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1 Introduction

How much does the school and surrounding community that we choose for our chil-

dren matter for their long run educational and labor market outcomes? In addressing this

question, generations of social scientists have struggled to overcome a fundamental sorting

problem: do schools differ in their average outcomes because they influence student per-

formance, or because they have succeeded or failed in attracting the students who would

have thrived regardless of the school chosen?1

In this paper, we use a flexible spatial equilibrium model of school choice to show

that a standard method in between-school regressions, controlling for school-averages of

individual-level characteristics, can yield a lower-bound estimate of the variance in school

contributions to individual outcomes even when very general patterns of sorting on both ob-

servable and unobservable characteristics are allowed for. Furthermore, this lower-bound

estimate can be interpreted as the component of the school contribution that was unknown

or unvalued by individuals at the time the school and surrounding neighborhood was cho-

sen.

A number of recent papers have employed experimental or quasi-experimental strate-

gies to isolate the contribution of either schools or neighborhoods to longer run student

outcomes. (Oreopoulos 2003) and (Jacob 2004) use quasi-random assignment of neighbor-

hood in the wake of housing project closings to estimate the magnitude of neighborhood ef-

fects on student outcomes. Similarly, the Moving To Opportunity experiment, evaluated in

(Kling, Liebman and Katz 2007), randomly assigned housing vouchers that required move-

ment to a lower income neighborhood to estimate neighborhood effects. The authors report

1A recent example, with references to the literature, is (Altonji and Mansfield 2011a). (Altonji and
Mansfield 2011b) discusses a number of econometric issues involved, not all of which we discuss here. It also
presents detailed evidence on the distribution across schools of a rich set of student and family background
characteristics as well as variance decompositions of school outcomes that is similar to some of the evidence
below. This paper grew out of our dissatisfaction with the treatment of sorting in our prior work and other
papers and can be viewed as a drastic revision of (Altonji and Mansfield 2011b).
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no evidence that moving to a low-poverty neighborhood improves economic outcomes.

However, (Aliprantis 2011) argues that while MTO policy effects are well-identified, if one

does not impose that the poverty rate is a sufficient static for a neighborhood’s contribution

to outcomes, then the support of experimentally-induced changes in neighborhood quality

is too narrow to draw meaningful conclusions about the importance of neighborhood qual-

ity. The experimentally-induced changes in school quality suffer from the same problem,

so that little is learned about the long-run value of higher quality schools.

(Deming, Hastings, Kane and Staiger 2011) exploit randomized lottery outcomes from

the school choice plan in the Charlotte-Mecklenburg district to estimate the impact of win-

ning a lottery to attend a chosen public school on high school graduation, college enroll-

ment, and college completion. They find that the impact of winning the lottery for students

from low quality urban schools is large enough to close 75 percent of the black-white

gap in graduation and 25 percent of the gap in Bachelor’s Degree completion. While this

is the best existing evidence about the long-run impact of attending a higher quality high

school, one might nonetheless wonder how well estimates generalize beyond the Charlotte-

Mecklenburg context, and beyond the impacts for students moving from the worst schools.

Furthermore, their estimates represent the impacts of changing high schools for students

who attended a particular elementary school and middle school, rather than the cumulative

impact of choosing one neighborhood and surrounding school system relative to another.

These estimates thus also reflect the time cost of attending a faraway school, the impact

of moving to a radically different school environment, and the halo effect of winning a

lottery and experiencing a seemingly fresh opportunity. Despite the growing popularity

of open enrollment systems, most school choice is still mediated through choice of com-

munity in which to live, and most students still choose schools close to home even when

given the opportunity. Thus, we aim instead to measure the importance of the combined

school/neighborhood choice.
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In contrast to these papers, we do not exploit any natural experiments. Instead, we show

that rich observational data of the type collected by either panel surveys or administrative

databases can nonetheless yield meaningful insights about the importance of school and

neighborhood choices for children’s later educational and labor market performance. Our

key insight stems from the simple observation that average values of student characteris-

tics differ across schools only because students with different characteristics value school

or neighborhood amenities differently. If tastes or willingness to pay for particular schools

were not predictable based on student characteristics, each school would have the same dis-

tribution of student characteristics. Thus, school-average values of student characteristics,

if based on a sufficiently large pool of students, potentially provide considerable informa-

tion about the amenities the school and neighborhood offer. In particular, we establish the

following result, which is stated in Proposition 1 below. Suppose that tastes for a subset of

the amenities depend on unobservable student characteristics that matter for the outcome of

interest. (The subset might be the full set of amenities considered by consumers.) Assume

that the rank of the matrix of coefficients relating preferences for these amenities to the

observable student characteristics is equal to the dimension of the subset. One necessary

condition for the rank condition to hold is that the number of observables that affect tastes

for the subset greater than or equal to the dimension of the subset. A second necessary

condition is that tastes for each of the elements of that subset must depend on at least one

observable student characteristic. We show under these assumptions, in spatial equilib-

rium the average values of the observable characteristics will form basis vectors that spans

the space of the subset of underlying school/neighborhood amenities, and importantly, the

average values of unobservable student characteristics. Consequently, the averages of the

observables can serve as controls for the unobservables.

For example, suppose that school/neighborhood combinations differ in only four dimen-

sions that people observe and systematically care about—school quality, crime, parks, and

highway access–plus a random idiosyncratic component specific to each family/location
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combination.2 The price of the location will be a function of its values of the four ameni-

ties. Suppose that parental income, parental education, and number of kids influence the

weight the family places on the first three amenities relative to the price of the location.

They may or may not influence taste for highway access. Finally, suppose that parents dif-

fer in the importance they place on educational achievement, which influences their taste

for school quality and possibly the other amenities, but not highway access. Taste for

educational achievement is not observed. Our result implies that the expected value in a

location of taste for educational achievement will be an exact function of the expected val-

ues of the parental income, parental education, and number of children. Consequently, the

the location averages of the observables can serve as controls for taste for achievement.3

The result also implies that only the component of school quality that was not observable

when location choices are made will vary conditional on the average values of parental

income, education, and children.

The locational sorting result implies that including a sufficiently large vector of school-

averages of student observable characteristics can potentially control for school-average

values of outcome-relevant student unobservable characteristics. However, while this con-

trol function approach solves the sorting-on-unobservables problem, it also absorbs any

variation in the underlying school and neighborhood amenities that are weighted by ob-

served and unobserved outcome-relevant student characteristics when choice of school/neighborhood

is made. Consequently, any remaining between-school variation in outcomes can be at-

tributed to two factors. The first is a component of school quality that was either unknown

or unvalued at the time the school/neighborhood was chosen (including later shocks that

2As will be made clear below, the weights families place on the amenities may also depend on other
unobserved characteristics that do not have a direct effect on the outcomes of interest. These additional
characteristics are the κ∗i variables in the analysis below.

3(Bayer and Ross 2006) also investigate the possibility of removing bias from unobserved sorting when
estimating the effects of neighborhood attributes by employing a control function approach. However, they
use neighborhood house prices as a control function. This control function will not fully absorb sorting bias
unless the underlying amenities that determine neighborhood desirability can combined into a single index of
neighborhood quality, an assumption unlikely to hold given heterogeneity in preferences for different aspects
of communities.
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were common to all members of the school) The second is a component of school quality

that is valued based only on student characteristics that have nothing to do with school out-

comes. We treat the variance of this residual-between-school component as a lower bound

on the overall contribution of schools/neighborhoods to student outcomes. We also convert

this lower-bound variance estimate into lower bound estimates of the impact on outcomes

of moving from a school at the 10th quantile in the distribution of school outcome contri-

butions to a 50th or 90th quantile school (a more intuitive scale).

While we focus on the consequences of school/neighborhood choice, the insights de-

rived from our sorting model may be applied to any setting in which individuals sort non-

randomly into units and in which outcomes depend on both individual and unit contribu-

tions. For example, a number of papers have attempted to estimate the impact of competi-

tion on hospital quality by running health outcome regressions that control for both hospital

characteristics as well as average patient characteristics. Our model suggests that the co-

efficients on hospital characteristics will only reflect the impact of the part of the variation

in these characteristics that was not valued by patients when choosing hospitals. Indeed,

many such contexts may offer high quality administrative or observational data, but will

not feature quasi-random variation.

Implementing our approach in the school context requires rich data on student charac-

teristics for large samples of students from a large sample of schools, as well as longer-run

outcomes for these students. We use four different datasets that generally satisfy these

conditions: 3 cohort-specific panel surveys (NLS72, NELS88, and ELS2002) along with

administrative data from North Carolina. The advantage of the surveys is that they are

representative of the full distribution of American high schools (public and private) and

American high school students, they collect a wide array of student and parent character-

istics, and they follow students through college and beyond. Their limitation is that they

sample only a medium-sized number of students at each school. The North Carolina ad-
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ministrative data contains information on the universe of public school students and public

schools in North Carolina, but does not include private schools, and (to this point) does not

contain longer-run labor market outcomes for students.

Our North Carolina results suggest that, averaging across the student population, choos-

ing a 90th quantile school and surrounding community instead of a 10th quantile school

increases the probability of graduation by at least 8.4 percentage points. We estimate these

large average impacts despite the fact that our lower bound estimate can only attribute be-

tween 1 and 4 percent of the total outcome variance to schools with certainty. However, the

average impact of moving to a superior school on binary outcomes such as HS graduation

or college enrollment can be quite large even if differences in school quality are small, as

long as a large pool of students are near the decision margin.

While estimates derived from the panel surveys are potentially less reliable due to sam-

pling error in school average characteristics, we nonetheless recover similar estimates of

school contributions to preventing dropouts. These estimates decrease slightly over time,

since a decreasing average dropout rate implies that fewer students require a shift in school

environment to be induced to stay in school. Estimates of the impact of a shift in school

environment on the probability of enrolling in a four-year college and on the permanent

component of adult wages (only in NLS72) are similarly large.

Section II presents a simple model of long-run student outcomes. Section III presents

our model of school choice, and formally derives our key control function result. Section

IV presents very preliminary simulations illustrating the properties of our lower bound

estimator with finite numbers of schools and finite samples of students per school. Section

V describes the four datasets we use to estimate the model of outcomes. Section VI presents

our results. Finally, Section VII discusses other contexts in which our control function

approach might be valuable.
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2 A Model of Educational Attainment and Wage Rates

2.1 The Determinants of Adult Outcomes

In this section we present the underlying econometric model of adult outcomes that

provides the basis for the variance decompositions that we present below. Our formulation

draws loosely on theoretical discussions in the child development literature, the educational

production function literature, and the neighborhood effects literature.4 Let Ysii denote the

outcome of student i. In our application the outcomes are high school graduation, at-

tendance at a four-year college, a measure of years of postsecondary education, and the

permanent wage rate. Ysii is determined according to

Ysii = X∗i β
∗ + Z∗siiΓ

∗ + usi,i (1)

The coefficients β∗ and Γ∗ depend implicitly upon the specific outcome under consider-

ation as well as the time period in the case of wages. The subscript si denotes the neighbor-

hood and associated school of i for the high school years, which is chosen from s = 1...S.

The vector X∗i is a comprehensive set of child and family characteristics that have a causal

impact on student i’s educational attainment and wages. Examples include race, innate

ability, personality traits, values, physical attractiveness, and parental education, income,

and employment. Since X∗i may include non-linear functions of these attributes, imposing

that the individual attributes enter linearly is without loss of generality.

The vector Z∗sii is an exhaustive set of school and neighborhood influences experi-

enced by student i. Z∗sii is partly determined by the family’s choice of a neighborhood and

school, which is characterized by a set of features Z∗si that partially shapes the distribution

4A good example is (Todd and Wolpin 2003), who provide references to the literature. See also (Cunha,
Heckman, Lochner and Masterov 2006).
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of environment the child experiences outside the home, including neighborhood quality,

school resources, and peers inside and outside of school. However, Z∗sii, also varies within

a school attendance area and within a school itself. Examples include the trustworthiness

of immediate neighbors and distinct course tracks at a school. Some of the within-school

variation is related to parent and child characteristics,X∗i Some reflects random influences,

such as random variation in the quality of teaching the child receives and random variation

in peer influences. A simple way to capture the dependence ofZ∗si on X∗i , Z
∗
si

and other

factors is through the equation

Z∗sii = X∗i ΠZ∗X + Z∗siΠZ∗Z∗ + Z̃∗sii.

where ΠZ∗X and ΠZ∗Z∗ are the weights on X∗i and Z∗si in determining Z∗sii and Z̃∗sii is

purely ideosyncratic variation that is orthogonal to X∗i and Z∗si .
5 Because we are interested

in the consequence of experiencing one school/neighborhood versus another, notably the

consequences of variation in the neighborhood and school characteristics Z∗si , we substitute

for Z∗sii in (1) and re-write that equation as

Ysi,i = X∗i B
∗ + Z∗siG

∗ + z̃si,i + usi,i (2)

where B∗ ≡ β∗ + ΠZ∗X∗Γ
∗, G∗ ≡ Γ∗ + ΠZ∗Z∗Γ

∗, and z̃si,i ≡ Z̃∗siiΓ
∗.

The variable usi,i captures other influences on student i’s outcome that are deter-

mined after secondary school that are not predictable given Xsi , Z
∗
si
G∗, and Z̃sii. It will

prove useful to write usi,i as usi+ u′i, where usi is specific to si and u′i is idiosyncratic. usi

captures the effects of local shocks late in high school or during college that influence the

5Throughout the paper, we use the symbol ΠDQ to denote the vector of the partial regression coefficients
relating a dependent variable or vector of dependent variables D to a vector of explanatory variables Q,
holding the other variables that appear in the regression constant. In the above example, D = Z∗

s,i and Q is
X in the case of ΠZ∗X and Z∗

si in the case of ΠZ∗
sX
.
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decision to stay in school (such as the opening or expansion of a local college), as well as

local labor market shocks after labor market entry when wages are the outcome.

Suppose we had access to data at a single point in time on each of the myriad com-

ponents of X∗i and Z∗si and were able to estimate equation (2). How would we interpret

B∗? One must first realize that some components of X∗si associated with student inputs

(for example, student aptitude) are determined in part by parental inputs from earlier peri-

ods (for example, parent income), as well as school and neighborhood inputs from earlier

periods (for example, quality of elementary school facilities).. Likewise, parents’ income

may in part be determined by student aptitude and behavior, if parents work less in order

to tutor their child. Such links make it difficult to interpret the coefficient associated with

a given component of X∗si , since once we have conditioned on the other components, we

have removed many of the avenues through which the component determines Y . Fur-

thermore, B∗ captures an indirect effect of X∗i on the environment experienced by i given

choice of community. Consequently, we do not make any attempt to interpret individual

components of the coefficient vector B∗, and thus do not attempt to tease apart the distinct

influences of child characteristics, family characteristics, and early childhood schooling in-

puts, respectively. We aim instead to separate the effects of high schools and associated

community influences on outcomes from student, family, and prior school/community fac-

tors (although some of our specifications using data from NELS88 examine the impact on

outcomes of 8th grade schools rather than high schools). If the inequalities in outcomes

are primarily attributable to differences in high school quality (as opposed to the other three

classes of inputs), then policies designed to equalize high school quality have the potential

to close the outcome gaps we observe.

To be more specific about what we mean by school/neighborhood effects, note

that if students attended school s1 rather than s0, the expected difference in the outcome is

Z∗s1G
∗−Z∗s0G∗. The outcomes of a specific student iwill also differ across schools because
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the values of z̃si,i and usi will differ, but the former are entirely idiosyncratic and the latter

common to those who attend si but are determined after high school is chosen. We wish

to quantify the importance of differences across neighborhoods in Z∗siG
∗. Some of our

estimates will also include differences due to usi .

2.2 Toward an Empirical Model

In this section we discuss what parameters OLS recovers when outcomes are regressed

on the subset of X∗i and Z∗si that can be observed in a survey or administrative dataset.

If we had complete data on X∗i and Z∗si , estimation of B∗ and G∗ would be a straight-

forward exercise. With data on Z̃sii, we could do even more. In practice, our measures

of external influences are common to all students attending a particular high school and

thus vary over schools but not within schools, so we don’t observe Z̃sii.
6 Also, we actually

observe and make use of only a subset of the elements of X. For example, there are many

characteristics of the student (e.g., physical attractiveness and temperament) and parents

(e.g., parenting skill and time allocation during early childhood) that we do not measure

at all. Furthermore, we only measure child and family variables at a single point in time,

rather than at various stages of the child’s life. Finally, we only measure and use a subset

of Z∗si , the external influences that are common to all students attending a particular high

school and thus vary across schools but not within them.

Partition X∗i into the observed variables Xi and unobserved variables Xu
i and par-

tition Z∗si into Zsi and Zu
si
. Partition B∗ into the subvectors B and Bu and partition G∗ into

G andGu.Without loss of generality, redefineXu
i so that it is orthogonal toX and redefine

6We do observe classmates and teacher assignments in the North Carolina data, and so it would be possible
examine at least a portion of the variation in Z̃sii. We leave this to future work. (Mansfield Forthcoming)
examines the distribution across students in the quality of teachers that they experience. One could also
examine variation in classroom peer characteristics.
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Zu to be orthogonal to Zsi . Redefine B and Bu and G and Gu accordingly. Then

Ysii = XiB + ZsiG+Xu
i B

u + Zu
si
Gu + v∗sii .. (3)

where v∗s
i,i
≡ z̃sii+ usii.

Project Xu
i B

u onto Xu
i and Zsi:

Xu
i B

u = XiΠXuXB
u + ZsiΠXuZB

u + X̃u
i B

u (4)

where ΠXuX and ΠXuZ are the projection coefficients and X̃u
i is the residual vector from

that regression. Because Xu
i is orthogonal to Xi, ΠXuX is a function of cov(Zsi , X

u
i B

u),

as we discuss further below.

One may easily show that coefficients of the regression of Zu
i G

u on Xi and Zsi are

both 0.7 Using this fact and (4), one may write (3) as

Ysii = Xi[B + ΠXuXB
u] + Zsi [G+ ΠXuZB

u] + X̃u
i B

u + Zu
i G

u + v∗si. (6)

7Using notation corresponding to (4), one may write

Zu
siG

u = XiΠZuXG
u + ZsiΠZuZG

u + Z̃u
siG

u (5)

However, ΠZuX and ΠZuZ are both 0, because Zu
si is orthogonal to Zsi by definition, the school mean

Xsi is part of Zsi , and Xi −Xsi is uncorrelated with Zu
siG

u by construction. To see this, partition Zsi into
Xsi and Z2i and rewrite (5) in terms of Xsi and Z2si . This leads to

Zu
siG

u = XiΠZuXG
u +XsiΠZuXs

Gu + Z2siΠZuZ2
Gu + Z̃u

siG
u

= [Xi −Xsi ]ΠZuXG
u +Xsi [ΠZuXG

u + ΠZuXs
Gu] + Z2siΠZuZ2

Gu + