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Abstract

We provide a new characterization of Bayesian expected utility maximization. The novel

feature of the model is our separation of actions from prizes. The signature of the resulting

theory is the impossibility of raising utility by switching wholesale from one action to another.

We provide applications to robustness, to the recovery of utility from choice data, and to model

classi�cation.
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1 Introduction

There is a standard approach to modeling signal processing and choice. Decision makers start out

with prior beliefs concerning an underlying state of the world that determines the payo¤s to all

actions. They receive additional signals concerning this state and update their priors in a Bayesian

manner. Their �nal choice of action maximizes expected utility given these posterior beliefs.

From an applied point of view, the devil is in the details. In a typical application it is impos-

sible to know what form private signals take, let alone how well they are understood. By way of
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example, consider jurors in a trial. Even if one tightly monitors the trial, one cannot know how the

proceedings were translated into informative signals concerning the guilt or innocence of the defen-

dant. Nor can one know how such signals were processed. Is it accurate to model jurors as having

perceived all information perfectly? Should we instead model them as perceiving noisy signals? If

so, what form should these signals take and from what distribution should they be drawn? When

there is no clear answer to these questions, it seems sensible to ask what we can say when we make

no assumptions about the exact form of information processing.

In this paper we identify the behavioral limits of the standard model of Bayesian expected

utility maximization. These �No Improving Action Switches� (NIAS) inequalities assert that the

standard model can be applied if and only if it is impossible to improve utility by making wholesale

switches from one action to another. These inequalities apply regardless of the exact form of private

information. Moreover, if they apply, there is some speci�cation of private signals and utilities that

rationalizes the data.

We present three applications of the NIAS inequalities. In the �rst application, we make

predictions for behavior that are �robust�to the exact form of signal processing. This is analogous

to the robust predictions for games of incomplete information found in Bergemann and Morris

[2013] (see section 6.1). For example, in a jury voting example, we show that when the defendant is

more likely to be innocent, the standard model robustly predicts low levels of Type I error (voting

to convict a innocent person), but puts no restriction on the degree of Type II error (voting to

acquit a guilty person).

In our second application we illustrate the bounds that the NIAS inequalities place on utility.

Our utility recovery question is similar in spirit to that of Rubinstein and Salant [2011], who show

how to determine ordinal preference rankings from boundly rational choice procedures. The key

di¤erence in our approach is that the NIAS inequalities establish bounds on the relative strength

of preference for one prize over another even when ordinal rankings cannot be identi�ed.

In our �nal application, we use the NIAS inequalities to identify whether or not prominent forms

of boundedly rational behavior can be rationalized with a standard Bayesian model. This is a non-

trivial question, since there are many di¤erent models of choice that produce the same behavior

(see Richter [2013]).1 We show that models based on �consideration sets�(such as those of Manzini

1To illustrate that this is not always obvious, note that a simple satis�cing model produces the same behavior as
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and Mariotti [2007], Masatlioglu, Nakajima, and Ozbay [2009], and Manzini and Mariotti [2013])

produce behaviors that violate the NIAS inequalities, hence cannot be so rationalized. The same

applies to behaviors generated by procedural models of list order search proposed by Rubinstein

and Salant [2006] and Salant and Rubinstein [2008]. We show also that the standard logit model

of discrete choice, while sometimes motivated by cognitive limits (McKelvey and Palfrey [1995]),

is inconsistent with the standard Bayesian model. However, a variant of the logit model based on

the rational inattention approach is consistent (see Matejka and McKay [2013]).

The centrality of Bayesian expected utility maximization makes the NIAS inequalities of wide

applicability. Caplin and Martin [2013] extend them to categorize observed framing e¤ects as

having resulted from changes in attention or changes in utility. In a laboratory experiment, they

�nd that list order e¤ects can be modeled as purely attentional, while explaining default e¤ects

requires distortions in utility. Caplin and Dean [2013a] consider a more general act environment,

and �nd that in addition to the NIAS inequalities, a �No Improving Attention Cycles� (NIAC)

condition characterizes a general form of rational inattention theory. In a laboratory experiment

involving a perception task, they �nd that subjects conform to both conditions in many, but not

all, circumstances.

Our key modeling innovation is that we do not allow decision makers (DMs) to directly pick

prizes. Rather, we explicitly separate an �action set�A from the prize set X. We treat DMs as

directly choosing actions, which could deliver di¤erent prizes. For example we allow the juror only

to pick guilty or not guilty and the potential purchaser of a good to choose only to buy or to not

buy.

Our motive in separating actions and prizes is that we treat the DM�s information processing

as unobservable to the model-builder. The model-builder can observe prior beliefs, the underlying

state of the world (the actual mapping between actions to prize), and how choice among actions

depends on this state. This �data theoretic�approach to Bayesian expected utility maximization

deliberately mimics the revealed preference approach. In introducing this approach, Samuelson

[1939] noted that utility is unobservable. We extend this approach to accommodate the fact that

both utility and information processing are unobservable.

The separation between actions and prizes on which our approach rests is not standard in the

a standard model of maximization in which all �unsatisfactory� items are indi¤erent (see Tyson [2008]).
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decision theoretic tradition. For Savage, an �act� is literally de�ned by its consequences in each

state of the world, and therefore cannot be separated from these consequences. In expected utility

theory and in the Anscombe-Aumann model, the decision maker chooses directly among prize

lotteries. In contrast, the separation of actions from prizes is standard both in game theory and in

psychophysics, which produces interesting analogies between our approach and work in these �elds.

In game theory, the separation of actions from prizes is required to allow for payo¤ uncertainty

associated with the actions of others. Hence it is no surprise that the two papers that are closest to

ours come from the strategic literature. Bergemann and Morris [2013] determine all outcomes that

can be supported as equilibria of incomplete information games when individuals may have access

to private information. We show in section 6.1 that in some cases the NIAS inequalities identify all

such equilibrium when the utility function itself may be unknown. Kamenica and Gentzkow [2011]

characterize conditions under which a sender can bene�t from sending a signal to a receiver who

takes an action that impacts both parties. Again, the NIAS inequalities identify the set of receiver

actions that are possible for some signal process and some utility function.

In psychophysics, actions are often separated from prizes. Experiments related to the drift-

di¤usion model provide prominent examples (see Fehr and Rangel [2011]). In this approach, the

separation is required to capture manipulations in the location of a prize for a decision maker pre-

sented with evidence (typically dots moving to the left or right with a certain coherence) concerning

the location of a prize (Shadlen and Newsome [2001], Ratcli¤ and McKoon [2008]).2 Experimental

implementation of our model and of its further developments have an analogous structure (e.g.

Martin [2012] and Caplin and Dean [2013a,b]).

In section 2 we introduce our formal model and establish that the NIAS inequalities characterize

expected utility maximization. In section 3 we demonstrate use of these bounds in restricting

observed behavior in a jury trial example. In section 4 we show how to use choice data to bound

utilities. In section 5 we use the NIAS inequalities to classify behaviors according to whether

or not they are rationalizable in a Bayesian model. We discuss strategic analogs and additional

applications in section 6.

2Krajbich, Lu, Camerer, and Rangel [2012] provide evidence of the drift-di¤usion model in consumer choice using

eye-tracking technology.
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2 Bayesian Expected Utility Representations

We model decision makers (DMs) who may not perfectly perceive the payo¤s to taking each action.

This could be because the payo¤s themselves are complex, and thus hard to determine, or because

there is information about the payo¤s that is complex.

2.1 Decision Problem

A DM has available a known set of actions A of cardinality jAj = J with generic element a 2 A.

These actions may be of many di¤erent forms: voting guilty or not guilty in a trial; buying or not

buying a good; choosing one of J positions in a list (Rubinstein and Salant [2006], Caplin, Dean,

and Martin [2011], Caplin and Martin [2013]); choosing one of J possible prices (Martin [2012]),

or making one of J available guesses concerning the number of blue balls in a display (Caplin and

Dean [2013a,b]).

Separate from the actions, there is a set of possible prizes X of cardinality jXj = N . The DM

knows the set of possible prizes, but may be unsure about the exact prize that will result from

choosing each action.

We de�ne the underlying state of the world as specifying precisely the connection between

actions and prizes. Given the �niteness of X and A, there are �nitely many such states, 
 =

f1; ::;m; ::Mg, with state m corresponding to function !m : A! X.

The DM�s uncertainty about the state of the world is summarized by � 2 � = �(
), with

�m the prior probability of state m. Given that � is �xed from this point forward, we discard

impossible states, so that �m > 0 for all m 2 
. A decision problem is de�ned by such a triple

(X;A; �).

2.2 Data Set

Even if private signals are unobservable, information processing can place restrictions on the ob-

servable relationship between stochasticity in choice and the underlying state of the world. Given

a decision problem (X;A; �), a state dependent stochastic function q identi�es the probability
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distribution over action choices as it depends on the state,

q : 
 �! �(A):

Let qam be the probability of action a when the state is m. We call the quadruple (X;A; �; q) the

data set.

The applications found in this paper are theoretical in nature and do not require collecting this

data set. The feasibility of collecting this data is established in the experiments of Martin [2012],

Caplin and Dean [2013a,b], and Caplin and Martin [2013]. There are other possible ways to collect

this data. The prior � may be estimated, induced, or elicited. With additional assumptions about

stationarity over time or homogeneity across individuals, a data set q can be constructed not only

from experimental data, but also from more standard observational data.

2.3 Unobservables

Our goal is not to specify the detailed process of signal extraction and processing, but rather to

characterize the general properties that are associated with the standard theory of signal processing

and decision making. To that end, we cut through the details of the signal extraction and processing

technology and work directly with a mapping from the prior to each possible posterior belief  2

�.3

In technical terms, the theories of choice that we characterize are based on a standard expected

utility function U : X ! R+ and two less standard elements: a perception function � that

produces posterior beliefs and a choice function C that maps posterior beliefs into action choices.

Given the utility function over prizes, the utility that results from taking action a in state m

can be generated by taking the composition of the utility function and the map between actions

and prizes in this state, so that Uam = U(!m (a)).

The perception function maps each state m 2 
 into �(�), the probability distributions over �

with �nite support,

� : 
 �! �(�):

3Kamenica and Gentzkow [2011] show that it is without loss of generality to work directly with posterior beliefs

rather than with underlying signals.
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This map re�ects how the DM perceives and internalizes information about the underlying state

of the world, and it allows for stochasticity in this process.

Letting �m() be the probability of posterior  in state m, we de�ne �(�) as the set of possible

posteriors,

�(�) = [Mm=1f 2 �j�m() > 0g:

It is this �nite set that serves as the domain of the choice function, which allows for mixed strategies,

C : �(�) �! �(A):

We let Ca() denote the probability of choosing action a with posterior  2 �(�).

2.4 BEU Representation

For � and C to provide a possible explanation of the data set requires that their composition

generates the data set. To make them consistent with the standard model of signal processing, we

insist that � satis�es Bayes�rule. To ensure consistency with the standard model of choice, we insist

that C maximizes expected utility. A Bayesian expected utility maximizing (BEU) representation

is de�ned by satisfaction of these three conditions.

De�nition 1 (�;C; U) is a BEU representation of (X;A; �; q) if it satis�es:

1. Data Matching: For all m 2 
 and a 2 A,

qam =
X
2�(�)

�m()C
a():

2. Bayesian Updating: For all m 2 
 and  2 �(�),

m =
�m�m()PM
i=1 �i�i()

:

3. Maximization: For all  2 �(�) and a 2 A such that Ca() > 0,
MX
m=1

mU
a
m �

MX
m=1

mU
b
m all b 2 A;

with the inequality strict for some  2 �(�) and a; b 2 A.

We require strictness in the utility comparison of some pair of actions to prevent the conditions

from being trivially satis�ed by a utility function with all prizes indi¤erent.
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2.5 The NIAS Theorem

In our data set, Bayesian expected utility maximization is characterized by the impossibility of

raising utility by switching wholesale from one action to another. This condition is formalized in

the �No Improving Action Switches�(NIAS) inequalities.

De�nition 2 Utility function U : X ! R satis�es theNIAS inequalities with respect to (X;A; �; q)

if,
MX
m=1

�mq
a
mU

a
m �

MX
m=1

�mq
a
mU

b
m;

for all a; b 2 A, with at least one inequality strict.

Theorem 1 (X;A; �; q) has a BEU representation if and only if there exists U : X ! R satisfying

the NIAS inequalities.

A proof can be found in the Appendix. Necessity of the NIAS inequalities follows directly

from the de�nition of a BEU representation. Su¢ ciency is established by constructing a BEU

representation based on any utility function that satis�es the NIAS inequalities. The only intricacy

involves cases in which the choice function C must involve mixed strategies.

For a speci�c (X;A; �; q), each NIAS inequality imposes a linear constraint on prize utilities.

Existence of a utility function that validates all such inequalities corresponds to establishing non-

emptiness of the intersection of (J � 1)2 linear inequalities. This can be checked using standard

linear programming methods.

Afriat [1967] similarly provided a set of data-de�ned linear inequalities such that a solution to

the inequalities exists if and only if a non-satiated utility function exists that rationalizes the data.

While not directly comparable because they are based on deterministic choices from budget sets,

Afriat�s constraints have a conceptual link with our constraints in that they both treat the utility

function as unobservable.
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3 Robust Prediction

Our �rst application of the NIAS inequalities is to produce predictions for behavior that are robust

to assumptions about information processing. To illustrate, we use an example of a juror in a crim-

inal trial, which is inspired by the lead example in Kamenica and Gentzkow [2011] and Bergemann

and Morris [2013]. The juror has two actions: voting to acquit (action A) and voting to convict

(action C), and there are two possible states: the defendant is innocent (state I) or the defendant

is guilty (state G).

Three parameters de�ne the data set. These are the prior probability of innocence �I 2 (0; 1)

and the probabilities of voting to acquit when the defendant is either innocent or guilty, �I � qAI ,

�G � qAG. These parameters de�ne the statistics that may be of outside interest:

1. The overall probability of voting to acquit is �I�I + (1� �I)�G.

2. The probability of voting to convict an innocent party, known as Type I error, is 1� �I .

3. The probability of voting to acquit a guilty party, known as Type II error, is �G.

4. The overall probability of a mistaken vote is �I(1� �I) + (1� �I)�G.

In this illustration, we use the NIAS inequalities to indicate when it is possible to robustly

predict a low level of Type I error (voting to convict an innocent party) or Type II error (voting

to acquit a guilty party).

3.1 NIAS Inequalities and Limits on Behavior

We assume the juror prefers voting correctly: to acquit if the defendant is innocent and to convict

if the defendant is guilty. As a starting point, we follow Kamenica and Gentzkow [2011] and

Bergemann and Morris [2013] in assuming that the juror only cares about voting correctly and in

normalizing the utility of voting correctly to 1 and the utility of voting incorrectly to 0.

It is intuitively clear that the choice data produced by a Bayesian must satisfy certain conditions.

For example, if the probability of innocence is high, there must be high likelihood of voting to acquit.

The NIAS inequalities provide all such intuitive restrictions in a concise and precise manner. The
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NIAS inequality for voting to acquit simpli�es to,

�I �
�
1� �I
�I

�
�G:

The NIAS inequality for voting to convict simpli�es to,

�I � (2�
1

�I
) +

�
1� �I
�I

�
�G:

As always, at least one inequality must be strict.4

With an even prior (�I = 0:5), the NIAS inequalities assert that �I > �G, which means that

the juror must be right strictly more than 50% of the time. It is clear that this is necessary for there

to exist a BEU representation. That it is also su¢ cient shows that being very good at correctly

identifying an innocent party can be consistent with being very bad at correctly identifying a guilty

party without requiring non-Bayesian reasoning or caring about the type of error committed. If

correct on innocence 99% of the time (�I = :99), such a juror can be incorrect on guilt 98% of the

time (�I = :98).

Despite the reach of the standard model, precisely 50% of all conceivable data sets are ruled out

by this condition, as illustrated by the shaded region beneath the main diagonal in �gure 1. As the

prior becomes more uneven, the implied restrictions on choice data become stronger. To illustrate,

the larger shaded region in �gure 1 indicates the choice probabilities that cannot be rationalized

when the prior probability of innocence is �I =
1
3 , in which case the relevant inequality identifying

existence of a BEU is,

�I � 2�G:

Note that 75% of all conceivable data sets are ruled out by this condition.

3.2 Type I and Type II Error

Note that when �I =
1
3 there is no outright restriction on Type I error (voting to convict an

innocent person), while the rate of Type II error (voting to acquit a guilty person) cannot be above

50%. As the probability of innocence falls, the upper bound on Type II error falls.

The bounds on errors are interdependent. If �I = 0 so that the juror always makes a Type I

error, then must be no Type II error. If �I = 1 so that the juror never makes Type I error, then
4When �I < :5 the second inequality is slack, so holds strictly, while when �i > :5 the �rst inequality is slack, so

hold strictly. When �i = :5 both hold strictly.
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Figure 1: Robust predictions for �I = :5 and �I =
1
3 .
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there can be up to a 50% rate of Type II error. Between these extremes, the relationship between

the Type I error and the maximum Type II error is linear.

Finally, note that when the defendant is more likely to be innocent, say �I =
2
3 , the relationship

between Type I and Type II errors reverses. For example, there is no outright restriction on Type

II errors, while the Type I error rate cannot be above 50%.

3.3 Caring about Errors

We now allow for the juror to dislike Type I errors (voting to convict a innocent person) di¤erently

from Type II errors. We partially continue the normalization from before, so that the utility of

voting correctly is 1 and the utility of making a Type II error is 0. However, now the utility of

making a Type I error is � < 1. For values of � 2 (0; 1), the juror dislikes Type II error (acquitting

a guilty party) more than Type I error (convicting an innocent party), while the converse holds for

� < 0.

