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Inspired by the European debt crisis since 2010, this paper pro-

vides a theoretical framework to analyze the dynamics of a sovereign

debt crisis and bailouts. To do so, we draw on three sets of litera-

tures. First, Arellano (2008) has shown how “bad luck” can lead to

a sovereign debt crisis. Second, Cole-Kehoe (1996,2000) have shown

how multiplicity of equilibria can lead to a buyers strike. Finally, the

impatience of policy makers as in Beetsma and Uhlig (1999) provides

a reason why a country would be in a crisis zone in the first place. We

introduce a bailout agency or large investor, and characterize the min-

imal actuarily fair intervention that restores the “good” equilibrium

of Cole-Kehoe, relying on the market to provide residual financing.
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1 Introduction

Warnings and analyses of future sovereign debt crises in Europe and their

impact on European monetary policy such as Uhlig (2003) seemed to have re-

ceived little echo during an episode where such fears were judged unfounded.

That has changed. Since 2010, doubts persist on financial markets that a

number of countries such as Greece, Portugal, Spain or Italy will be able

to repay their sovereign debt. Various bailouts and interventions have been

proposed or been executed, with mixed success. This paper is motivated

by these developments and seeks to understand the dynamics of sovereign

debt crises in a single country, when there is an outside intervention by some

bail-out agency. We characterize the minimal actuarily fair intervention that

restores the “good” equilibrium of Cole-Kehoe (2000), relying on the market

to provide residual financing. “Fair value” here means that the resources

provided by the bail-out fund earn the market return in expectation. We

believe this is an important benchmark.

The analysis of the dynamics of a sovereign debt crisis builds on and mod-

erately extends three branches of the literature in particular. First, Arellano

(2008) has analyzed the dynamics of sovereign default under fluctuations in

income, and shown that defaults are more likely when income is low1. Sec-

ond, Cole and Kehoe (1996,2000) have pointed out that debt crises may be

1That may sound unsurprising, but is actually not trivial. Indeed the recursive contract

literature typically implies incentive issues for contract continuation at high rather than

low income states, see e.g. Ljungqvist-Sargent (2004).



self-fulfilling: the fear of a future default may trigger a current rise in default

premia on sovereign debt and thereby raise the probability of a default in the

first place. Both theories imply, however, that countries would have a strong

incentive to avoid default-triggering scenarios in the first place. We there-

fore build on the political economy theories of the need for debt contraints

in a monetary union of short-sighted fiscal policy makers as in to provide a

rationale for a default-prone scenario, see e.g. Beetsma and Uhlig (1999) or

Cooper, Kempf and Peled (2010).

We consider a bailout agency, modeled as a particularly large and in-

finitely lived investor and who is committed to rule out the sunspot-driven

defaults of Cole-Kehoe (2000) per debt purchases, even if all other investors

do not. We assume that this bailout agency seeks an actuarily fair return,

and characterize the minimal intervention. The bailout agency will not pre-

vent defaults due to fundamental reasons as in Arellano (2008) nor impose

additional policy constraints such as conditionality as in e.g. Fink and Scholl

(2011).

2 A model of sovereign default dynamics: no

bailout agency.

This section closely follows Cole-Kehoe (2000) and Arellano (2008) and serves

mainly to fix notation and assumptions. We assume that there is a single

fiscal authority, which finances government consumption ct ≥ 0 with tax

receipts yt ≥ 0 and assets Bt ∈ IR (with positive values denoting debt, in

reverse of the notation used in Arellano (2008)), in order to maximize its

utility

U =
∞
∑

t=0

βt(u(ct) − χtδt) (1)
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where β is the discount factor of the policy maker, u(·) is a strictly increasing,

strictly concave and twice differentiable felicity function, χt is an exogenous

one-time utility cost of default and δt ∈ {0, 1} is the decision to default

in period t. We shall assume that tax receipts yt are exogenous2, while

consumption, the level of debt and the default decisions are endogenous and

chosen by the government.

In Arellano (2008) as well as Cole and Kehoe (2000), this is the utility

of the representative household, yt is total output and ct is the consumption

of the household, i.e. the fiscal authority is assumed to maximize welfare.

The structure assumed here is mathematically the same, and consistent with

that interpretation. It is also consistent with our preferred interpretation,

where the utility function represents the preferences of the policy maker. For

example, given the uncertainty of re-election, a policy maker may discount

the future more steeply than would the private sector. Spending may be on

groups that are particularly effective in lobbying the government. Finally, yt

should then be viewed as tax receipts, not national income.

A more subtle difference is the cost of a default, modeled here as a one-

time utility cost χt, while it is modelled as a fractional loss in output in

Arellano (2008) with Cole and Kehoe (2000). Note, however, that ct = yt in

default, and that at least for log-preferences, u(ct) = log(ct), a proportional

decline in consumption each period following the default can equivalently be

written as a one-time loss in utility. The utility cost formulation provides

a free parameter to fine-tune the quantitative implications of the baseline

specification of the model: a feature that we shall exploit in the numerical

analysis.

In each period, the government enters with some debt level Bt and the

tax receipts yt as well as some other random variables are realized. Traders

on financial markets are assumed to be risk neutral and discount future

2It may be interesting to endogenize tax collection!
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repayments of debt at some return R, and price new debt Bt+1 according

to some market pricing schedule qt(Bt+1). Given the pricing schedule, the

government then first makes a decision whether or not to default on its

existing debt. If so, it will experience the one-time exogenously given default

utility loss χt, be excluded from debt markets until re-entry, and simply

consume its output, ct = yt in this as well as all future periods, while excluded

from debt markets. We assume that re-entry to the debt market happens

with probability 0 ≤ α < 1, drawn iid each period, and that re-entry starts

with a debt level of zero. If the government does not default, it will choose

consumption and the new debt level according to the budget constraint

ct + (1 − θ)Bt = yt + qt(Bt+1)(Bt+1 − θBt) (2)

where 0 < θ ≤ 1 is a parameter, denoting the fraction of debt that currently

needs to be repaid. The parameter θ allows to study the effect of altering the

maturity structure: the lower θ, the longer the maturity of government debt.

The remainder of the debt θBt will be carried forward, with the government

issuing the new debt Bt+1 − θBt.

2.1 State space representation

We shall restrict attention to the following state-space representations of the

equilibrium. At the beginning of a period, the aggregate state

s = (B, d, z) (3)

describes the endogenous level of debt B, the default status d and some

exogenous variable z ∈ Z. We assume that z follows a Markov process and

that all decisions can be described in terms of the state s. The probability

measure describing the transition for z to z′ shall be denoted with µ(dz′ | z).

More specifically, we shall assume that z is given by

z = (y, χ, ζ) (4)
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We assume that y ∈ [yL, yH] with 0 < yL ≤ yH either has a strictly positive

and continuous density f(y | zprev), given the previous Markov state zprev.

We assume that χ ∈ {χL, χH} takes one of two possible values, with 0 =

χL ≤ χH . We assume that ζ ∈ [0, 1] is uniformly distributed and denotes a

“crisis” sunspot. We assume that the three entries in z are independent of

each other, given the previous state. For most parts, we shall assume that z

is iid, and that therefore the distributions for y and χ also do not depend on

zprev. For notation, we shall use y(s) to denote the entry y in the state s,

etc..

If the government does not default (δ = 0), the period-per-period budget

constraint is

c+ (1 − θ)B(s) = y(s) + q(B′; s)(B′ − θB(s)) (5)

where B′ is the new debt level chosen by the government and where q(B′; s)

is the pricing function for the new debt B′.

If the government defaults (δ = 1), the budget constraint is

c = y(s) (6)

We assume that the government will be excluded from debt markets until

it is given the possibility for re-entry. We assume that re-entry to the debt

market happens with probability 0 ≤ α < 1, drawn iid each period3, and

that re-entry starts with a debt level of zero. In that case, “good standing”

d = 0 in the state s will be turned to “bad standing” or “in default” d = 1

in the state s′ following a default, and that d = 1 is followed by d = 1 with

probability 1 − α and with d = 0 with probability α. There is no other role

for d. The default decision of the government is endogenous and (assumed

to be) a function of the state s, δ = δ(s).

3Technically, assume that re-entry happens if ζ ≤ α, in order to achieve dependence on

the state z.
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We can now provide a recursive formulation of the decision problem for

the government. The value function in the default state and after the initial

default utility loss is given by

vD(z) = u(y(z)) + β(1 − α)E [vD(z′) | z] + αE [vND(s′ = (0, 0, z′)) | z] (7)

Given the debt pricing schedule q(B; s), the value from not defaulting is

vND(s) = max
c,B′

{u(c) + βE [v(s′) | z] |

c+ (1 − θ)B(s) = y(s) + q(B′; s)(B′ − θB(s))

s′ = (B′, d(s), z′)}

The overall value function is given by

v(s) = max
δ∈{0,1}

(1 − δ)vND(s) + δ(vD(z(s)) − χ(s)) (8)

Given parameters, a law of motion for z, an equilibrium is defined as

measurable mappings q(B′; s) in B′ and s as well as c(s), δ(s) and B′(s) in

s, such that

1. Given the pricing function q(B′; s), the government maximizes its util-

ity with the choices c(s), δ(s) and B′(s), subject to the budget con-

straint (5) and subject to the exclusion from financial markets for all

periods, following a default.

2. The market pricing function q(B′; s) is consistent with risk-neutral pric-

ing of government debt and discounting at the risk free return R.

2.2 Debt pricing

This subsection of the analysis follows closely the analysis in Cole and Kehoe

(2000) and Arellano (2008), adapted to the model at hand. Given a level of

debt B and “good standing” d = 0, let

D(B) = {z | δ(s) = 1 for s = (B, 0, z)} (9)
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be the default set, and let

A(B) = {z | δ(s) = 0 for s = (B, 0, z)} (10)

be the set of all z, such that the government will not default and instead,

continue to honor its debt obligations: both are (restricted to be) a measur-

able set, according to our equilibrium definition. The disjoint union of D(B)

and A(B) is the entire set Z. Define the market price for debt, in case of no

current default, i.e.

q̄(B′; s) =
1

R

∫

z′∈A(B)
(1 − θ + θq(B(s′ = (B′, 0, z′))))µ(dz′ | z) (11)

Here and below, we use the notation B(s′ = (B′, 0, z′)) to denote the new

debt level B(s′), given the new state s′ = (B′, 0, z′). A shorter, more accurate,

but perhaps more confusing notation would simply be B((B′, 0, z′)). Due to

risk neutral discounting, this is the market price of debt, if there is no default

“today”. Define the probability of a continuation next period per

P (B′; s) = Prob(z′ ∈ A(B′) | s) = E
[

1δ(s′)=0 | s
]

(12)

If θ = 0, i.e., if all debt has the maturity of one period only, then

q̄(B′; s) =
1

R
P (B′; s) (13)

We need to check, whether there could be a default “today”. We shall

impose the following assumption.

Assumption A. 1 Given a state s, either q(B′; s) = q̄(B′; s) for all B′ or

q(B′; s) = 0 for all B′.

This assumption rules out equilibria, where, say, the market expects a current

default, if the government tries to finance some future debt level B′, but not

for others4

4Cole and Kehoe (2000) finesse this issue with more within-period detail, having the

government first sell new debt at some pricing schedule, before taking the default decision.
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We now turn to analyzing the possibility for a self-fulfilling expectation

of a default. Define the value of not defaulting, if the market prices are

consistent with current debt repayment,

v̄ND(s) = max
c,B′

{u(c) + βE [v(s′) | z] |

c+ (1 − θ)B(s) = y(s) + q̄(B′; s)(B′ − θB(s))

s′ = (B′, d(s), z′)}

where it should be noted that the continuation value function is as before,

i.e. given by (8). Define the value of not defaulting, if the market prices are

consistent with a current default,

vND(s) = max
c,B′

{u(c) + βE [v(s′) | z] |

c+ (1 − θ)B(s) = y(s)

s′ = (B′, d(s), z′)}

With that, define two bounds for the current debt levels B, see also figure 18.

Above the upper bound B ≥ B̄(z), the government finds it optimal to default

today, even if the market was willing to finance future debt in the absence

of a default now, i.e. even if q(B′; s) = q̄(B′; s). Above the lower bound

B ≥ B(z), the government finds it optimal to default, if the market thinks

it will do so and therefore is unwilling to finance further debt, q(B′; s) = 0.

I.e., let

B̄(z) = inf{B | v̄ND(s = (B, 1, z)) ≤ vD(z(s)) − χ(s = (B, 1, z))} (14)

as well as

B(z) = inf{B | vND(s = (B, 0, z)) ≤ vD(z(s)) − χ(s = (B, 0, z))} (15)

Whether or not there will be a default at some debt level B between these

bounds will be governed by the sunspot random variable ζ . As in Cole-Kehoe

(2000), we shall assume that the probability of a default in this range is some

exogenously given probability π.
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Assumption A. 2 For some parameter π ∈ [0, 1], and all s with B(z) ≤

B(s) ≤ B̄(z), we have q(B′; s) = q̄(B′; s), if ζ(s) ≥ π and q(B′; s) = 0, if

ζ < π.

Note that the assumption relates endogenous objects to each other.

The equilibrium will therefore look as follows (up to breaking indifference

at the boundary points):

1. If B > B̄(z), the government will default now and not be able to sell

any debt. The market price for new debt will be zero.

2. If B(z) ≤ B ≤ B̄(z), the government will

(a) default with probability π (more precisely, for ζ(z) < π), and the

market price for new debt will be zero,

(b) continue with probability 1−π (more precisely, for ζ(z) ≥ π), and

the market price for new debt will be q̄(B′; s).

3. If B < B(z), the government will not default, and the market price for

debt will be given by q̄(B′; s).

Following Cole and Kehoe (2000), we shall use the term “crisis zone”

for the maximal range for new debt, for which there might be a “sunspot”

default next period, i.e. for

B′ ∈ B =
[

minB(z),max B̄(z)
]

Note that safe debt will be priced at q∗ satisfying

q∗ =
1

R
(1 − θ + θq∗)

and is therefore given by

q∗ =
1 − θ

R− θ
(16)
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Conversely, given some price q, one can infer the implicit equivalent safe rate

R(q) = θ +
1 − θ

q
(17)

To denote the dependence of the equilibrium on the sunspot parameter

π or the dependence on the debt duration parameter θ, we shall use them

as superscripts, if needed. Some analysis for the no-bailout case and some

insights into the stationary distribution of debt and their dependence on the

discount factor are in appendix B.

3 Bailouts

We now introduce the possibility for a bailout per a large and infinitely lived,

risk neutral outside investor. More precisely, we envision a facility with

sufficiently deep pockets (backed by, say, governments other than the one

under consideration here), which aims at ensuring the selection of the “good”

equilibrium, while earning the market rate of return in expectation on its

bond holdings. I.e., we imagine that this bailout facility insists on actuarily

fair pricing. It may well be that actual policy interventions amount to a

subsidy or perhaps even a penalty. We view the actuarily fair “restoration-

of-the-good-equilibrium” as an important benchmark. It might be interesting

to consider other mechanisms, which are not actuarily fair, as well, and we do

so in the appendix C. An alternative is to examine the conditionality of such

bailouts, combining help with insistence on fiscal discipline, see Fink-Scholl

(2011).

If the bailout facility buys the entire debt, then the solution is easy in

principle. It should calculate the π = 0-equilibrium described above, price

debt accordingly, and let the country choose the debt level it wants, given

this pricing schedule. Since the bailout facility is always there, also in the

future, to guarantee the “good” equilibrium, the pricing is actuarily fair.
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There is generally no need to buy the entire debt, however, in order

to assure the π = 0 equilibrium. We therefore assume a minimal bailout

facility. I.e., we characterize the minimal level of debt B′
a(s) such a facility

needs to guarantee buying at the π = 0 equilibrium price, so that markets

must coordinate on this equilibrium. We assume that the facility buys at the

π = 0 equilibrium price, even if the rest of the market does not buy at all:

this is only relevant “off-equilibrium”. It is important in this construction,

that the debt held by the facility is treated the same as the debt held by

market participants. The country is indifferent between purchasing this debt

from the facility or from the market, and so is the market. The guarantee just

needs to be there, in the (now hypothetical) case that the market coordinates

on the default outcome.

To characterize the minimal guarantee level B′
a(s), we need to re-examine

and slightly modify the value function of the government. We need an as-

sumption about the continuation in the case that the market does not buy,

and whether the buyers’ strike persists or not. In order to truly characterize

the minimal intervention, we make the “optimistic” assumption that a po-

tential buyer’s strike only lasts for one period, i.e., given the presence of the

large investor, the continuation value following a no-default today shall be

given by the value function valid for the π = 0 equilibrium. Given the pol-

icy B′
a(s), define the no default value under assistance ( and current buyers’

strike, except for the large investor) as

v̄ND;a(s) = max
c,B′

{u(c) + βE
[

v(π=0)(s′) | z
]

|

c+ (1 − θ)B(s) = y(s) + q(π=0)(B′; s)(B′ − θB(s))

B′ ≤ B′
a(s)

s′ = (B′, d(s), z′)} (18)

Note the second constraint, encapsulating the limit of the assistance. Let

ε > 0 be a parameter and small number to break indifference. Given q(π=0)
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and v(π=0), one can therefore solve for B′
a(s) “state by state” such that

vND(s = (B, 0, z)) = vD(z(s)) − χ(s = (B, 0, z)) + ε for all 0 ≤ B ≤ B̄(z)

(19)

where B̄(z) is the maximum level of current debt consistent with no default

in the π = 0 equilibrium. For B > B̄(z), define B′
a(s) = 0, but do note,

that q(B′; s) = 0 for any B′ > 0 per definition of B̄(z). In other words, the

facility could also provide the (meaningless) guarantee of willing to buy any

positive level of debt B′
a(s) at a zero price.

Proposition 1 Suppose B′
a(s) satisfies (19). Then, B(z) = B̄(z), i.e, there

will not be a default, unless debt exceeds B̄(z).

Proof: to be completed. •

In the iid case and with a constant embarrassment utility costs χ > 0 of

defaulting, a bit more can be said. In that case, some constant value βṽD

βE[vD(z′)] ≡ βṽD

is the continuation value from defaulting. Likewise, when receiving the full

guarantee B′
a(s), the continuation value of not defaulting is βṽND(B′

a(s)),

given by

βE[v(B′
a(s), 0, z

′)] = βṽND(B′
a(s))

Criterion (19) becomes

u(y(s)) − u
(

y(s) + q(π=0)(B′
a(s); s) (B′

a(s) − θB(s)) − (1 − θ)B(s)
)

(20)

= βṽND(B′
a(s)) − βṽD − χ− ε

comparing the current utility gain from defaulting to the utility continuation

loss from defaulting, including the embarrassment cost χ.

12



Proposition 2 In the iid and constant-χ case, we have

1. For two states s1, s2, if B(s1) > B(s2), then B′
a(s1) ≥ B′

a(s2).

2. If B(s) > 0, then

q(π=0)(B′
a(s); s) (B′

a(s) − θB(s)) < (1 − θ)B(s)

3. For two states s1, s2, if y(s1) > y(s2), then B′
a(s1) ≤ B′

a(s2).

4. For two states s1, s2, if χ(s1) > χ(s2), then B′
a(s1) ≤ B′

a(s2).

Proof: To be completed (and perhaps modified). The first part appears

to be obvious. The second part is a version of proposition 2 in Arellano

(2008), but may need some additional assumptions. The third follows from

the second. •

4 A numerical example

This section presents the results of a numerical exercise, where the model is

solved using value function iteration, see appendix A for more details. First

we discuss the functional forms and parametrization, and then we give the

results.

The government’s within period utility function has the CRRA form

u (c) =
c1−σ − 1

1 − σ

We assume that the income process is a log-normal autoregressive process

with unconditional mean µ

log (yt+1) = (1 − ρ)µ+ ρ log (yt) + εt+1
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Government’s risk aversion σ 1/2

Interest rate r 3.0%

Income autocorrelation coefficient ρ 0.945

Standard deviation of innovations σε 3.4%

Mean log income µ (-1/2)σ2
ε

Exclusion α 0.2

Maturity structure θ 0.8

Discount factor β 0.4

Cost χL 0

Cost χH 0.5

SFC sunspot probability π 0.05

Income grid y1, . . . , y20 [0.73, . . . , 1.37]

debt grid B1, . . . , B1000

Table 1: Parameter values for the calibration. One period is one year.

14



Target θ = 0.8

Debt/Tax ratio 2 .. 3 2.4

Default rate 5% .. 8% 6.6%

Table 2: Targets and numerical results for the debt/tax ratio and the default

rate

with E (ε) = 0, E (ε2) = σ2
ε .

A period in the model refers to a year. Table 1 summarizes the key

parameters used in this exercise. Additionally, as transition matrix between

the two χ-states, we choose





0 1

0.04 0.96





Both the value for χH as well as the transition probability from χH to χL

was chosen after some experimentation to hit two target properties. First,

we aimed at a debt-to-tax ratio somewhere between two and three. Second,

we aimed at default rates between 5 and 8 percent. While it tends to be

hard to hit these numerical targets with, say, the assumption that the only

penalty to default is higher consumption variability, it is comparatively easy

to do it here, with these two additional free parameters, see table 2.

Table 3 shows the “anatomy” of defaults. One can see that 12 percent of

the defaults happen due to fundamental problems, even with a “responsible”

χH government and despite buyers willing to buy the bonds in principle.

However, nearly half of all defaults occur due to a buyers’ strike: it is these

occurrences which the bailout agency shall help to avoid.

Figure 1 shows the resulting crisis zones. Figure 2 shows the debt purchase

assistance policy by the bailout agency. Over a fairly narrow range, the

guaranteed purchases quickly rise until they reach 100%. At that point, the
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Buyers present Buyers’ strike

χL 38% 2%

χH 12% 48%

Table 3: The structure of defaults.

risk and incentive of a default due to fundamental reasons tomorrow is so

large, that the failure to sell a small fraction of the new debt will be enough

to trigger a default. If the current debt is even higher, the fundamental

debt price collapses all the way to zero, and so does the bailout guarantee.

The country will not be willing to repay or will be unable to repay in the

future, and purchasing debt at any positive price will result in expected losses.

Figure 3 shows the dependence of this policy on income. With currently

higher income, it may well be worth guaranteeing debt purchases, that would

lead to default at lower income levels. In other words, the bailout agency

should rather support the country during a boom than a recession. This

result may be counterintuitive from a policy perspective, but surely makes

sense from the perspective of a risk-neutral investor.

Table 4 shows the impact of varying the maturity of debt. As the maturity

of debt is increased, the threat from a buyers strike in any given period

declines, as an ever smaller fraction of the debt needs to be rolled over. As

a result, the incentive to maintain higher debt levels rises, and not much

changes with the default rates, as the overall result, while the length of the

crisis zones shrink. These results are graphically represented in figures 4,5

and 6. The corresponding shift in the debt purchase assistance policy is

shown in 7.

Table 5 shows that the change in the sunspot probability π for a buyers

strike has only a modest impact on the overall default probability, while

the debt level increases. With the fear of a default due to buyer’s strike
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Figure 2: Debt purchase assistance policy by the bailout agency.
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Figure 3: Income and debt purchase assistance

Targets:

Target θ = 0.9 θ = 0.8 θ = 0.5 θ = 0

Debt/Tax ratio 2 .. 3 3.3 2.4 1.8 1.6

Default rate 5% .. 8% 6.6% 6.6% 6.2% 6.2%

Defaults: θ = 0.9:

Buyers present Buyers’ strike

χL 38% 2%

χH 16% 44%

Defaults: θ = 0:

Buyers present Buyers’ strike

χL 42% 2%

χH 2% 54%

Table 4: Variations in maturity and their impact on defaults. θ = 0 is

one-period debt, whereas θ = 0.9 is essentially 10-period debt.
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Figure 5: Default and θ
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Figure 6: Maturity and Crisis Zones
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Figure 7: Maturity and debt purchase assistance
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Target π = 0.2 π = 0.1 π = 0.05 π = 0

Debt/Tax ratio 2 .. 3 1.8 2.1 2.4 2.9

Default rate 5% .. 8% 5% 8% 6.6% 4%

Table 5: Sunspot probabilities and debt levels

Defaults for π = 0.1: total prob = 8%:

Buyers present Buyers’ strike

χL 27% 3%

χH 8% 62%

Defaults for π = 0.05 (Benchmark): total prob = 6.6%:

Buyers present Buyers’ strike

χL 38% 2%

χH 12% 48%

Defaults for π = 0:total prob = 4%:

Buyers present Buyers’ strike

χL 81% 0%

χH 19% 0%

Table 6: Sunspot probabilities and default details

gone, debt becomes more attractive. Indeed, as table 6 shows, the default

probability mass now shifts from the “buyer strike” scenario to the default

due to fundamental reasons. Graphical representations of these relationships

are in figures 8 and 9. There is a conundrum for the bailout agency here. As

that agency is successful in reducing the sunspot default probability from,

say, 20 percent to zero percent, the overall default rates only decline modestly

from 5% to 4%. In some ways, the problem gets postponed: the government

gets a bit more time to accumulate more debt. As far as default rates are

then concerned after this transition, not much will have changed.
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Figure 9: Default and π
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Figure 10: Debt pricing function, π = 0.05 vs π = 0.

Figure 10 shows the pricing function for debt at our benchmark value for

θ, while 11 shows the pricing function for the somewhat more intuitive case of

θ = 0, i.e. one-period debt. Indeed, debt prices rise and thus yields decline,

as the bailout agency assures the π = 0 equilibrium through its purchase

guarantees. The resulting debt buildup is rather fast, as figure 12 shows.

Figures 13, 14 and 15 show how the stationary debt distribution is shifted

to the right, inducing the higher occurrences of defaults due to fundamental

reasons. A graphical representation of the decision rules underlying the in-

creased debt accumulation under debt purchase assistance is shown in figure

16: the decision rule shifts upwards, indicating a larger willingness of the

government to incur debt.

5 Conclusions

We have analyzed the dynamics of sovereign debt defaults, drawing on in-

sights from three literatures, particularly Arellano (2008), Cole-Kehoe (2000)
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Figure 11: Debt pricing function, π = 0.05 vs π = 0, when θ = 0.
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point: π = 0.05, mean income, mean debt/gdp ratio.
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Figure 13: Debt Distribution with sunspots: π = 0.1
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Figure 14: Debt Distribution with sunspots: π = 0.05
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Figure 16: Stationary debt dynamics, permanent assistance
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and Beetsma-Uhlig (1999). More precisely, we have analyzed the dynamics of

sovereign debt, when politicians discount the future considerably more than

private markets and when there are possibilities for both a “sunspot-”driven

default as well as a default driven by worsening of economic conditions or

weakening of the resolve to continue with repaying the country debt.

We have shown how this can lead to a scenario, where the country perches

itself in a precarious position, with the possibility of defaults imminent. We

characterized the minimal actuarily fair intervention that restores the “good”

equilibrium of Cole-Kehoe, relying on the market to provide residual financ-

ing.

Three messages and conclusions emerge. First, an actuarily fair bailout

agency may be able to restore the “fundamentals-only” equilibrium, by is-

suing debt purchase guarantees and without incurring losses in expectation.

Second, these guarantees need to go far enough, but not too far. Defaults due

to fundamental reasons still lurk around the corner, and excessive debt pur-

chase guarantees would then invariably lead to losses for the bailout agency.

Third, the overall default rates may not change much, as the higher guar-

antees and the lower yields mean that the current government can relax a

bit in its efforts to repay its debt level and incur more deficits instead. The

resulting higher debt levels in the future will then make future defaults in-

evitable on occasions, but this time due to fundamental reasons rather than

buyers’ strike.
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A Computational algorithm

We solve the model numerically using a discrete state space method similar

to Aguiar and Gopinath (2006). I discretize the endowment space into 15

equally spaced grids, and the asset space into 300 grids.

The computational algorithm consists of the following value function it-

eration:

1. Assume an initial bond price schedule q0 = 1
1+r

.

2. Use this price function and initial guess for the value functions to solve

for the optimal value functions and policy functions.

3. Update the bond price schedule and repeat the previous steps until the

price functions converge.

