparative risk aversion

As explained for instance in Chateauneuf, Cohen, Meijilson (2004), di�erent notions of

risk increases are associated with di�erent notions of risk aversion, and may possibly yield

di�erent characterizations for utility functions. Similarly, di�erent riskiness comparisons

generate di�erent notions of comparative risk aversion. We formalize the link between any

risk relation and its corresponding notion of comparative risk aversion as follows:

10The restriction of risk-sensitive references to C∞ are represented by the utility function U0(c0, c1, ...) =
(1− β)

∑+∞
t=0 β

tu(ct).
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De�nition 3 (Comparative risk aversion) Consider a binary relation R (�riskier than�)

de�ned over the set of temporal lotteries D. For any two preference relations �A and �B

on D, the preference relation �A on D is said to exhibit greater (R)�risk aversion than

�B if and only if for all (c,m) and (c′,m′) in D we have:

(
(c,m) R (c′,m′) and (c,m) �A (c′,m′)

)
⇒ (c,m) �B (c′,m′).

This procedure for de�ning comparative risk aversion from a riskiness relation can be

attributed to Yaari (1969), even if Yaari only applied it to a very particular relation �riskier

than� (the relation RM introduced below). It was used in many theoretical contributions

discussing the de�nition of risk (or inequality) aversion, including Grant and Quiggin (2005)

or Bosmans (2007). Intuitively, if an agent A is more risk averse than B, any increase in

risk perceived as worthwhile by A should also be perceived as worthwhile by B. One may

apply this procedure to di�erent notions of increase in risk, that is to di�erent relations

R. One possibility consists in focusing, as in Yaari (1969) and most of the subsequent

literature, on comparisons between lotteries where at least one is degenerate and embeds

no uncertainty (i.e., pays o� a given outcome for sure).

De�nition 4 (Minimalist risk comparison RM) We de�ne the binary relation RM as

follows:

∀(c,m), (c′,m′) ∈ D, (c,m) RM (c′,m′) ⇔ (c′,m′) ∈ C∞.

This notion of comparative riskiness is the most minimalist one (from there the de-

nomination RM taken from Bosmans, 2007). It states that all degenerate lotteries, with

no risk, are minimal elements in terms of the relation �riskier than�. However, it excludes

any comparison between two non-degenerate lotteries. The risk comparison RM does not

enable us to consider small variations in risk around a non-degenerate lottery. As a con-

sequence, when using risk comparison RM , the notion of marginal risk variations does not

make sense.

Applying De�nition 3 to the risk comparison RM , which in fact involves focusing on

certainty equivalents, is by far the most common way in the economic literature of de�ning

comparative risk aversion. Kilhstrom and Mirman (1974), Epstein and Zin (1989), and

Chew and Epstein (1990) for example, opt for this solution. We have the following result:

Proposition 3 (Weak comparative risk aversion) Consider two KP-recursive utility

functions UA and UB with aggregators WA and WB given by (i = A,B and (x, y) ∈
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C × [0, 1]):

W i(x, y) =

{
− exp(−ki(1−β)u(x))(1−y(1−e−ki ))β−1

1−e−ki , ki 6= 0,

(1− β)u(x) + βy, ki = 0,
(14)

with kA, kB ∈ R, 0 < β < 1, and u : C → [0, 1] a strictly increasing continuously derivable

function.

If kA ≥ kB, then the preferences represented by UA exhibit more (RM )-risk aversion

than the preferences represented by UB.

Proof: In appendix.

Proposition 3 tells us that the class of risk-sensitive preferences is well-ranked in terms

of risk aversion, at least when using the less demanding (and also the most common) notion

of comparative risk aversion. A similar property also holds with Epstein-Zin preferences.

Paralleling the terminology of Chateauneuf, Cohen, Meijilson (2004), we say that risk-

sensitive preferences, as well as Epstein-Zin preferences, are weakly well-ordered in terms

of risk aversion. Focusing on the relation RM , and the associated notion of comparative risk

aversion, seems however minimal since RM does not make it possible to consider marginal

variations in risk and therefore aversion for marginal increases in risk. Such marginal risk

variations may be important for applied problems, such as portfolio choices.

In order to be able to consider marginal risk variations, a risk relation that is less

incomplete than RM has to be considered. The literature on unidimensional lotteries

suggests many notions of risk increases allowing for marginal comparisons. The most

popular are those related to mean preserving spreads, second order stochastic dominance,

or to Bickel-Lehman (1976) dispersions. A common drawback of these notions is that they

are not invariant to a non-linear rescaling of the outcome space. Indeed, they assume that

the set of outcomes is not only ordered but also admits a particular cardinalization. Using

these notions for lotteries with outcomes in C∞ would require C∞ to be endowed with a

given cardinalization, which would look arbitrary. Instead, in line with Jewitt (1989) or

Bommier, Chassagnon and Le Grand (2012), we suggest using the single crossing of the

cumulative distribution function as an indicator of an unambiguous increase or decrease in

risk. Single crossing being una�ected by a monotonic rescaling, the associated risk relation

depends only on the order of C∞, that is on preferences under certainty. This leads to the

following de�nition:

De�nition 5 (Extended risk comparison RSC) Consider a relation of preferences �0

over C∞ which is used to de�ne the relation of �rst order stochastic dominance FSD1 as
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in (10).

For (c,m) and (c′,m′) ∈ D, we state that (c,m)RSC(c′,m′) if (c′,m′) ∈ C∞ or (c,m)

and (c′,m′) ∈ ∆1 and there exist p ∈ [0, 1] and m0, m
′
0, m1, m

′
1∈M(C∞) such that:

(c,m) = p(c,m0)⊕ (1− p)(c,m1), (15)

(c′,m′) = p(c′,m′0)⊕ (1− p)(c′,m′1), (16)

where ⊕ denotes the mixture operator, and:

(
m′0 ×m′1

)
{(x0, x1) ∈ C∞ × C∞|(c′, x1) �0 (c′, x0)} = 1, (17)

so that the probability that an outcome of m1 �rst order dominates an outcome of m0 equals

1, and the same holds for m′1 and m′0, and:

(c′,m′0) FSD1 (c,m0),

(c,m1) FSD1 (c′,m′1).

Intuitively, a lottery (c,m) is said to be riskier than a lottery (c′,m′), either if this

latter is with no risk, or if we can decompose each lottery into a two stage lottery, where

in the �rst stage a random draw decides whether a �bad lottery� (i.e., (c,m0) or (c′,m′0))

or a �good lottery� (i.e., (c,m1) or (c′,m′1)) is played at the second stage. Moreover, these

lotteries must have the following properties: (i) outcomes of bad lotteries are always worse

than outcomes of good lotteries; (ii) conditional on playing a bad lottery, (c,m) is worse

than (c′,m′) in terms of �rst order stochastic dominance, while conditional on playing a

good lottery, the contrary holds; (iii) the outcomes of good and bad lotteries are riskless

(i.e., elements of C∞). In the end, (c,m) is worse than (c′,m′) in bad cases, but better

than (c′,m′) in good cases, which makes it intuitive that (c,m) is riskier than (c′,m′).

By de�nition, the risk comparison RSC depends on the preferences �0 over C∞, the

set of deterministic consumptions paths. People with di�erent views on the ranking of

deterministic consumption paths would therefore have diverging views on whether one

lottery is riskier than another one. Indeed, agents need to be able to compare pay-o�s

of lotteries before assessing the risk of lotteries. When pay-o�s are unidimensional, the

comparison is trivial, but when pay-o�s are consumption vectors, their comparison may be

a matter of taste, embedded within the preference relation �0 (a similar discussion can be

found in Kihlstrom and Mirman, 1974). However, the risk comparison RSC is independent

of any speci�c utility representation for �0, and in particular from any cardinalization. It
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therefore relies exclusively on aspects of preferences that can be revealed by choices under

certainty.

The relationRSC extends the relationRM since (c,m)RM (c′,m′)⇒ (c,m)RSC (c′,m′).

However, this risk relation RSC is still relatively minimal, as it does not allow elements,

which are neither in C∞ nor in ∆1 to be compared. Focusing on this extension avoids

controversial issues related to the comparison, in terms of riskiness, of temporal lotteries

whose outcomes are themselves risky objects. Moreover, it is su�cient to highlight some

crucial di�erences between our framework and more conventional ones.

Proposition 4 (Strong comparative risk aversion) Consider two KP-recursive util-

ity functions UA and UB with aggregators WA and WB as in Proposition 3 (i.e., risk-

sensitive preferences with kA ≥ kB). Then, the preferences represented by UA exhibit more

(RSC)-risk aversion than the preferences represented by UB.

Proof: See appendix.

This proposition establishes that risk-sensitive preferences obtained in Proposition 2

are well-ordered in terms of risk aversion, even if we use the stronger notion of compar-

ative risk aversion based on the risk comparison RSC . Consistent with the terminology

suggested above, we state that risk-sensitive preferences are strongly well-ordered in terms

of risk aversion, a property which is not shared with Epstein-Zin preferences (unless the

intertemporal elasticity of substitution is equal to one).11

As risk-sensitive preferences are strongly well-ordered in terms of risk aversion, we may

expect them to lead to intuitive conclusions as to the role of risk aversion when applied,

for example, to asset pricing or risk sharing. Such applications are developed in the next

section. We do indeed obtain meaningful results regarding the impact of risk aversion. In

Section 6.2, we also report that addressing the same applications with preferences, which

are weakly, but not strongly, well-ordered in terms of risk aversion, may lead to counter-

intuitive conclusions.

5 Applications

In order to illustrate how risk-sensitive preferences yield intuitive conclusions regarding

the role of risk aversion, we develop two simple applications. The �rst relates to the risk

11A formal proof that Epstein-Zin preferences assuming an intertemporal elasticity of substitution di�er-
ent from one are not strongly well-ordered in terms of risk aversion can be found in Bommier, Chassagnon
and Le Grand (2012).
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free rate and the risk premium in a random endowment economy. The second concerns

risk sharing in general equilibrium.

5.1 The risk free rate and the risk premium

We consider a random endowment economy in which ct is random at each date (but typi-

cally not independently distributed). We focus on the risk free rate and the risk premium.

More precisely, we compute the pricing kernel generated by risk-sensitive preferences and

show that its mean (i.e., the inverse of the gross risk free rate) and the ratio of its standard

deviation to its mean (i.e., one major driver of the risk premium as notably illustrated by

the Hansen-Jagannathan (1991) bound) increases with risk aversion.

In the risk-sensitive approach, the utility at any date t can be expressed as follows:12

Vt = (1− β)u(ct)−
β

k
log(Et

[
e−kVt+1

]
), (18)

where Et[·] is the expectation conditional on the information available at date t (i.e., the

σ-algebra generated by the process cτ for 0 ≤ τ ≤ t).
The pricing kernelMt,t+1, which is the intertemporal rate of substitution between dates

t and t+ 1, can be expressed as follows for risk-sensitive preferences (equation (18)):

Mt,t+1 = β
u′(ct+1)

u′(ct)

exp(−kVt+1)

Et[exp(−kVt+1)]
(19)

From the pricing kernel, we readily deduce the (gross) risk free rate R−1
t = Et[Mt,t+1]

and the market price of risk equal to
σt(Mt,t+1)
Et[Mt,t+1] , where σt(Mt,t+1) denotes the standard

deviation ofMt,t+1 conditional on the information available at date t. We have the following

proposition regarding the impact of risk aversion on the risk free rate and market price of

risk.

Proposition 5 (Endowment economy) We assume that: (i) k > 0; (ii) at any date t,

ct, Vt, and
Et[Vt+1e

−kVt+1 ]

Et[e−kVt+1 ]
are (weakly) comonotonic;13 (iii) at any date t, the utility Vt+1

conditional on date t information admits a density de�ned on a compact set of R. Then,

a larger risk aversion through a larger k in (18) implies:

� a smaller risk free rate,

� and a larger market price of risk.

12For sake of clarity, we conduct applications using non-normalized utility functions V (equation (8)).
13Two random variables X and Y are (weakly) comonotonic if there exists a non-decreasing function f

such that X = f(Y ) or Y = f(X).
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Proof: In appendix.

The assumption regarding the compact support of Vt+1 is only a technicality ensuring

the existence of all moments. We could also assume a more general distribution, while

supposing that all considered moments do exist. Since the fraction Et[Vt+1e
−kVt+1 ]

Et[e−kVt+1 ]
is a

weighted expectation of future utility, the assumption of comonotonicity in Proposition 5

means that good news for consumption in period t cannot be bad news for the utility Vt in

period t and for the (weighted) expected future utility. Such an assumption is for example

always ful�lled when there is only one risky period or when the (cτ )τ≥0 are independently

distributed, and also holds for many random growth models. However, it may fail if, for

example, a high consumption in period t indicates that the period t+ 1 is likely to be bad.

Out of these particular cases, risk aversion in the risk-sensitive preference framework has

a �natural� e�ect on the risk free rate and the market price of risk. If the agent is more

risk averse, he is willing to pay more to transfer resources from a certain state of the world

(today) to an uncertain one (tomorrow), which raises the price of riskless savings and thus

reduces the riskless interest rate. By the same token, a more risk averse agent requires a

larger discount to hold a risky asset, which increases the market price of risk.

The results of Proposition 5 also have interesting consequences when discussing policy

issues. For example, the on-going debate as to the cost of climate change is strongly

in�uenced by the choice of the appropriate discount rate, and on how the risk and the

planner's risk aversion a�ect this rate. Our result clearly states that the more risk averse

the planner, the lower the discount rate.

As will be seen in Section 6.2, the results of Proposition 5 do not always hold for

Epstein-Zin preferences.

5.2 Risk sharing

In this section, we consider a simple risk sharing problem.14 The in�nite-horizon economy

is populated by two agents denoted A and B. They are endowed at date 0 with the certain

income y0. The income at all future dates is random but constant throughout the di�erent

dates. Formally, all revenues after date 1 are identical and equal to the realization of a

single real random variable ỹ, which is unknown from the date 0 perspective. There is

therefore no uncertainty after date 1 and only one aggregate income risk ỹ, which applies

to both agents. We assume that ỹ may take either the value yh with probability η ∈ (0, 1)

or the value yl < yh with probability 1− η.15

14Anderson (2005) considers more complex risk sharing problems with risk-sensitive preferences.
15This simple risk structure is su�cient to deliver signi�cant di�erences with Epstein-Zin preferences.
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At date 0, agents can share risk through a market of assets. All assets are in zero

net supply. We do not need to further specify asset markets, which may be complete

or incomplete or include redundant assets. Agents have a symmetric access to markets,

which implies that any asset trade available for one agent is also available for the other

agent. As usual, a market equilibrium is de�ned as a combination of asset prices and

individual demands, such that (i) individual demands are optimal choices for price-taker

agents (individual rationality); (ii) all assets are in zero aggregate demand (market clearing

conditions).

Agents A and B are endowed with risk-sensitive preferences. They have the same

ordinal preferences but di�er with respect to the risk aversion parameter. The utility

V i
0 of an agent i = A,B at date 0, consuming the amount ci0 at date 0 and having the

continuation utility V i
1 can be expressed as follows: V i

0 = (1−β)u(ci0)− β
ki

log(E0

[
e−kiV

i
1

]
),

where 0 < β < 1 is the constant time discount factor, identical for both agents. The

function u, common for both agents, is assumed to be strictly concave, which is consistent

with a positive intertemporal elasticity of substitution.

At date 1, there is no uncertainty and agents maximize their intertemporal utility

(1 − β)
∑

t≥1 β
t−1u(cit), subject to per-period budget constraints. The resulting utility is

the indirect utility denoted Ω(w̃i), which depends only upon the agent i's wealth w̃i at

date 1. The tilde highlights that the wealth is uncertain from a date 0 perspective. Since

agents A and B have the same time discount factor β and the same instantaneous utility

u, they have the same indirect utility function. In consequence, the utility V i
0 of an agent

i = A,B at date 0, consuming ci0 at date 0 and having wealth w̃i at date 1 can be expressed

as follows:

V i
0 = (1− β)u(ci0)− β

ki
log(E0

[
e−kiΩ(w̃i)

]
).

The ex-post lifetime utility V i
s obtained in state s = h, l by the agent i consuming ci0

in period 0 and endowed with the wealth wis at date 1 is:

V i
s = (1− β)u(ci0) + βΩ(wis), s = h, l.

The following result describes how asset trading in general equilibrium impacts agents'

ex-post preferences.

Proposition 6 (Risk sharing with risk-sensitive preferences) We consider two

agents A and B endowed with risk-sensitive preferences. A is assumed to be more risk

averse than B, who is also more risk averse than the temporal risk neutral agent: kA ≥
kB ≥ 0. They are interacting in the economy described above.

19



We denote V i
l and V i

h the equilibrium ex-post utilities of agent i in states l and h, and

V aut
l and V aut

h the ex-post utilities agents would get in autarky (i.e., in absence of trade).

Then, the market general equilibrium is such that:

V B
l ≤ V aut

l ≤ V A
l ≤ V A

h ≤ V aut
h ≤ V B

h (20)

Proof: In appendix.

Proposition 6 states that the more risk averse agent is better o� than the less risk

averse in the bad state of the world, while the contrary holds in the good state of the

world. Moreover, compared to the no-trade allocation, the market equilibrium allocation

is riskier for the less risk averse individual (V B
l ≤ V aut

l ≤ V aut
h ≤ V B

h ), and less risky for

the more risk averse individual (V aut
l ≤ V A

l ≤ V A
h ≤ V aut

h ). The equilibrium asset trade

therefore generates a risk transfer from the more risk averse agent to the less risk averse

agent, which is consistent with economic intuition. We will again see in Section 6.2 that

the results does not hold with Epstein-Zin preferences.

6 Discussion

In this section, we discuss certain aspects of risk-sensitive preferences, and also explain

how they compare with Epstein-Zin preferences.

6.1 Preference for timing, homotheticity and utility independence

As is explained in Kreps and Porteus (1978), concavity (or convexity) with respect to the

second argument of the aggregator in De�nition 1 dictates: (i) preference for the timing

of resolution of uncertainty and (ii) whether risk aversion is increasing or decreasing with

time distance. A convex aggregator (Wyy > 0) is associated with preferences for early

resolution of uncertainty and a greater risk aversion for lotteries that resolve in the distant

future. A concave aggregator (Wyy < 0) generates preferences for an early resolution of

uncertainty and a lower risk aversion for lotteries that resolve in the distant future. In the

case of risk sensitive preferences, we derive from (9) that for all (x, y) ∈ C × [0, 1]:

Wyy(x, y)

Wy(x, y)
=

(1− β) (1− e−k)
1− y + e−ky

.

With 1 − β > 0, the sign of Wyy is that of k. Agents, who are more risk averse than

in the standard additive model (whenever k > 0) have preferences for an early resolution

of uncertainty, while the reverse holds when k < 0. When k = 0, agents are indi�erent
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to the timing of lottery resolution. To gain a better insight, one may also notice that if

preferences were de�ned on a smaller domain, so that preferences with zero or negative

time preferences (i.e., β ≥ 1) could be considered, we would obtain the opposite relation

between risk aversion and preference for timing.16 Time preference, risk aversion and

preference for timing appear therefore to be intertwined.

The above interrelation can be interpreted as an intuitive consequence of the assump-

tions of stationarity and ordinal dominance. Let us consider an agent comparing temporal

lotteries that provide the same consumption c during N periods, but may di�er afterwards.