The NIAS inequality for voting to acquit now simpli�es to,

�I �
�
1� �I

(1� �)�I

�
�G;

while the NIAS inequality for voting to convict now simpli�es to,

�I �
�
2� �
1� � �

1

(1� �)�I

�
+

�
1� �I

(1� �)�I

�
�G:

How behaviorally restrictive the NIAS inequalities are now depends both on the prior and on

the value of �. With �I = 0:5 and � = �1 the inequality is,

�I �
1

2
+
1

2
�G:

This implies that the juror must correctly vote to acquit the innocent at least 50% of the time, with

this bound becoming ever more restrictive the more they incorrectly acquit the guilty. Keeping

this same prior and increasing the asymmetry in the utility function to the point where k = �9,

the constraint becomes,

�I �
9

10
+
1

10
�G:

so that the juror must correctly acquit the innocent at least 90% of the time. Fully 95% of all

conceivable data sets are ruled out by this condition, as illustrated by the larger shaded region in

�gure 2.
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Figure 2: Robust predictions for � = �1 and � = �9 when �I = :5.

13



With �I = 0:5 and � = 0, there were no restrictions on Type I error, but with � = �1, we see

a substantial restriction on the rate of Type I error. As would be expected, with � = �9 we see

even tighter restrictions on the probability of a Type I error.

4 Bounds on Expected Utility

The NIAS inequalities allow us to use choice data to place bounds on unknown utilities even when

the exact form of information processing is unspeci�ed. This is similar in spirit to the recovery

of preferences in the presence of bounded rationality by Rubinstein and Salant [2011]. They show

how to reverse engineer ordinal preference rankings from several deterministic choice procedures.

An important di¤erence is that the NIAS inequalities establish bounds on the relative strength of

preference for one prize over another even when ordinal rankings cannot be determined.

To illustrate, consider again the example of the previous section, but where the relative im-

portance of Type I and Type II errors in the juror�s utility function is unknown. Again this is

determined by a single parameter,

� < 1;

the utility of Type I error.

In technical terms, we use the NIAS inequalities to constrain �. The inequality that makes

voting to acquit at least as bene�cial to the juror as voting to convict simpli�es to,

� � 1�
�
1� �I
�I

��
�G
�I

�
:

The NIAS inequality that makes voting to convict at least as bene�cial as voting to acquit simpli�es

to,

� � 1�
�
1� �I
�I

��
1� �G
1� �I

�
:

Overall the requirement is,

1�
�
1� �I
�I

��
�G
�I

�
� � � 1�

�
1� �I
�I

��
1� �G
1� �I

�
;

with at least one inequality strict.

To see how the NIAS inequalities constrain relative error costs, consider �rst a case with �I =

0:5, �I = 2
3 , and �G =

1
3 . In this case the inequalities assert,

1

2
� � � �1:
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These constraints do not pin down whether Type I or Type II error is seen as worse because the

utility of Type II error is zero. Rather the inequalities constrain the ratio of the losses associated

Type I errors relative to Type II errors.

In fact, with �I = 0:5, the bounds are on the opposite sides of zero for any choice data,

1� �G
�I

� � � 1� 1� �G
1� �I

:

Hence one cannot know ordinal rankings of Type I and Type II error in this case. However, in the

limit as �I approaches �G, the utility function is almost exactly pinned down. For �I = 0:5, in the

limit as �I approaches �G, the juror must be close to indi¤erent between Type I errors and Type

II errors. The bounds tighten when the conditional choice probabilities get closer because there is

less room for imperfect perception to explain variation in choice.

When the prior is uneven, it is possible to pin down which type of error is worse and also provide

bounds on the extent of the di¤erence. For example, with �I =
1
4 , the inequality becomes,

1� 3
�
�G
�I

�
� � � 1� 3

�
1� �G
1� �I

�
:

For example, when �I = 2
3 and �G =

1
3 , the requirement is,

�1
2
� � � �5:

In this case it is known for sure that Type I errors are regarded as worse than Type II errors,

although the precise extent of this preference in not known. Once again, in the limit as �I falls

toward �G, the utility function is almost pinned down. In this case, the utility bounds tighten

around � = �2.

5 Model Classi�cation

The NIAS inequalities can be used to classify models of choice as either consistent or inconsistent

the Bayesian expected utility maximization directly from the choice data they produce. To match

a typical application in the literature on bounded rationality, we now consider a consumer choosing

between two goods x1 and x2. The consumer strictly prefers product x1, and the corresponding

utility function is normalized to U (x1) = 1 and U (x2) = 0. However the goods look somewhat

similar and are put side-by-side on a shelf. Hence it may be hard for the consumer to determine

which good is which.
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The consumer can choose the good on the left (action L) or choose the good on the right

(action R). The preferred good is either on the left (state l) and on the right (state r), with the

prior �l 2 (0; 1) identifying the probability that it is on the left. The two other parameters that

de�ne the data set are �l � qLl , �r � qLr , the probabilities of picking the good on the left in either

state.

5.1 Stochastic Consideration of Prizes

The bounded rationality literature o¤ers many approaches to modeling imperfect perception. Manzini

and Mariotti [2013] propose a form of stochastic consideration where a prize xn is considered with

probability �n 2 (0; 1) and the optimal option inside the consideration set is chosen.5 The default

choice for an empty consideration set is left unspeci�ed. In this example, we assume that the default

choice gives some third inferior good x3 with certainty.

The data produced by this theory re�ect the fact that x1 is chosen if considered and x2 is chosen

only if it is the only prize considered,

�l = �1;

�r = (1� �1) �2:

To illustrate failure of the NIAS conditions, note that substituting this data into the NIAS inequality

for action L produces,

�1 �
(1� �l) �2

�l + (1� �l) �2
;

which is clearly violated when �1 is close to 1 and �l is large.

Note that in this simple example it is hardly surprising that the stochastic consideration set

model produces clear failures of updating. After all, it is trivial if one looks at either object to select

the best prize: if the prize is x1 it should be chosen, otherwise the other prize should be chosen.

Refusal to pick outside a consideration set is hard to justify in a Bayesian model unless the option

is sure to be dominated.
5Alternatively, Manzini and Mariotti [2007] and Masatlioglu, Nakajima, and Ozbay [2011] consider models of

deterministic consideration of prizes.
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5.2 Stochastic Consideration of Actions

Rubinstein and Salant [2006] and Salant and Rubinstein [2008] describe choice procedures that

consist of searching a �xed number of positions in a list and then selecting the best searched

option. In our language, such a procedure produces deterministic consideration of actions. To be

more precise, let the action of choosing the �rst position in a list be a1. Searching the �rst position

in a list is equivalent to determining the prize associated with action a1. Caplin and Dean [2011]

consider analogous models of search allowing for stochasticity in the order of search. This gives rise

to stochastic consideration of actions rather than of prizes as in Manzini and Mariotti [2013].

We amend the earlier analysis by interpreting �1 as the probability that action L is considered.

The data produced by this theory re�ect the fact that action L is selected if and only if it is

considered and gives the best prize of the considered actions,

�l = �1;

�r = �1 (1� �2) :

Substituting this data into the NIAS inequality for action L produces a constraint on the consid-

eration of the other action,

�2 �
1� 2�l
1� �l

:

When �l = :25, this reduces to �2 � 2
3 , which is readily violated.

5.3 Logit Demand

The most important model of discrete choice is the logit model. This approach is sometimes moti-

vated as resulting from imperfect cognition (McKelvey and Palfrey [1995]). However we show the

standard version of this model it is not consistent with the Bayesian expected utility maximization.

To establish this we simply analyze whether or not the associated stochastic choice data satis�es

the NIAS inequalities.

Logit demand, which arises when errors follow an extreme value distribution, produces the

following data,

�l =
e
1
�

1 + e
1
�

;

�r =
1

1 + e
1
�

;
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where � > 0 is a parameter of the distribution. By way of interpretation, when the good prize is

on the left, it is seen as being on the left with a probability that is increasing in how much better

it is than the prize on the right. Rewards in this sense shrink stochastic errors.

To illustrate failure of the NIAS conditions, note that substituting this data into the NIAS

inequality for selecting the good on the left produces,

e
1
� � (1� �l)

�l
;

which is violated whenever � > 1

ln

�
(1��l)
�l

� . To understand why logit demand cannot be rationalized
in a Bayesian manner, note that prior beliefs play no role in determining stochastic choice. With

a su¢ ciently uneven prior, logit demand is inconsistent with the NIAS inequalities.

5.3.1 Rational Inattention

An increasingly popular approach to modeling imperfect perception involves rational inattention

theory (Sims [2003], Matµejka and McKay [2011], Martin [2012], Caplin and Dean [2013b]). In

this approach, a perception function is chosen by the decision maker based on a cost that is

proportional to the change in Shannon entropy. Matµejka and McKay [2011] show that the data

this theory produces are of a generalized logit form. In this example, rational inattention produces

the following form of logit demand:

�l =
e
1
�

e
1
� � 1

� e
1
�

�l

�
e
2
� � 1

� ;

�r =

(1� �l) e
1
�

�
�l � e

1
��1
e
2
��1

�
�
e
2
� � 1

� :

Substituting this data into the NIAS inequality for selecting the good on the left produces,

e
2
� � e 1�
e
2
� � 1

� 1

2
:

which is always satis�ed because as � approaches 0, the limit of the left-hand side is 1, and as �

approaches 1, the limit of the left-hand side is 1
2 . Thus, rational inattention theory satis�es the

standard assumptions.6

6Because of the symmetry in payo¤s and attentional costs, we need consider only one of the constraints.
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Figure 4 shows the choice probabilities produced by rational inattention as the linear cost of

attention parameter � varies when the prior is :7. Notice how, unlike the previous theories, they

remain within the bounds provided by the NIAS inequalities.

6 Strategic Analogs and Additional Applications

Because action and prize separation is common in game theory, there are several strategic analogs

to our model, two of which we discuss in this section.

6.1 Bayes Correlated Equilibrium

Bergemann and Morris [2013] study games of incomplete information in which players may or may

not have access to additional private information about the state. For the case of one player,

they provide a de�nition of Bayes correlated equilibrium (BCE) for an arbitrary game G and

experiment S, where a game G is a triple (A;U; �) and an experiment S is a set of signals T and an

information structure �. They de�ne BCE with an �obedience�condition on the player�s decision

rule � : T ��! �(A), where � is the set of payo¤ relevant states.

The authors show that � is a BCE of (G;S) if and only if, for some �expansion�S� of S, � is a

Bayes Nash equilibrium (BNE) of (G;S�), where expansion places an ordering on the informative-

ness of experiments. In other words, they show that if the player is playing a BCE for the game G

with some information given by S, it is as if they are playing a BNE for game G with additional

information beyond S given by S�.

Because we treat perception as entirely unobservable, we do not put any restrictions on the

player�s information. This is analogous to having S be completely uninformative, so that it contains

only one signal. Such an S is called the �null� experiment and is denoted by S. For the null

experiment, the decision rule reduces to a function � : � ! �(A), which is the same observable

content as our model, so the NIAS conditions can be applied to this function.

Not surprisingly, the conditions for the existence of a BNE in a one player game when infor-

mation is entirely unobservable are identical to the conditions for a BEU representation. It is

immediate from their obedience condition that � is a BCE of (G;S) for some non-trivial U if and
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Figure 3: Choice probabilities for rational inattention theory when �l = :7 .

20



only if U satis�es the NIAS inequalities.

6.2 Strategic NIAS Inequalities

The NIAS inequalities can also be applied to decision rules in the multiplayer strategic setting of

Bergemann and Morris [2013]. Let I be the set of players, �nite and non-empty Ai the action set

of player i, A the set of complete action pro�les A � �i2IAi, and A�i the act sets of other players

A�i � �j2IniA
j . A state dependent stochastic function is a mapping Q : 
 ! �(A). It is now

straightforward to de�ne strategic NIAS inequalities based on utility functions U i : Xi ! R, with

Xi the prize set of player i, where we let U im(ai; a�i) be the state dependent payo¤ to player i as

the result of actions ai 2 Ai and a�i 2 A�i.

De�nition 3 Utility functions
�
U i
	
i2f1;:::;Ig satisfy the strategic NIAS inequalities with respect

to (X;A; �;Q) if for every i,
MX
m=1

�m
X

a�i2A�i
Qm(ai; a�i)U

i
m(ai; a�i) �

MX
m=1

�m
X

a�i2A�i
Qm(ai; a�i)U

i
m(a

0
i; a�i);

for all ai; a0i 2 Ai, with at least one inequality strict.

Similar to the one player setting, � is a BCE of (G;S) for some non-trivial fUigi2f1;:::;Ig if and

only if fUigi2f1;:::;Ig satisfy the strategic NIAS inequalities. Because of this equivalence, our �rst

application is analogous in this setting to the robust prediction found in Bergemann and Morris

[2013] for the case of the null experiment.

The chief di¤erence between the approach that we take and that of Bergemann and Morris

is around the observably of utility. They treat utility functions as known and analyze possible

equilibrium patterns of behavior. We treat the data as given and infer utilities when these data

satisfy conditions consistent with equilibrium play. This enables us to recover bounds on utility

functions in the strategic setting just as it does in the decision theoretic setting. The distinction

is that these are joint restrictions on players�utility functions rather than restrictions that apply

to each individual separately. Hence exploration of this revealed preference approach to strategic

analysis may be of some interest.

Note also that there is a strategic analogy to our third application involving model classi�cation.

The strategic NIAS inequalities can be used to determine which theories of boundedly rational play
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in games are essentially inconsistent with standard equilibrium analysis.

6.3 Bayesian Persuasion

Kamenica and Gentzkow [2011] determine necessary and su¢ cient conditions characterizing when

a sender can bene�t from sending a signal to a receiver who takes a non-contractible action that

impacts the utility of both parties. For the �nite action case, the NIAS inequalities give the set

of receiver actions that are possible under some signal choice and some receiver utility function.

This statement re�ects two di¤erences between our setting and theirs. First, their action space is

in�nite rather than �nite. Second, they treat the utility function as known.

6.4 Additional Applications

We are currently working to extend, apply, and test models that incorporate the NIAS inequalities.

In the current model, the extent of information processing is taken as given. Hence no consideration

is given to the cost of information processing. Caplin and Dean [2013a] consider a general model

optimal choice of attention when there are such costs, while Caplin and Dean [2013b] consider the

special case of Shannon costs. Caplin and Martin [2013a,b] apply the NIAS constraints to classify

observed default and framing e¤ects according to whether or not they are consistent with Bayesian

expected utility maximizing behavior. Martin [2012] considers strategic applications. In all cases,

the NIAS constraints play an essential role.
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8 Appendix: Proof of Theorem 1

Proof. Necessity: Suppose that (�;C; U) de�ne a BEU of (X;A; �; q). We show directly that

U : X ! R must satisfy the NIAS inequalities. Note �rst that from Maximization, given any

 2 �(�) and a 2 A,

Ca()

"
MX
m=1

mU
a
m

#
� Ca()

"
MX
m=1

mU
b
m

#
all b 2 A:

Adding up across  2 �(�), using the Bayesian Updating property to substitute for am, changing

order of addition, and cancelling common terms
hPM

i=1 �i�i()
i
in all denominators, we derive,

MX
m=1

�m

24 X
2�(�)

�m()C
a()

35Uam � MX
m=1

�m

24 X
2�(�)

�m()C
a()

35U bm all b 2 A;
We now use Data Matching to substitute for the inner summations and derive,

MX
m=1

�mq
a
mU

a
m �

MX
m=1

�mq
a
mU

b
m;

verifying the all NIAS inequalities hold at least weakly. To con�rm that at least one is a strict

inequality, pick a 2 A such that there exists  2 �(�) with Ca() > 0, so that,

MX
m=1

mU
a
m >

MX
m=1

mU
b
m some b 2 A:

With this we know that,

Ca()

"
MX
m=1

mU
a
m

#
> Ca()

"
MX
m=1

mU
b
m

#
.

Repeating other steps from this point forward reveals that the corresponding NIAS inequality holds

strictly,
MX
m=1

�mq
a
mU

a
m >

MX
m=1

�mqmU
b
m:

Su¢ ciency: Consider a function �U : X ! R that satis�es the NIAS inequalities with respect

to (X;A; �; q). We now identify perception and choice strategies such that (�;C; �U) identify a BEU

of (X;A; �; q). First, de�ne �am for each action aj 2 A and each m 2 
 by,

�am �
�mq

a
mPM

i=1 �iq
a
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We partition the set of possible acts a into some P < J sets Ap with identical posteriors p within

each such set and distinct posteriors in distinct such sets, so that a 2 Ap if and only if �a = p.

The perception function is now de�ned by,

��m(
p) =

X
a2Ap

qam;

while the choice function is de�ned by,

�Ca(p) =

PM
i=1 �iq

aP
b2Ap

PM
i=1 �iq

b
i

> 0 if and only if a 2 Ap:

To con�rm that this identi�es a BEU, note �rst that given m 2 
 and b 2 Ap,X
q2�(�)

��m(
q) �Cb(q) = �m(

p) �Cb(p) =
X
a2Ap

qam

" PM
l=1 �lq

b
lP

a2Ap
PM
l=1 �lq

j
l

#
Now note that, given m 2 
 and a 2 Ap ,

MX
l=1

�lq
a
l = �mq

a
m

"PM
l=1 �lq

b
l

�mq
b
m

#
;

by the shared membership a; b 2 Ap. Hence,X
a2Ap

MX
l=1

�lq
a
l =

X
a2Ap

�mq
a
m

"PM
l=1 �lq

b
l

�mq
b
m

#
:

Hence,

��m(
p) �Cb(p) =

X
a2Ap

qam

�
�mq

b
mP

a2Ap �mq
a
m

�
= qbm

�P
a2Ap �mq

a
mP

a2Ap �mq
a
m

�
= qbm;

in con�rmation of Data Matching.

To con�rm Bayesian Updating, note that for all m 2 
, p 2 �(�), and b 2 Ap,

pm =
�mq

b
mPM

l=1 �lq
b
l

=
�m��m(

p) �Cb(p)PM
l=1 �l�l(

p) �Cb(p)
=

�m��m(
p)PM

l=1 �l��l(
p)
:

Finally, note that for each m 2 
, 1 � p � P and a 2 Ap, we know de�nitionally that,

�mq
a
m = 

p
m

MX
l=1

�lq
a
l :

Substitution in the NIAS inequalities and division by the constant
PM
l=1 �

a
l q
a
l > 0 yields,

MX
m=1

pm �U
a
m �

MX
m=1

pm �U
b
m;

for all m 2 
, 1 � p � P and a 2 Ap, with the inequality strict for some a; b 2 A. This establishes

Maximization and completes the proof.
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