B No bailouts: analysis

In this section, we exclude assisted debt issuance, i.e. we assume that

qa(B
′; s) ≡ 0. We therefore furthermore assume, that the bailout sunspot

ψ(s) is “irrelevant”, i.e. all functions are independent of ψ: it may not be

necessary to assume so, but it seems unnecessary to consider it. We finally

shall assume that z is iid.

The following results are essentially in Arellano (2008) and states that

default incentives increase with higher debt.

Proposition 3 Suppose z is iid and that all functions are independent of

ψ. If default is optimal for s(1) = (B(1), 0, z), then default is optimal for

s(2) = (B(2), 0, z), whenever B(2) > B(1).

This is proposition 1 in Arellano (2008).

The next proposition states that lower tax receipts y increases default

incentives.
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given pricing function q(B′; s)

Proposition 4 Suppose z is iid and that all functions are independent of ψ.

Default incentives are stronger, the lower are tax receipts. I.e., for all y(1) ≤

y(2), if z(2) = (y(2), χ, ζ, ψ) ∈ D(B), then so is z(1) = (y(1), χ, ζ, ψ) ∈ D(B).

This is the non-trivial insight and proposition 3 in Arellano (2008) and follows

similarly from the concavity of u(·). A graphical representation is in figure 17.

In that figure, a pricing function q(B′; s) is taken as given. We are typicallyk

considering two pricing functions in particular. Due to the possibility of a

sunspot, the pricing function may be q = q̄m(B′; s) or q ≡ 0. The latter

results in a larger default set in the latter case. A graphical representation

is in figure 18.

By comparison to proposition 4, the next proposition is certainly more

trivial and obvious, and states that less “shame” χ of defaulting results in

higher incentives to default.
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Figure 18: Relationship between debt, income and the default decision, for

the two pricing functions q = q̄m(B′; s) and q ≡ 0

Proposition 5 Suppose z is iid and that all functions are independent of

ψ. Default incentives are stronger, the lower is the utility penalty from de-

faulting. I.e., for all χ(1) ≤ χ(2), if z(2) = (y, χ(2), ζ, ψ) ∈ D(B), then so is

z(1) = (y, χ(1), ζ, ψ) ∈ D(B).

With these results, we can derive the dependence of the pricing function

on the debt level.

Proposition 6 Suppose that qa(B
′; s) ≡ 0, i.e. no bailouts. Then q(B′; s) is

decreasing in the debt level B′. If y and/or χ is random with a strictly positive

and continuous density, then q(B′; s) is continuous in B′ with a nonpositive

derivative in B′, except for finitely many points.

Proof: To be completed. Note, that changes in B′ “smoothly” move into

the default areas, when y and/or χ is random with a strictly positive and

continuous density. •
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A graphical representation of the pricing function q = q̄m(B′; s) is in fig-

ure 19 for the case of θ = 0, i.e. one-period bonds. If the next period debt

level is below the lowest level, at which a default could possibly be expected,

B′ ≤ minB(z), then the debt is safe and will be discounted at R. As B’

increases beyond this level, there will be some states of nature in the future,

for which a default may occur: these defaults become gradually more likely

with increases in B’, as one can infer from figure 18. Once the debt level is

so high, that a default must surely occur tomorrow, then the current price

level must be zero as well. The pricing function depends on the sunspot de-

fault probability tomorrow in a subtle way, as figure 20 shows. With a zero

probability of a “sunspot” default, the debt B′ needs to exceed min B̄(z) in

order for the price q̄m(B′; s) to decline. Indeed, B̄(z) itself depends on π

and should intuitively rise, as π falls (since q is shifting upwards): this is

indicated by the shift also of max B̄(z) in that figure.

It is useful to analyze the first-order condition of the government, when

considering its choice for the future debt level B′, assuming that the debt

pricing rule is “sufficiently nice”. Define the level of consumption, resulting

from a particular debt choice B′,

c(B′; s) = y(s) + q(B′; s)(B′ − θB(s)) − (1 − θ)B(s) (21)

At the optimal choice, B′ = B′(s) and c(B′; s) = c(s). From there, consider

marginally increasing the amount of debt B′ . This yields a current utility

gain
(

∂U

∂B′

)

(I)

= u′(c(s)) (q(B′; s) + q1(B
′; s)B′) (22)

Per the envelope theorem for vND, i.e. conditional on a state s′ of no default,

the utility loss tomorrow is given by

∂vND(s′)

∂B′
= βu′(c(s′))(θ − 1 − θq(B′′(s′); s′)) (23)
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Figure 20: The market price q(B′) = q̄m(B′; s) for nonzero “sunspot” default

probability π as well as for π = 0.
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where we have used the hopefully intuitive notation B′′(s′) to denote the debt

choice next period, given next periods state s′, instead the of the formally

correct but possibly confusing notation B′(s′). Integrating the losses given

by (23) yields
(

∂U

∂B′

)

(II)

= βπ
∫

{z|B′≤B(z)}
u′(c(s′ = (B′, 0, y, χ, 0, 0)))(1− θ + θq(B′′(s′); s′))µ(dz)

+β(1 − π)
∫

{z|B′≤B̄(z)}
u′(c(s′ = (B′, 0, y, χ, 1, 0)))(1− θ + θq(B′′(s′); s′))µ(dz)

= βE
[

u′(c(s′))(1 − θ + θq(B′′(s′); s′))1δ(s′)=0

]

(24)

where we have set ζ = 0 and ζ = 1 for the two crisis sunspot situations, and

arbitrarily fixed ψ = 0.

However, the set of default states changes. To keep the analysis tractable,

suppose that χ is not random but constant, while the distribution for y has

a nontrivial, strictly positive and bounded density f(y) = F ′(y) on [yL, yH].