On the one hand, with stationary preferences, the N periods of constant consumption c

do not matter and the ranking is independent of c and N . On the other hand, ordinal

dominance implies that risk aversion is considered with respect to lifetime utility, includ-

ing the utility derived from the �rst N periods of life, and thus depends on c. For the

ranking to be independent of c, preferences must exhibit a constant absolute risk aversion

with respect to lifetime utility, such that the utility of the �rst N periods does not impact

what happens afterwards. This explains the exponential functional form of risk-sensitive

preferences, which, incidentally, makes them extremely tractable in dynamic problems.

Moreover, the larger the N , the smaller the utility risk the agent is facing, because of

the discount factor β < 1 (the reverse would hold if β > 1). This generates a kind of non-

stationarity of preferences, unless an �ampli�cation� mechanism of risk attitudes regarding

�utility risk� in the future is introduced. In consequence, an agent, who is risk averse with

respect to lifetime utility (k > 0) and who has positive time preferences (β < 1) must

exhibit greater risk aversion for lotteries resolving in the distant future in order to keep

preferences stationary. This greater risk aversion should precisely compensate the discount

of future risks due to the time preference parameter β. Similarly an agent, who is risk prone

with respect to lifetime utility (k < 0) and has positive time preferences (β < 1) has to

exhibit more risk loving (and thus less risk aversion) for lotteries resolving in the future.

The symmetric arguments would hold in the case of negative time preferences (β > 1).

Preferences for the timing (or, equivalently, a degree or risk aversion that depends on time

distance) is a necessary ingredient to compensate for the existence of time preferences, as

soon as temporal risk aversion is introduced and preferences are stationary.

16The case where β ≥ 1 can for example be considered when assuming that all consumption paths
converge to an exogenous c∗ within a �nite amount of time. The normalization conditions imposed before
De�nition 1 are then no longer possible since preferences are de�ned on a domain that cannot include
both c∞ and c̄∞. Risk-sensitive preferences can still be de�ned by the recursion V (c,m) = u(ct) −
β
k

ln(Em
[
e−kV

]
), leading to the same relation between risk aversion, time preferences and preferences

for timing. The case β = 1 (zero time preferences) precisely corresponds to the multiplicative model of
Bommier (2012), which �ts into the expected utility framework and exhibits no preference for timing.
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Another aspect of risk-sensitive preferences is that they are in general not homothetic,

except in the particular cases when the intertemporal elasticity of substitution is equal

to one or when u is isoelastic and k = 0. This feature may seem to be an unpleasant

aspect, as it generates wealth e�ects in many problems, like those related to portfolio

choices. However, in recent contributions, non-homotheticity of preferences has been found

to contribute to explaining some empirical observed relationships, for example between

trade �ows and income per capita (Fieler, 2011) or between wealth and stock holdings

(Wachter and Yogo, 2010).

Risk-sensitive preferences also have an interesting property that may signi�cantly help

for the resolution of other problems. Indeed, risk-sensitive preferences ful�ll an assumption

of (mutual) utility independence similar to that discussed by Keeney and Rai�a (1993).

Preferences regarding what may happen in two periods of time t0 and t1, conditional

on having consumption in another period of time (t 6= t0, t1) being equal to a given

level ct, is independent of ct. The property also applies when ct is random and inde-

pendently distributed. In a dynamic setting, the assumption of preference stationarity

forces preferences to be independent of the past history. The utility independence prop-

erty in addition requires that preferences have to be independent of the (exogenous) future.

This may simplify the analysis from both a theoretical and a numerical point of view in

many intertemporal problems. For example, in the endowment economy of Section 5.1, in

which the per period consumptions are independently distributed (which is a particular

case of the assumptions in Proposition 5), we obtain that the pricing kernel is given by

Mt,t+1 = β u
′(ct+1)
u′(ct)

exp(−k(1−β)u(ct+1)
Et[exp(−k(1−β)u(ct+1)] . The risk free rate and the market price for risk are

therefore independent of what may happen in period t+ 2 and the subsequent periods of

time, which is in fact a consequence of the property of utility independence.

Utility independence is not a direct consequence of the assumptions of stationarity and

ordinal dominance. In fact, when the function b is non-constant, preferences associated

with the aggregator (12) � i.e., Uzawa's preferences � ful�ll the assumptions of stationarity

and ordinal dominance but not that of utility independence. Utility independence only

appears when restricting our attention to preferences that make it possible to disentan-

gle ordinal and risk preferences. This comes from the � so far unnoticed � fact that, in

the expected utility framework, history independence together with non-trivial risk aver-

sion comparability imposes independence with respect to the future, and therefore mutual

utility independence in the sense of Keeney and Rai�a (1993).

Mutual utility independence has in turn signi�cant implications. Indeed, as known

since Koopmans (1960), the combination of stationarity and independence with respect to
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the future (called �period independence� in Koopmans' article) implies weak separability

of preferences and constant time discounting. This explains why discussing risk aversion

eventually requires us to consider preferences over deterministic consumption pro�les that

can be represented by an additive utility function with a constant time discounting. The

property of weak separability, which is often introduced as a technical assumption, and

sometimes justi�ed by the long tradition of research that makes use of it, appears therefore

to be a necessary condition to study risk aversion while assuming preference stationarity.

6.2 Comparison with Epstein-Zin preferences

Risk-sensitive preferences share many features with Epstein-Zin isoelastic preferences.

They both rely on the Kreps-Porteus recursive framework, but use di�erent speci�ca-

tions for the aggregator. However, this generates signi�cant di�erences, such as the ability

to conform with the ordinal dominance property. While risk-sensitive preferences always

ful�ll ordinal dominance, Epstein-Zin generally do not.17 Moreover, Epstein-Zin prefer-

ences are only weakly (and not strongly) well-ordered in terms of risk aversion (unless the

intertemporal elasticity of substitution is equal to one) and are therefore likely to generate

odd conclusions on the role of risk aversion in settings where complete risk elimination is

not possible or not optimal. In order to provide meaningful examples, we consider both

applications developed in Section 5 that were shown to lead to intuitive conclusions when

agents have risk-sensitive preferences, but now consider them while assuming that agents

have Esptein-Zin preferences. Since the point is to emphasize that this may yield unap-

pealing conclusions, we introduce further simpli�cations (for example, by focusing on some

forms of risk) that are detailed along the text.

6.2.1 Risk free rate in a random economy

We consider a random endowment economy, as in Section 5.1. To further simplify matters,

we assume a form of uncertainty similar to that of Section 5.2: consumption at date t+ 1

is random and this level of consumption is maintained for ever afterwards. Formally, the

consumption in every period after time t+1 is equal to the realization of an unidimensional

random variable c̃t+1.

In the risk-sensitive setting, if the function u is concave, the assumptions of Proposition

5 are ful�lled, and as a direct consequence, the risk free rate decreases with risk aversion.

We now contrast these results with the ones derived with Epstein-Zin preferences.

17The exceptions are when Epstein-Zin preferences are also risk-sensitive preferences (that is when ρ = 0
or α = ρ in (6)).
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We consider the case where both α and ρ are di�erent from zero. Epstein-Zin utility

functions are then given by:

Vt =
(

(1− β) (ct)
ρ + βEt

[(
V α
t+1

)] ρ
α

) 1
ρ
. (21)

The parameter α is generally interpreted as an indicator of risk aversion, a smaller α

indicating a greater risk aversion.18 In the special case when the agent's consumption

remains constant at the level c̃t+1 after period t+1, the continuation utility is Vt+1 = c̃t+1.

Thus, the utility at date t is: Vt =
(

(1− β) (ct)
ρ + β

(
Et
[
c̃αt+1

]) ρ
α

) 1
ρ
. We deduce that the

gross risk free rate Rt is given by:

1

Rt
=

β

1− β
Et
[
c̃α−1
t+1

]
Et
[
c̃αt+1

] ρ
α
−1

cρ−1
t

.

By derivation:

− 1

Rt

∂Rt
∂α

=
Et
[
log(c̃t+1)c̃α−1

t+1

]
Et
[
c̃α−1
t+1

] +
ρ− α
α

Et
[
log(c̃t+1)c̃αt+1

]
Et
[
c̃αt+1

] − ρ

α2
log(Et

[
c̃αt+1

]
),

which can be positive or negative. For example, when c̃t+1 = ĉ > 0 with probability p� 1

and c̃ = 1 otherwise, the above expression is approximately equal to:

− 1

Rt

∂Rt
∂α
' p

[
log(ĉ)ĉ−(1−α) +

ρ− α
α

log(ĉ)ĉα − ρ

α2
(ĉα − 1)

]
Assume that 0 < α < 1, and α < ρ (people are more risk averse than in the standard

additive case). We observe that ∂Rt
∂α > 0 for ĉ close to zero, and ∂Rt

∂α < 0 for ĉ su�ciently

large. The risk free rate varies non-monotonically with risk aversion. When the risk free

rate increases with risk aversion, the willingness to save for precautionary motives decreases

with risk aversion, which contradicts simple dominance arguments, as shown in Bommier,

Chassagnon and Le Grand (2012).

6.2.2 Risk sharing

We now contrast the results derived in the risk sharing problem of Section 5.2 with those

that could be obtained using Epstein-Zin preferences. The framework is very similar to the

one with risk-sensitive preferences and in particular the risk structure is the same (cf. �rst

18The interpretation is correct when focusing on weak comparative risk aversion, but does not extend to
strong comparative risk aversion. In other words, decreasing α always increases the willingness to eliminate
all risks, but does not necessarily yield a greater aversion for marginal increases in risk.
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paragraph of Section 5.2). Epstein-Zin preferences are exactly the same as in equation (21)

of the previous application. Both agents A and B have the same intertemporal elasticity

of substitution 1
1−ρ and A is weakly more risk averse than B (αA < αB). We now have

the following negative result.

Proposition 7 (Risk sharing with Esptein-Zin preferences) We consider the risk

sharing problem summarized above, in which agent A is weakly more risk averse than agent

B (i.e., αA < αB). We denote V EZ,i
l and V EZ,i

h the ex-post utilities of agent i = A,B in

states l and h and V EZ,aut
l and V EZ,aut

h the ex-post utilities in autarky.

If preference parameters are such that αA < αB < 0 < ρ < 1, there always exist

an asset market and endowments such that the market equilibrium is characterized by the

following properties:

1. agent B saves while agent A borrows;

2. agent A is always ex-post better o� than agent B or than in autarky (i.e., in the no

trade allocation), while agent B is always ex-post worse o� than in autarky:{
V EZ,B
l < V EZ,aut

l < V EZ,A
l

V EZ,B
h < V EZ,aut

h < V EZ,A
h

(22)

Proof: In appendix.

The inequalities (22) show that whatever happens, agent B would be better o� ex-post

in absence of trade. While trading is not mandatory, agent B actually prefers to trade

and gets an allocation, which is dominated at the �rst order by the no-trade allocation!

Obviously, such a voluntary move to dominated allocations cannot arise with preferences

ful�lling ordinal dominance. But with Epstein-Zin preferences, which fail to ful�ll this

property, it is �rational� and occurs in a simple market interaction. As a consequence, the

ranking of ex-post utilities shown in (22) always appears to be favorable for the more risk

averse agent and contrasts with the intuitive pattern of risk sharing that was obtained with

risk-sensitive preferences.

7 Conclusion

When the horizon is in�nite, the expected utility framework does not contain any class

of stationary preferences that are well-ordered in terms of risk aversion. Today, the most

popular approach to investigating the role of risk aversion, while assuming preference

stationarity, involves using Epstein-Zin preferences, despite some shortcomings. These
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preferences do not ful�ll ordinal dominance (Chew and Epstein, 1990), are not well-ordered

with respect to aversion for marginal risk variations, and may lead to counter-intuitive

conclusions when used in applied problems.

In this paper, we explore whether Kreps-Porteus framework o�ers better alternatives.

We �rst derive all Kreps-Porteus preferences that ful�ll stationarity and ordinal dominance

(Proposition 1): they are either of the expected utility kind (providing preferences à la

Uzawa) or correspond to risk-sensitive preferences given by the equation (1), which were

introduced by Hansen and Sargent (1995) in their works on robustness. Since preferences

à la Uzawa are unable to achieve the separation between risk aversion and intertemporal

substitutability (Proposition 2), the class of risk-sensitive preferences is the only one that

provides an appropriate support to study risk aversion. In fact, Proposition 4 shows

that varying parameter k that enters into the de�nition of risk-sensitive preferences, while

leaving other parameters unchanged, generates a class of preferences that is well-ordered

in terms of risk aversion, even when using a strong notion of comparative risk aversion.

An interesting aspect of our paper is that contrary to many well-known contributions,

like Epstein and Zin (1989), or Klibano�, Marinacci, and Mukerji (2009), we do not impose

any restriction such as weak separability or constant time discounting for preferences over

deterministic consumption paths. We prove that such properties are however necessary

to study risk aversion while assuming stationarity. Hence, our paper provides an original

argument for assuming weak separability of preferences.

In order to illustrate the interest of working with risk-sensitive preferences, we apply

them to simple problems of asset pricing in a random endowment economy, and of risk

sharing in a general equilibrium. They provide intuitive conclusions with regards to the

role of risk aversion, contrary to what other models may generate.
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Appendix

A Proof of Proposition 1

A.1 Necessary conditions

We �rst prove that KP-recursive preferences ful�lling ordinal dominance admit a linear or

a risk-sensitive aggregator (i.e., that (12) or (13) holds).

A preliminary lemma. The lemma provides a �rst set of restrictions on aggregators.

Lemma 1 Consider a KP-recursive utility function U de�ned over D, whose admissible

aggregator is denoted W . If the associated preference relation ful�lls ordinal dominance,

then the aggregator can be expressed as follows:

∀(x, y) ∈ C × [0, 1], W (x, y) = φ (a(x) + yb(x)) ,

where a, b : C → [0, 1], and φ : [0, 1] → [0, 1] are continuously di�erentiable, with a(c)=

φ(0) = 0, a(c̄) + b(c̄) = φ(1) = 1, a′ > 0, (a′ + b′) > 0 and φ′ > 0.

Proof.

For an aggregator W , we de�ne preferences over C ×M ([0, 1]) by considering the utility

function Ũ de�ned by: ∀(c,m) ∈ C ×M ([0, 1]) , Ũ(c,m) = W (c, Em[x]), where Em[x] ∈
[0, 1] denotes the expected payment associated with probability measure m. When c varies

in C, U(c∞) covers [0, 1] and the utility function U �applied to constant consumption

paths� generates an isomorphism from C into [0, 1]. As a consequence, if preferences

over D ful�ll ordinal dominance, preferences over C ×M ([0, 1]) represented by the utility

function Ũ also ful�ll ordinal dominance.

First step. We consider x0 ∈ (c, c) and y0 ∈ (0, 1) (i.e., (x0, y0) lies in the interior

of the de�nition domain of W ). Since W is a continuously di�erentiable function with

Wy > 0, the implicit function theorem states that there exist B̃x0 and B̃y0 , respective

neighborhoods of x0 and y0, and a continuously di�erentiable function ηx0,y0 from B̃x0
into B̃y0 such that: ∀x ∈ B̃x0 , W (x0, y0) = W (x, ηx0,y0(x)). Let y1 ∈ B̃y0 . By the same

token, there exists a continuously di�erentiable function ηx0,y1 from B̂x0 into B̂y1 such that,

∀x ∈ B̂x0 , W (x0, y1) = W (x, ηx0,y1(x)). We de�ne Bx0 = B̃x0∩B̂x0 and By0,y1 = B̃y0∩B̂y1 ,
which are non-empty and open sets. For all x ∈ Bx0 , we have:

W (x0, y0) = W (x, ηx0,y0(x)) and W (x0, y1) = W (x, ηx0,y1(x)). (23)
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With the assumption of ordinal dominance, (23) implies that for all p ∈ [0, 1]:

∀x ∈ Bx0 , W (x, pηx0,y0(x) + (1− p)ηx0,y1(x)) = W (x0, py0 + (1− p)y1). (24)

Derivation with respect to x of equations (23)�(24) yields:

Wx(x, ηx0,y0(x)) +Wy(x, ηx0,y0(x))
∂ηx0,y0
∂x

(x) = 0,

Wx(x, ηx0,y1(x)) +Wy(x, ηx0,y1(x))
∂ηx0,y1
∂x

(x) = 0,

Wx(x, pηx0,y0(x) + (1− p)ηx0,y1(x))

+Wy(x, pηx0,y0(x) + (1− p)ηx0,y1(x))

(
p
∂ηx0,y0
∂x0

(x) + (1− p)∂ηx0,y1
∂x0

(x)

)
= 0.

By substitution of the two �rst equalities in the last one we deduce that:

∀x ∈ Bx0 ,
Wx(x, pηx0,y0(x) + (1− p)ηx0,y1(x))

Wy(x, pηx0,y0(x) + (1− p)ηx0,y1(x))
= p

Wx(x, ηx0,y0(x))

Wy(x, ηx0,y0(x))
+(1−p)Wx(x, ηx0,y1(x))

Wy(x, ηx0,y1(x))
,

which implies that the restriction of Wx(x,y)
Wy(x,y) on Bx0 ×By0,y1 is linear in y.

Thus, for any (x0, y0) ∈ (c, c) × (0, 1), there exists a neighborhood Bx0,y0 and two

functions âx0,y0 and b̂x0,y0 such that for all (x, y) ∈ Bx0,y0 we have:

Wx(x, y)

Wy(x, y)
= âx0,y0(x) + b̂x0,y0(x)y. (25)

Second step. Let y1 ∈ (0, 1). For all x ∈ (c, c), we de�ne â(x) and b̂(x) by:

((x, y1) ∈ Bx0,y0 for some (x0, y0))⇒
(
â(x) = âx0,y0(x) and b̂(x) = b̂x0,y0(x)

)
.

The functions â and b̂ are well de�ned. Indeed, �rstly, from (25), we know that for any

x ∈ (c, c), there exists a pair (x0, y0) such that (x, y1) ∈ B(x0,y0). Secondly, if for some

x1 ∈ (c, c) there are two pairs (x0, y0) and (x′0, y
′
0), such that (x1, y1) ∈ B(x0,y0) and

(x1, y1) ∈ B(x′0,y
′
0) then for all (x, y) ∈ B(x0,y0) ∩B(x′0,y

′
0), we have:

Wx(x, y)

Wy(x, y)
= âx0,y0(x) + b̂x0,y0(x)y = âx′0,y′0(x) + b̂x′0,y′0(x)y,

which implies âx0,y0(x1) = âx′0,y′0(x1) and b̂x0,y0(x1) = b̂x′0,y′0(x1).

The continuity of Wx
Wy

implies that â and b̂ are continuous functions. Let us consider the

set Γ = {(x, y) ∈ C × [0, 1]|Wx(x,y)
Wy(x,y) = â(x) + b̂(x)y}. This set is non-empty by construction

and closed by continuity of (x, y) 7→ Wx(x,y)
Wy(x,y) − â(x)− b̂(x)y.
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Assume that there exists (x0, y0) ∈ (c, c)× (0, 1) which does not belong to Γ. The set

Λ = {λ ∈ [0, 1]|(x0, λy0 + (1−λ)y1) ∈ Γ} is closed, and thus compact, contains 0 and does

not contain 1. Let λ1 be the supremum of Λ. By compactness, λ1 ∈ Λ and λ1 < 1. We

know from (25) that there exists ε > 0, such that for all λ with |λ− λ1| < ε, we have:

Wx(x0, λy0 + (1− λ)y1)

Wy(x0, λy0 + (1− λ)y1)
= âx0,λ1y0+(1−λ1)y1(x0)+ b̂x0,λ1y0+(1−λ1)y1(x0) (λy0 + (1− λ)y1)) .

(26)

Moreover since λ1 ∈ Ω, we have for all λ ≤ λ1:

Wx(x0, λy0 + (1− λ)y1)

Wy(x0, λy0 + (1− λ)y1)
= â(x0) + b̂(x0) (λy0 + (1− λ)y1)) . (27)

We deduce that âx0,λ1y0+(1−λ1)y1(x0) = â(x0) and b̂x0,λ1y0+(1−λ1)y1(x0) = b̂(x0). Using

(26), equation (27) extends to some λ > λ1, contradicting λ1 being the supremum of Λ.

We conclude that Γ = C × [0, 1].

Third step. Given x0, we de�ne w0 : y 7→ w0(y) = W (x0, y), which is increasing

continuously di�erentiable on [0, 1]. From equation (25), we know that W solves:

∀ (x, y) ∈ C × [0, 1], Wx(x, y) = (â(x) + b̂(x)y)Wy(x, y),

∀y ∈ [0, 1], W (x0, y) = w0(y).

The method of characteristics shows the existence and uniqueness of the solution given by:

W (x, y) = w0

(
ã(x) + b̃(x)y

)
, (28)

with: ã(x) =

ˆ x

x0

(
exp

(ˆ s

x0

b̂(τ)dτ

))
â(s)ds and b̃(x) = exp

(ˆ x

x0

b̂(s)ds

)
.

ã and b̃ are continuously derivable on C. Using that W (c, 1) = 1 and W (c, 0) = 0, the

representation of Lemma 1 is obtained for a(x) = ã(x)−ã(c)

ã(c̄)−ã(c)+b̃(c̄)
, b(x) = b̃(x)

ã(c̄)−ã(c)+b̃(c̄)
and

φ(z) = w0 ((ã(c̄)− ã(c) + ã(c̄)) z + ã(c)). Moreover, since w0 and W are di�erentiable and

strictly increasing, we have that a, a+ b and φ also are di�erentiable, increasing and with

values in [0, 1] (in (0, 1) for the function b). �

Proof of the representation result in Proposition 1. From Lemma 1, we know

that KP-recursive preferences admit an aggregator W (x, y) = φ(a(x) + b(x)y) with a(c)=

φ(0) = 0 and a(c) + b(c) = φ(1) = 1. Let x1 ∈ C and let the function W̃ be de�ned by:

W̃ (x, y) = W (x,W (x1, y)) for all (x, y) ∈ C × [0, 1].
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With the same proof strategy as in Lemma 1, one may show that for all (x, y) ∈ C× [0, 1],

W̃ (x, y) = φ (a(x) + b(x)φ(a(x1) + b(x1)y)). By derivation:

W̃x(x, y)

W̃y(x0, y)
=
a′(x) + b′(x)φ(a(x1) + b(x1)y)

b(x)b(x1)φ′(a(x1) + b(x1)y)
,

which has to be linear in y. Since a′ > 0, we deduce that
1+

b′(x)
a′(x)φ(z)

φ′(z) has to be linear in z.

First, assume that b′(x)
a′(x) is not constant and takes at least two values λ1 6= λ2. Since

1+λ1φ(z)
φ′(z) and 1+λ2φ(z)

φ′(z) are linear in z, (λ2−λ1)φ(z)
φ′(z) and φ(z)

φ′(z) are also linear. Together with

φ(0) = 0 and φ(1) = 1, we obtain that there exists ν ∈ R, such that ∀y ∈ [0, 1], φ(y) =

yν . The case where ν < 1 contradicts the continuous di�erentiability of φ, while ν > 1

contradicts Wy(x, 0) > 0. Therefore φ has to be linear providing W (x, y) = a(x) + b(x)y.

The normalization, regularity and monotonicity conditions imposed in De�nition 1 lead to

a(c) = 0, a(c) + b(c) = 1, a′(x) > 0 and a′(x) + b′(x) > 0. The condition b(x) < 1 comes

from a + b and b strictly increasing together with a(c) = 0 and a(c) + b(c) = 1. We are

thus left with the linear aggregators (12).

Second, we assume that b′(x)
a′(x) is constant, necessarily larger than −1 (sinceWx > 0) and

di�erent from zero (since Wy > 0). We de�ne k 6= 0 with b′(x)
a′(x) = e−k − 1. By integration:

b(x) =
(
e−k − 1

)
a(x) + b0, with b0 ∈ R. (29)

Let h(z) = 1 +
(
e−k − 1

)
φ(z). Since

1+
b′(x)
a′(x)φ(z)

φ′(z) is linear in z, so is h(z)
h′(z) . φ(0) = 0 and

φ(1) = 1 imply h(0) = 1 and h(1) = e−k. By integration, there exists β > 0 such that:

∀z ∈ [0, 1], h(z) =
(

1 +
(
e
− k
β − 1

)
z
)β

and φ(z) =
1−

(
1− (1− e−

k
β )z
)β

1− e−k
. (30)

We can remark that for all z ∈ [0, 1]:

1 + (e−k − 1)φ(z)

φ′(z)
=

1

β

1− e−k

1− e−
k
β

(
1− (1− e−

k
β )z
)
. (31)

Let x2 ∈ C. Similarly to the de�nition of W̃ , we introduce a function Ŵ as follows:

∀(x, y) ∈ C × [0, 1], Ŵ (x, y) = W (x,W (x1,W (x2, y))).

As in Lemma 1 and as with W̃ , one can show that ordinal dominance imposes that Ŵx

Ŵy
has

to be linear in y. Writing Ŵ (x, y) = φ (a(x) + b(x)φ(a(x1) + b(x1)φ(a(x2) + b(x2)y))) to
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compute Ŵx

Ŵy
and using (31), we obtain that: 1−(1−e−

k
β )(a(x1)+b(x1)φ(a(x2)+b(x2)y))

φ′(a(x2)+b(x2)y) is linear in

y. However we know that 1−(1−e−k)φ(a(x2)+b(x2)y))
φ′(a(x2)+b(x2)y) is linear in y. So, after substitution in the

above expression, we have

(
1− (1− e−

k
β )a(x1)− (1−e−

k
β )b(x1)

(1−e−k)

)
φ(a(x2)+b(x2)y))
φ′(a(x2)+b(x2)y) is linear in

y. Thus, either φ is linear (case already considered) or 1 − (1 − e−
k
β )a(x1) = (1−e−

k
β )b(x1)

(1−e−k)

for any x1 ∈ C. Equation (29) implies that b0 = 1−e−k

1−e−
k
β

and

∀x ∈ C, b(x) =
(

1− e−k
)( 1

1− e−
k
β

− a(x)

)
.

Then (30) implies that for all x and y:

φ(a(x) + b(x)y) =
1−

[(
1− (1− e−

k
β )a(x)

) (
1− (1− e−k)y

)]β
1− e−k

.

We de�ne u : [0, 1]→ R as follows:

u(x) = − β

k(1− β)
log
(

1− (1− e−
k
β )a(x)

)
, or 1− (1− e−

k
β )a(x) = e

− k(1−β)u(x)
β , (32)

which leads to the speci�cation (13). Eq. (32) implies u(c) = 0. Moreover a(c) + b(c) = 1

imposes that a(c) = 1−e−k
1−β
β

1−e−
k
β

and u(c) = 1. The condition β < 1 results from the fact

that the restriction of U to C∞ has to be monotonic. Indeed from (13) and u(c) = 0, the

utility associated with the consumption of the same c ∈ C for n periods and c afterward

is 1−e−k(1−β)
∑n−1
i=0

βiu(c)

1−e−k , which is monotonic in c if and only if β < 1.

A.2 Existence and uniqueness

We prove that the aggregator (13) de�nes a unique utility function.19 We wish to use the

Banach �xed point theorem to show that there exists a function V such that:

∀(x,m) ∈ C ×D, V (c,m) = (1− β)u(c)− β

k
lnEme

−kV . (33)

We de�ne C(D, [0, 1]) the set of continuous functions from D into [0, 1]. We know that C∞

endowed with the product norm is a compact Polish space and that D endowed with the

Prohorov metric is also a compact Polish space. The metric space (C(D, [0, 1]), ‖·‖∞) is

thus a Banach space.20

19The proof in the case of the aggregator (12) is not provided as it would follow the same arguments.
20See for example Theorem 9.3 in Aliprantis and Burkinshaw (1998).

33



Denote by F(D,R) the set of all functions from D to R. We consider the mapping T

from C(D, [0, 1]) into F(D,R) such that for F ∈ C(D, [0, 1]):

∀(c,m) ∈ D, TF (c,m) = (1− β)u(c)− β

k
lnEme

−kF . (34)

In order to use the �xed point theorem, we prove that T is a contraction. More speci�cally,

we check that T veri�es Blackwell's (1965) su�cient conditions: (1) T is a mapping from

C(D, [0, 1]) into itself; (2) T is increasing; (3) there exists a constant θ ∈ (0, 1), such that

for all F ∈ C(D, [0, 1]), for all A ∈ [0, 1], we have: ∀x ∈ D, T (F +A)(x) ≤ TF (x) + θA.21

1. Let F ∈ C(D, [0, 1]) and (c,m) ∈ D. Since 0 ≤ u(c) ≤ 1 and 0 ≤ − 1
k ln

(
Em

[
e−kF

])
≤

1, we also have 0 ≤ TF (c,m) ≤ 1. Let (cn,mn)n≥0 ∈ D∞ converging towards

(c,m) ∈ D. Since F is bounded and continuous, e−kF is also bounded (below by

e−k) and continuous, we have: lnEmne
−kF → lnEme

−kF . Since u is continuous,

TF (cn,mn)→ TF (c,m) and TF ∈ C(D, [0, 1]).

2. Let F1, F2 ∈ C(D, [0, 1]), such that ∀x ∈ D, F2(x) ≥ F1(x) ≥ 0. We have for all k

and for all m ∈M(D), Em
[
e−kF2

]− 1
k ≥ Em

[
e−kF1

]− 1
k > 0 and − 1

k lnEm
[
e−kF2

]
≥

− 1
k lnEm

[
e−kF1

]
. Since β > 0, we deduce that T is increasing.

3. Let 0 ≤ A ≤ 1, F ∈ C(D, [0, 1]) and (c,m) ∈ D. Noticing that−β
k ln

(
Em

[
e−k(F+A)

])
=

−β
k ln

(
Em

[
e−kF

])
+βA, it is straightforward that T (F +A)(c,m)−TF (c,m) = βA.

The map T is a contraction of modulus β ∈ (0, 1) on (C(D, [0, 1]), ‖·‖∞). The Banach

�xed point theorem implies that (33) admits a unique solution V ∈ C(D, [0, 1]). We now

de�ne U as follows: ∀(c,m) ∈ D, U(c,m) = 1−e−kV (c,m)

1−e−k . It is straightforward to check that

U ∈ C(D, [0, 1]) and that U veri�es the following relationship:

∀(c,m) ∈ D, U(c,m) =
1− e−k(1−β)u(c)

(
Em

[
1− (1− e−k)U

])β
1− e−k

Therefore U is the unique �xed-point of the aggregatorW (x, y) = 1−e−k(1−β)u(x)(1−(1−e−k)y)β

1−e−k .

A.3 Su�cient conditions

We conduct the proof for the aggregator W (x, y) = 1−e−k(1−β)u(x)(1−k̃y)β

1−e−k . The other case

is analogous. Let U be the corresponding utility function. We show by induction that the

associated preference is monotonic with respect to the partial orders FSDt for all t. We

assume that k > 0 (the proof when k < 0 is similar) and denote k̃ = 1− e−k, which is also

positive.

21With an obvious and standard abuse of notation, the letter A can mean either the constant A ∈ [0, 1]
or the constant function of C(D, [0, 1]), whose value is always equal to A .
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First step: monotonicity with respect to FSD1. We consider (c,m) and (c′,m′)

in ∆1 with (c,m) FSD1 (c′,m′), and c = (c0, . . . , cτ ) ∈ Cτ+1 and c′ = (c′0, . . . , c
′
τ ) ∈ Cτ+1

for some τ ≥ 0. By de�nition, since the function U ful�lls FSD1, we have:

∀x ∈ C∞, m

({
x′ ∈ C∞|1− e

−k(1−β)
∑τ
j=0 β

ju(cj)(1− k̃U(x′))β
τ

k̃
≥ U(x)

})
≥ (35)

m′

({
x′ ∈ C∞|1− e

−k(1−β)
∑τ
j=0 β

ju(c′j)(1− k̃U(x′))β
τ

k̃
≥ U(x)

})
.

Since k, k̃ > 0, (35) becomes:

∀x ∈ C∞, m
({

x′ ∈ C∞|e−k
(1−β)
βτ

∑τ
j=0 β

ju(cj)(1− k̃U(x′)) ≤ (1− k̃U(x))
1
βτ

})
≥ (36)

m′
({

x′ ∈ C∞|e−k
(1−β)
βτ

∑τ
j=0 β

ju(c′j)(1− k̃U(x′)) ≤ (1− k̃U(x))
1
βτ

})
.

We wish to prove that (c,m) is preferred to (c′,m′), i.e. U(c,m) ≥ U(c′,m′) or that:

1−e−k(1−β)
∑τ
j=0 β

ju(cj)(1−k̃
´
C∞ U(x)m(dx))

βτ

k̃
≥ 1−e−k(1−β)

∑τ
j=0 β

ju(c′j)(1−k̃
´
C∞ U(x)m′(dx))

βτ

k̃
. Since

k, k̃ > 0, this simpli�es into:22

ˆ
C∞

e
−k (1−β)

βτ
∑τ
j=0 β

ju(cj)(1− k̃U(x))m(dx) ≤
ˆ
C∞

e
−k (1−β)

βτ
∑τ
j=0 β

ju(c′j)(1− k̃U(x))m′(dx).

(37)

For any (c,m) of ∆1 with c = (c0, . . . , cτ ) ∈ Cτ+1, we de�ne the function Fc,m,τ (·) by:

t ∈ [0, 1] 7→ Fc,m,τ (t) = m

({
x ∈ C∞|e−k

(1−β)
βτ

∑τ
j=0 β

ju(cj)
(

1− k̃U(x)
)
≤ t
})

.

Fc,m,τ is well-de�ned, non-decreasing with Fc,m,τ (0) = 0 and Fc,m,τ (1) = 1. To show that

Fc,m,τ is right-continuous, we consider t ∈ [0, 1] and (tn)n≥0 ∈ [0, 1]∞ ↘ t. Measure addi-

tivity implies that Fc,m,τ (tn)−Fc,m,τ (t) = m

({
x ∈ C∞|t < e

−k (1−β)
βτ

∑τ
j=0 β

ju(cj)
(

1− k̃U(x)
)
≤ tn

})
,

which can be made arbitrarily small by taking n large enough. We deduce that Fc,m,τ is

the cdf of the utility associated to (c,m). (36) becomes:

∀t ∈ [0, 1], Fc,m,τ (t) ≥ Fc′,m′,τ (t). (38)

Using the image measure theorem (e.g., Theorem 4.1.11 in Dudley, 2002), (37) simpli�es

to
´

[0,1] tdFc,m,τ (t) ≤
´

[0,1] tdFc′,m′,τ (t), or after integration by parts 1−
´

[0,1] Fc,m,τ (t)dt ≤
1−
´

[0,1] Fc′,m′,τ (t), which holds because of (38). So (c,m) is preferred to (c′,m′).

22When k < 0, inequalities (36) and (37) are reversed, but the rest of the proof is similar.
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Second step: monotonicity with respect to FSDt. We consider (c,m) and (c′,m′)

in ∆t with (c,m) FSDt (c′,m′) and c = (c0, . . . , cτ ) ∈ Cτ+1 and c′ = (c′0, . . . , c
′
τ ) ∈ Cτ+1

for some τ ≥ 0. By de�nition, since the function U ful�lls FSDt−1, we have:

∀x ∈ ∆t−1, m

({
x′ ∈ Dt−1|

1− e−k(1−β)
∑τ
j=0 β

ju(cj)(1− k̃U(x′))β
τ

k̃
≥ U(x)

})
(39)

≥ m′
({

x′ ∈ Dt−1|
1− e−k(1−β)

∑τ
j=0 β

ju(c′j)(1− k̃U(x′))β
τ

k̃
≥ U(x)

})
.

We wish to prove that U(c,m) ≥ U(c′,m′) or since k, k̃ > 0:

ˆ
Dt−1

e
−k (1−β)

βτ
∑τ
j=0 β

ju(cj)(1− k̃U(x))m(dx) ≤
ˆ
Dt−1

e
−k (1−β)

βτ
∑τ
j=0 β

ju(c′j)(1− k̃U(x))m′(dx).

(40)

Equations (39) and (40) are totally similar to (35) and (37). It is then possible to follow

exactly the same path as in the �rst step to terminate the proof.

B Proof of proposition 2

Consider two KP-recursive utility functions UA and UB which ful�ll ordinal dominance

and represent the same preferences over C∞. We assume that one of them (e.g., UA) is

not a risk-sensitive utility function (i.e. its aggregatorWA is not as in (14)). Proposition 1

implies thatWA(x, y) = a1(x)+b1(x)y for some non-constant function b1. Such preferences

do not ful�ll the assumption of weak separability and therefore cannot have the same

restriction over C∞ as UA (risk-sensitive preferences are weakly separable). Then, UB

must also correspond to an aggregator WB such that WB(x, y) = a2(x) + b2(x)y for

some non-constant function b2. In order to prove that if UA and UB represent the same

preferences over C∞, then WA = WB, we �rst state the following simple result:

Lemma 2 (Aggregators with identical ordinal preferences) We assume thatWA(x, y)

and WB(x, y) are two aggregators whose corresponding KP-recursive utility functions rep-

resent the same preferences over deterministic consumption paths. Then there exists an

increasing function ψ such that ψ(0) = 0, ψ(1) = 1 and:

∀(x, y) ∈ C × [0, 1], ψ
(
WA(x, y)

)
= WB(x, ψ(y)).

Proof. Consider UA and UB the utility functions. Since they represent the same or-

dinal preferences, there exists an increasing function ψ, such that for all x ∈ C∞ we

have UB(x) = ψ
(
UA(x)

)
. From UA(c∞) = UB(c∞) = 0 and UA(c∞) = UB(c∞) = 1,
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we have ψ(0) = 0, ψ(1) = 1. For any (c0, c1, c2 . . .) ∈ C∞, we have: UB(c0, c1, ...) =

WB(c0, U
B(c1, ...)) = WB(c0, ψ(UA((c1, ...)). We also have: UB(c0, c1, ...) = ψ(UA(c0, c1, ...)) =

ψ(WA(c0, U
A(c1, ...))). Noting y = UA(c1, c2, . . .) which covers [0, 1], we deduce that

ψ
(
WA(c0, y)

)
= WB(c0, ψ(y)) for all (c0, y) ∈ C × [0, 1].

We now terminate the proof. Lemma 2 implies that there exists an increasing function

ψ with ψ(0) = 0 and ψ(1) = 1, such that for all (x, y) ∈ C × [0, 1]:

ψ (a1(x) + b1(x)y) = a2(x) + b2(x)ψ(y). (41)

SinceWA andWB are continuously derivable on C× [0, 1], ai and bi are (on C) for i = 1, 2.

As a preliminary remark, it would be straightforward to show that x 7→ ai(x) + bi(x)y

(i = 1, 2) de�nes a strictly increasing bijection from C into [bi(c)y, ai(c) + bi(c)y], with

ai(c) + bi(c)y < 1 if and only if y < 1 and bi(c)y > 0 if and only if y > 0.