With the help of proposition 4, the condition B ≤ B(z) can equivalently

written as y ≥ y(B), while the condition B ≤ B̄(z) can equivalently written

as y ≥ ȳ(B) for some bounds ȳ(B) ≤ y(B). Additionally, there is then the

net loss in utility due to increasing the risk of default (or, technically, the

differentiation with respect to the boundary of the integral),
(

∂U

∂B′

)

(III)

= βπ
(

vND(B′, 0, y(B′), χ, 0, 0) + χ− vD(y(B′), χ, 0, 0)
)

f(y(B′))
dy(B′)

dB′

+β(1 − π) (vND(B′, 0, ȳ(B′), χ, 1, 0) + χ− vD(ȳ(B′), χ, 0, 0)) f(ȳ(B′))
dȳ(B′)

dB′

Note now, though, that the boundaries are defined by the condition that

the expression in brackets equals zero, unless we are at the boundary of the

interval [yL, yH] and therefore the derivative of y(B′) or of ȳ(B′) with respect

to B′ is zero.

The argument regarding this third part generalizes, in case χ is random

too. we note this result as follows.
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Proposition 7 If the condition for optimality can be written as a first-order

condition, it is
(

∂U

∂B′

)

(I)

=

(

∂U

∂B′

)

(II)

(25)

where the two pieces are given by (22) and (24). Put differently,

q(B′; s) + q1(B
′; s)B′ = βE

[

u′(c(s′))

u′(c(s))
(1 − θ + θq(B′′(s′); s′))1δ(s′)=0

]

(26)

If θ = 0 (only short-term debt), then

q(B′; s) + q1(B
′; s)B′ = βE

[

u′(c(s′))

u′(c(s))
1δ(s′)=0

]

(27)

or

1 − h(B′; s)B′ = βRE

[

u′(c(s′))

u′(c(s)
| δ(s′) = 0

]

(28)

where the hazard rate h(B′; s) is given by

h(B′; s) = −
∂E [δ(s′) = 0] /∂B′

E [δ(s′) = 0]
(29)

Proof: For equation (27), note that q(B′; s) = E [δ(s′) = 0] /R. •

There is an important tension here. Consider θ = 0 and the first order

condition (27). When increasing the debt level, the usual “consumption-

versus-savings” first-order effect ought to be an increase in current consump-

tion and a decrease in future consumption, leading to an decrease in current

marginal utility and an increase in future marginal utility, resulting in some

optimal level. This is offset by the decrease in resources gained per additional

unit of debt on the left-hand side, due to the decrease in q1 and the decrease

in the no-default region on the right-hand side. It is not a priori clear, that

there is a unique solution. Put differently, it is not a priori clear and perhaps

even unlikely, that the budget set (5) is convex in the choices (c, B′).
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This issue and the first-order condition (27) are examined in figure 21:

we shall focus entirely on the case θ = 0, though this discussion can probably

be generalized. The left column shows the “benign” case. In the upper left

panel, the market price for new debt q(B′) declines at a reasonably even

pace, so that the left hand side in equation (27) is monotonously decreasing,

and even becomes negative, until debt reaches maxz B̄(z). That left hand

side is then compared to the rhs of (27) in the lower left panel. For the

figure, it has been assumed that the rhs is rising in B′: as discussed, even

that may not be the case. The two curves intersect at a unique point. The

right column shows one possible scenario, where multiple solutions to the

first-order condition may emerge. Start from the upper right panel: there,

q(B′) becomes rather flat for a portion of the new debt levels, implying a

jump upwards in the left-hand side of (27). As a result, the right-hand side

of equation (27) may now intersect the left-hand side of (27) multiple times,

as shown in the bottom right panel.

Nonetheless, for the purpose of some discussions, it may be illuminating

to proceed with examining the first-order condition, and assuming that it

provides the unique solution, while keeping the caveat in mind, that this

may not be right. We shall state this as an explicit assumption, in case it is

necessary to make an explicit reference to it.

Assumption A. 3 The first-order conditions given in proposition 7 char-

acterize the solution, and the solution is unique.

With that assumption, some further comparative statics is possible, as

shown in figure 22. For lower y or for higher B, one obtains a lower level of

current consumption, keeping future debt B′ the same. This results in higher

marginal utility u′(c) or a lower rhs of the first-order condition (27).

Consider now the case, where χ is constant and where the fluctuations in
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Figure 21: Examining the first order condition (27)
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Figure 22: The first-order condition (27) versus variations in the state s:

implications for the new debt level B′.

income are very small5. In that case, the price is nearly flat at q = (1−π)/R

in the crisis zone, minB(z) ≤ B′ max B̄(z). Figure 23 shows the resulting

version of (27), corresponding essentially to the situation described in Cole

and Kehoe (2000). The question is now, how large B′ is, compared to the

debt level B leading into this scenario. Consider the case where βR = 1. If

income is literally constant, then consumption should be constant and the

debt level should likewise remain constant, except that the country can also

avoid the cost of default altogether6 by “saving itself” out of the crisis zone,

as shown in Cole and Kehoe (2000). The version of (27) for an initial debt

level B = 0 is shown in figure 24: at constant income and βR = 1, the

5This analysis is preliminary and rather speculative. Hopefully, we will succeed with a

clean-up in a future version of this paper
6This appears to clash with the first-order condition derived above. The issue will be

cleared up in a future version of this paper.
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Figure 23: The first-order condition (27) when income fluctuations are small.

country will simply maintain that debt level rather than increase it.

Indeed, with a modest degree of income variation and for βR = 1, the

country will choose to distance itself over time from the default zone as far as

possible, saving for precautionary motives. The ensuing dynamics is shown

in figure 25. If βR < 1, but close to 1, then the asset accumulation will not

“run away”, but still, the country will choose to accumulate large amounts

of assets, as shown in figure 26. As a result, a sovereign debt crisis is highly

unlikely. Here, it is therefore important to appeal to the political economy

literature on sovereign debt accumulation, as in the literature cited in the

introduction. If the government discounts the future sufficiently highly, i.e.

if βR is considerably smaller than unity, then the country will possibly perch

itself at a precarious point with an amount of debt in the crisis zone, as

shown in figure 27. Indeed, reintroducing the income fluctuations in this

picture results in a stationary distribution for the debt level, under suitable

assumptions, as shown in figure 28.
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Figure 24: The first-order condition (27) when income fluctuations are neg-

ligible and initial debt is zero.
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Figure 25: The debt dynamics for small income fluctuations and βR = 1.
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Figure 26: The debt dynamics for small income fluctuations and βR below,

but near 1.
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Figure 27: The debt dynamics for small income fluctuations and βR far below

1.
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Figure 28: The stationary debt dynamics for small income fluctuations and

βR far below 1.

C Other bailout mechanisms

Let us now consider the possibility for a bailouts, which may not necessarily

be actuarily fair, as an extension of the discussion in the main body of the

paper, and as these may be important for certain policy discussions. We

shall focus on a few benchmark cases and explore their implications. First,

suppose that, for a single period, debt can be sold at some fixed “assisted”

price 0 < qa < 1/R to some outside facility, provided the total amount B′ of

debt does not exceed some upper limit B̄a. This is a bailout and a stylized

version of the one-time rescue for Greece or a one-time intervention by the

European Financial Stability Facility. The resulting situation is shown in

figure 29. The green line denotes the market price for existing debt sold

to private lenders, while the blue line denotes the line, at which debt can

be sold to the outside facility. The new debt level B′
a(s) now exceeds the
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Figure 29: The choice of the debt level in case of a one-time assistance or

bailout.

old debt level. Essentially, given the bailout, there is no longer quite the

same pressure for the government of the country to cut back on government

spending, due to the impending financial crisis. Indeed, we have seen how the

attempts of government cut backs in Greece and Portugal have run into fierce

local resistance: a luxury, that certainly would not have been there, if these

countries needed to keep borrowing on private markets only and wished to

avoid a default. As this is a one-time bailout, the resulting debt dynamics is

given by figure 27, starting towards the right end, and indicated with the red

arrow there (indeed, that arrow only applies in this situation: without the

bailout, there would have been an assured default at that debt level outside

the crisis zone).

It may be more interesting to consider a permanent version of this fa-

cility: all future borrowing by the country at hand can be done at some

fixed price 0 < qa < 1/R, provided the total amount B′ of debt does not
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Figure 30: The choice of the debt level in case of a permanent assistance or

bailout.

exceed some upper limit B̄a. In that case, the pricing is given by figure 30.

The existence of the borrowing guarantee now removes the doubt of private

lenders that the country will be able to borrow tomorrow. As a result, the

country debt becomes safe and will be discounted at the usual safe rate R.

The mere promise of the permanent facility results in a markedly reduced

market interest on the country debt, provided the promised facility is fully

credible.

This may appear to be a wonderful solution. This is so only at first blush,

however. Note that the borrowing increases from B′(s) to B′
a(s). Indeed, the

country will once again find its perch in the crisis zone of probabilistic default:

this time, however, triggered by the debt limit imposed by the facility7. The

country will borrow privately at the safe return R, until it gets near the

7Without a debt limit, the country will choose to run a Ponzi scheme, borrowing forever

more without ever repaying.
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Figure 31: The stationary debt dynamics for small income fluctuations and

a permanent bailout facility.

imposed debt limit. At that point, credibility on private credit markets

collapses as a default is now viewed as likely, the country will borrow one

last time, but this time from the facility at the reduced price, and will default

in the next period. The proof is by contradiction: if it would not default in

the next period (or if such a default would be very unlikely), then it would

borrow privately, rather than at the “penalty rate” from the facility. The

ensuing debt dynamics is shown in figure 31.

Both scenarios are in conflict with the observation, however, that yields

on, say, Greece, Portugese and Irish debt are high and continue to be high,

i.e. that there continue to be default fears by private markets. While it is

conceivable, that we are simply in that “terminal” period described in the

previous scenario, an alternative view here is that the bailout is probabilistic.

This can be modelled in analogy to the default sunspot above. I.e., assume

some bailout probability 0 < ω < 1. If the “bailout sunspot” ψ is below
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ω, ψ < ω, then the country can borrow at the price 0 < qa < 1/R from

the outside facility, provided the total amount B′ of debt does not exceed

some upper limit B̄a. If the “bailout sunspot” ψ exceeds ω, ψ ≥ ω, then the

country must rely on private markets alone.

This will have the effect shown in figure 32. The level of debt at which a

country will now prefer a default in those periods when no borrowing from the

facility is possible, has increased compared to the “no bailout ever” scenario,

as the country can hope for the option of borrowing from that facility in

the future. Therefore, the crisis zone shifts to the right. The debt dynamics

is shown in figure 33. Essentially, this is now a shifted version of the debt

dynamics without that facility: rather than repaying the debt, the country

shifts to higher debt levels, and the probability of a default is essentially

the same as it was before. This takes a bit of time, of course. The facility

therefore provides a temporary, but not a permanent resolution of the fiscal

crisis. The debt is once again traded at a premium, as before, except that

the probabilistic bailout means that these higher premium will be afforded

at a higher debt level, than without that facility, while avoiding the default.

In essence, these scenarios show that the bailout facility only postpones

the day of reckoning. It provides temporary relieve to the country in its

desire to maintain a high level of government consumption, but leaves the

default situation in a very similar and precarious situation as before, once

the initial relief is “used up”.
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Figure 32: Comparing the no-bailout private market pricing function q(B′)

with the pricing function q̃(B′) in case of probabilistic bailouts.
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Figure 33: The stationary debt dynamics for small income fluctuations and

probabilistic bailout facility.
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