Let Y = {z ∈ [0, 1]|ψ is continuously derivable on [0, z]}. From (41) in y = 0 and our

preliminary remark for y = 0, we deduce that ψ is continuously derivable on [0, a1(c)]. So,

Y 6= ∅ and Y is also bounded by 1. Let y = supY with 0 < a1(c) ≤ y ≤ 1. If y < 1,

our preliminary remark in y and (41) contradicts the de�nition of y. So y = 1. As for

ψ, after deriving (41) with respect to y, ψ′ can be shown to be continuously derivable, as

well as strictly positive. Since b1 and b2 also are, we obtain, after deriving (41) twice, that

b1(x)ψ
′′

ψ′ (a1(x) + b1(x)y) = ψ′′

ψ′ (y). The preliminary remark implies that for any y ∈ [0, 1],

there exists xy ∈ C such that a1(xy) + b1(xy)y = y, and (1 − b1(xy))
ψ′′

ψ′ (y) = 0. Since

b1(xy) < 1, we have ψ′′ = 0 which, with ψ(0) = 0 and ψ(1) = 1, imply that ψ(x) = x.

From (41), it follows that a1(x) = a2(x) and b1(x) = b2(x) and �nally WA = WB.

C Proof of Proposition 3

We assume that kA > kB and kA, kB 6= 0 (the case where either kA or kB equals zero can

be treated similarly). For i = A,B and all x = (c0, c1, ...) ∈ C∞ we have:

∀x ∈ C∞, U i(x) =
1− exp (−kiU0(x))

1− e−ki
, (42)

where U0(x) = (1 − β)
∑+∞

t=0 β
tu(ct) is the utility over deterministic consumption paths

and is the same for both agents. We de�ne ψA,B : [0, 1]→ [0, 1]:

∀y ∈ [0, 1], ψA,B(y) =
1− (1− (1− e−kB )y)kA/kB

1− e−kA
. (43)

ψA,B is increasing and concave. We have from (42): UA(c) = ψA,B(UB(c)) for all c ∈ C∞

and ψA,B(WB(c, y)) = WA(c, ψA,B(y)) for all c ∈ C and y ∈ [0, 1]. We show by induction
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that for all (c,m) ∈ Dt, ψA,B(UB(c,m)) ≥ UA(c,m). It holds for t = 0 since UA(c) =

ψA,B(UB(c)). We assume that it holds up to t− 1 and let (c,m) ∈ Dt:

ψA,B(UB(c,m)) = ψA,B(WB(c, Em[UB])) = WA(c, ψA,B(Em[UB]))

≥WA(c, Em[ψA,B(UB)]) ≥WA(c, Em[UA])) = UA(c,m),

where the �rst inequality is a consequence of Jensen inequality and ofWB being increasing

with respect to its second argument, while the second comes from the induction hypothesis.

Since ∪t≥0Dt is dense in D, we deduce by continuity that:

ψA,B(UB(c,m)) ≥ UA(c,m) for all (c,m) ∈ D. (44)

We deduce that for all x ∈ C∞ and (c,m) ∈ D, UA(c,m) ≥ UA(x)⇒ UB(c,m) ≥ UB(x),

which terminates the proof.

D Proof of Proposition 4

We assume that kA 6= 0 and kB 6= 0. We prove that if (c,m) and (c′,m′) ∈ D are such

that (c,m)RSC(c′,m′) and (c,m) �A (c′,m′), then (c,m) �B (c′,m′). The case when

(c′,m′) ∈ C∞ = ∆0 has been treated in Section C. We assume that (c,m) and (c′,m′) are

in ∆1, where c = (c0, . . . , cτ ) ∈ Cτ+1 and c′ = (c′0, . . . , c
′
τ ) ∈ Cτ+1 for τ ≥ 0. By de�nition,

there exist p ∈ [0, 1] and m0, m
′
0, m1, m

′
1∈M(C∞) such that (15) and (16) hold.

The utility of agent A can be expressed as follows:

UA(c,m) = κ(p

ˆ
C∞

fkA(U0(c, x0))m0(dx0) + (1− p)
ˆ
C∞

fkA(U0(c, x1))m1(dx1)),

where: fki : t 7→ 1−e−
ki
β
t

1−e−
ki
β

(i = A,B), U0(c, x0) = (1− β)
∑τ

t=0 β
ju(ct) + βτU0(x0) slightly

extends (42) and κ : x 7→ 1−(1−(1−e−
kA
β )x)β

1−e−kA . So, (c,m) �A (c′,m′) implies:

p

ˆ
C∞

fkA
(U0(c, x0))m0(dx0) + (1− p)

ˆ
C∞

fkA
(U0(c, x1))m1(dx1) ≥ (45)

p

ˆ
C∞

fkA
(U0(c′, x0))m′

0(dx0) + (1− p)
ˆ
C∞

fkA
(U0(c′, x1))m′

1(dx1),

To reexpress (45), we de�ne Fc,m0,A : [0, 1] 3 t 7→ m0 ({x′ ∈ C∞|fkA(U0(c, x′)) ≥ t}) ∈
[0, 1]. The image measure theorem gives

´
C∞ fkA(U0(c, x0))m0(dx0) = −

´ 1
0 tdFc,m0,A(t).

Since fkA is an increasing bijection from [0, 1] onto itself, a change of variable yields:

ˆ
C∞

fkA(U0(c, x0))m0(dx0) = −
ˆ 1

0
fkA(t)d (Fc,m0,A ◦ fkA) (t),
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where ◦ is the composition operator. Moreover, since fkA is bijective and increasing, we

have Fc,m0,A ◦ fkA(t) = m0 ({x′ ∈ C∞|U0(c, x′) ≥ t}). So, Gc,m0 = Fc,m0,A ◦ fkA depends

only on ordinal preferences and is the same for both agents. Integrating by part, we obtain:

ˆ
C∞

fkA(U0(c, x0))m0(dx0) = −
ˆ 1

0
fkA(t)dGc,m0(t) =

ˆ 1

0
f ′kA(t)Gc,m0(t)dt. (46)

Using obvious notations to extend (46), we deduce that (45) can be re-expressed as follows:

(1− p)
ˆ 1

0

f ′kA
(t)
(
Gc,m1(t)−Gc′,m′

1
(t)
)
dt ≥ p

ˆ 1

0

f ′kA
(t)
(
Gc′,m′

0
(t)−Gc,m0(t)

)
dt. (47)

We also have (c′,m′0) FSD1 (c,m0) and (c,m1) FSD1 (c′,m′1). These relations imply that

for all t ∈ [0, 1], Gc′,m′0(t)−Gc,m0(t) ≥ 0 and Gc,m1(t)−Gc′,m′1(t) ≥ 0. Since fkA is increas-

ing and bijective, (c′,m′0) FSD1 (c,m0) simpli�es into m′0 ({x′ ∈ C∞|U0(c′, x′) ≥ t}) ≥
m0 ({x′ ∈ C∞|U0(c, x′) ≥ t}) for t ∈ [0, 1], which means Gc′,m′0(t)−Gc,m0(t) ≥ 0.

Moreover, m0, m
′
0, m1, m

′
1 verify (17), which implies that there exists t0 ∈ (0, 1) such

that Gc′,m′1(t) = 1 for 0 ≤ t ≤ t0 and Gc′,m′0(t) = 0 for t0 ≤ t ≤ 1. Since for all t ∈ [0, 1],

Gc′,m′0(t) ≥ Gc,m0(t) and Gc,m1(t) ≥ Gc′,m′1(t), we have Gc′,m′1(t) = Gc,m1(t) = 1 for

0 ≤ t ≤ t0 and Gc′,m′0(t) = Gc,m0(t) = 0 for t0 ≤ t ≤ 1. We deduce that (47) becomes:

(1− p)
ˆ 1

t0

f ′kA(t)
(
Gc,m1(t)−Gc′,m′1(t)

)
dt ≥ p

ˆ t0

0
f ′kA(t)

(
Gc′,m′0(t)−Gc,m0(t)

)
dt. (48)

We have fkA = ψA,B ◦ fkB , where ψA,B de�ned in (43) is derivable. Since ψA,B is con-

cave and fkB increasing, ψ′A,B(fkB (t)) ≥ ψ′A,B(fkB (t0)) for t ∈ (0, t0) and ψ′A,B(fkB (t)) ≤
ψ′A,B(fkB (t0)) for t ∈ (t0, 1). We deduce from (48): ψ′A,B(fkB (t0))(1−p)

´ t0
0 f ′kB (t)(Gc,m1(t)−

Gc′,m′1(t))dt ≥ ψ′A,B(fkB (t0))p
´ 1
t0
f ′kB (t)(Gc′,m′0(t) − Gc,m0(t))dt, which implies (c,m) �B

(c′,m′) using ψ′A,B(fkB (t0)) ≥ 0 and (48).

E Proof of Proposition 5

E.1 A preliminary lemma

Lemma 3 We consider a continuous decreasing function g, a continuous positive function

h and a random variable x̃ admitting a density f with a compact support in R.23 Then:

E[h(x̃)e−kx̃]E[g(x̃)e−kx̃]− E[g(x̃)h(x̃)e−kx̃]E[e−kx̃] ≥ 0.

23This technical assumption is not central to our argument but simply ensures the existence of all
moments considered below. Alternatively, at the cost of additional technicalities, we could have assumed
that all moments of x̃ exist.
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Moreover if h(x)e−kx is decreasing:

E[g(x̃)h(x̃)e−kx̃]E[h2(x̃)e−2kx̃]− E[g(x̃)h2(x̃)e−2kx̃]E[h(x̃)e−kx̃] ≥ 0.

Proof.

Let f(x) be the pdf of x̃ with the support [x, x]. We de�ne f1(x) = e−kxf(x) and:

∆1(a) =

ˆ a

x
h(x)f1(x)dx

ˆ a

x
g(x)f1(x)dx−

ˆ a

x
g(x)h(x)f1(x)dx

ˆ a

x
f1(x)dx.

Since ∆′1(a) = f1(a)
´ a
x f1(x)(h(x)−h(a))(g(a)−g(x))dx ≥ 0 and ∆1(x) = 0, we obtain

∆1(x) ≥ 0, which proves the �rst point.

For the second point, we de�ne f2(x) = e−kxf(x)h(x) and:

∆2(a) =

ˆ a

x
h(x)e−kxf2(x)dx

ˆ a

x
g(x)f2(x)dx−

ˆ a

x
g(x)e−kxh(x)f2(x)dx

ˆ a

x
f2(x)dx.

Since ∆′2(a) = f2(a)
´ a
−∞(h(a)e−ka − h(x)e−kx)(g(x) − g(a))f2(x)dx ≥ 0 and ∆2(x) = 0,

we obtain ∆2(x) ≥ 0.

E.2 Proof of Proposition 5

Since 1
Rt

= β
u′(ct)

Et[u′(ct+1) exp(−kVt+1)]
Et[exp(−kVt+1)] , deriving with respect to k yields:

1

Rt

∂Rt
∂k

=
Et[

∂(kVt+1)
∂k u′(ct+1)e−kVt+1 ]Et[e

−kVt+1 ]− Et[u′(ct+1)e−kVt+1 ]Et[
∂(kVt+1)

∂k e−kVt+1 ]

Et[e−kVt+1 ]Et[u′(ct+1)e−kVt+1 ]
.

However, ∂(kVt+1)
∂k = (1 − β)u(ct+1) + βEt[Vt+2e

−kVt+2 ]

Et[e
−kVt+2 ]

. By assumption, ∂(kVt+1)
∂k and Vt+1

are comonotonic, while Vt+1 and u′(ct+1) are anticomonotonic. We thus have ∂(kVt+1)
∂k =

h(Vt+1) for some increasing function h and u′(ct+1) = g(Vt+1) for some decreasing function

g. Moreover, Vt+1 has a compact support. Lemma 3 implies thus that ∂Rt
∂k < 0.

For the market price of risk, we have:
(
σt(Mt,t+1)
Et[Mt,t+1]

)2
=

Et[(u′(ct+1))2 exp(−2kVt+1)]
Et[(u′(ct+1)) exp(−kVt+1)]2

− 1.

After derivation, we obtain:

σt(Mt,t+1)

Et[Mt,t+1]

∂

∂k

(
σt(Mt,t+1)

Et[Mt,t+1]

)
=
Et

[
(u′(ct+1)) ∂(kUt+1)

∂k e−kUt+1

]
Et

[
(u′(ct+1))2 e−2kUt+1

]
Et [(u′(ct+1)) e−kUt+1 ]

3

−
Et

[
∂(kUt+1)

∂k (u′(ct+1))2 e−2kUt+1

]
Et
[
(u′(ct+1)) e−kUt+1

]
Et [(u′(ct+1)) e−kUt+1 ]

3 .

Again, Lemma 3 implies that ∂
∂k

(
σt(Mt,t+1)
Et[Mt,t+1]

)
> 0.
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F Proof of Proposition 6

Since u is strictly increasing and concave, the indirect utility function Ω also is. The con-

cavity of u and Ω implies that 1
2

(
u(cA0 ) + u(cB0 )

)
≤ u(

cA0 +cB0
2 ) and 1

2

(
Ω(wA) + Ω(wB)

)
≤

Ω(w
A+wB

2 ). Market equilibrium then implies that 1
2

(
V B
s + V A

s

)
≤ V aut

s for j = h, l (where

V j
s is the ex-post utility of agent j = A,B in state s = h, l and V aut

s the ex-post utility in

autarky in state s). We consider the three following consumption plans: the one of A, the

one of B, and the autarkic one, which are available to both agents by assumption. The

plan of A cannot strictly �rst order stochastically dominate the plan of B, otherwise it

would contradict the choice of B (and vice-versa). Moreover, since 1
2

(
V B
j + V A

j

)
≤ V aut

j ,

the autarkic allocation cannot be dominated by the plan of A; otherwise the plan of B

would be dominated by the autarkic one, which would contradict the choice of B.

We now prove that V A
h ≥ V A

l and V B
h ≥ V B

l . Let caut be the consumption in autarky,

and cA the consumption of A at the equilibrium. If caut = cA, our result holds. Let us

assume that caut 6= cA. For any λ ∈ [−1, 1], we consider the allocation c(λ) = caut +

λ(cA − caut). We have cA = c(1) and cB = c(−1). Since c(−1) and c(1) are available, the

consumption plan c(λ) is available for agents A and B. We denote cl(λ) (resp. ch(λ)) the

(deterministic) consumption vectors obtained in state l (resp. h). Since agents A and B

preferences are identical for deterministic outcomes, Vs(λ) (s = h, l) is the utility of agents

(A or B) endowed with cs(λ). We have V A
s = Vs(1) and V B

s = Vs(−1).

Let us assume that Vl(1) > Vh(1) and show that it yields a contradiction. In autarky,

we have by de�nition: Vl(0) < Vh(0). Since u is strictly concave, the functions Vl and Vh

are also strictly concave. Because of ordinal dominance, V ′l (1) and V ′h(1) cannot have the

same signs (otherwise, A would like to pick up a di�erent c(λ)). Similarly, considering that

c(−1) is the optimal behavior of B, V ′l (−1) and V ′h(−1) cannot have the same sign.

Assume that V ′l (λ0) = 0 for some λ0 ∈ (−1, 1). The concavity of Vl(λ) implies that

V ′l (−1) ≥ 0 and V ′l (1) ≤ 0. The above remarks imply that V ′h(−1) ≤ 0 and V ′h(1) ≥ 0,

which contradicts the strict concavity of Vh. Thus V
′
l (λ0) = 0 is impossible and V ′l and V

′
h

keep constant but opposite signs over (−1, 1). Since Vl(1) > Vh(1) and Vl(0) < Vh(0), we

have V ′l (λ) ≥ 0 and V ′h(λ) ≤ 0 for all λ ∈ (−1, 1). Consider now a small ε > 0. We have

Vh(1) ≤ Vh(1− ε) < Vl(1− ε) ≤ Vl(1) and Vl(−1) ≤ Vl(−1 + ε) < Vh(−1 + ε) ≤ Vh(−1).

Since c(1) is riskier than c(1 − ε), choosing c(1) instead of c(1 − ε) is a risk increase

perceived as worthwhile by A. Since A is more risk averse than B, B must also prefer c(1)

to c(1 − ε), or said di�erently dV B(c(λ))
dλ |λ=1 ≥ 0. But since B prefers c(−1) to c(−1 + ε)

by de�nition, we also have dV B(c(λ))
dλ |λ=−1 ≤ 0. This contradicts the strict concavity of

λ 7→ V B(c(λ)), which can be proved to hold if u is strictly concave and kB ≥ 0. We deduce

then that Vh(1) ≥ Vl(1). By the same token, we can prove that Vh(−1) ≥ Vl(−1).

We have two possibilities: Either (20) holds, or its symmetric where A is replaced by

B holds. This latter possibility however contradicts that A is more risk averse than B.
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G Proof of Proposition 7

We assume that agents can only trade a riskless bond of price pt at date t, which pays 1

unit of consumption at all future dates (starting at t + 1). Given the shock structure, all

asset trades will take place at date 0 and consumption from date 1 and onward is constant.

Using the functional form (21) for Epstein-Zin preferences and denoting by ai the riskless

asset quantity purchased by agent i, the program of i = A,B can be expressed as follows:

max
ai

(
(1− β)

(
y0 − p0a

i
)ρ

+ β
(
η
(
yh + ai

)αi + (1− η)
(
yl + ai

)αi) ρ
αi

) 1
ρ

, (49)

The asset price p0 adjusts, such that the aggregate demand is null: aA + aB = 0.

We allow ourselves to choose a value yh � 1 as large as we like, and then, for this

given yh, a probability 0 < η � 1 as close to zero as we wish. For a given yh, making η

converging to zero involves getting closer to the no risk situation. The market equilibrium

is therefore close to the no-trade equilibrium: |ai| � 1.

From (49), we deduce the following Euler equations (i = A,B):

p0

(
y0 − p0a

i
)ρ−1

=
β

1− β

(
(1− η)

(
yl + ai

)αi−1
+ η

(
yh + ai

)αi−1
)

(50)

×
(

(1− η)
(
yl + ai

)αi + η
(
yh + ai

)αi) ρ
αi
−1
.

We note a = aA = −aB. Taking the ratio of both Euler equations (50) i = A,B, we obtain

using yh � 1, 0 < η � 1, |a| � 1 and αA, αB < 0 < ρ < 1 that:

2(1− ρ)

(
p0

y0
+

1

yl

)
a ≈ −ρ(αB − αA)

αAαB
η < 0. (51)

Regarding the price, we obtain using (50) for i = A and (51):

p0 '
β

1− β

(
yl
y0

)ρ−1(
1− ραA + αB

2αAαB
η

)
>

β

1− β

(
yl
y0

)ρ−1

. (52)

From (21) and (49), ex-post utility of agent i = A,B in state s = h, l can be expressed as:

V EZ,i
s =

(
(1− β)

(
y0 − p0a

i
)ρ

+ β
(
ys + ai

)ρ) 1
ρ
,

≈ V EZ,aut
s +

(
V EZ,aut
s

)1−ρ
(β

(
ys
y0

)ρ−1

− (1− β)p0y
ρ−1
0 )ai,

since the autarky utility in state s = h, l is V EZ,aut
s = ((1− β) (y0)ρ + β (ys)

ρ)
1
ρ . Equation

(51) �nally implies that V EZ,A
s > V EZ,aut

s > V EZ,B
s for s = h, l.
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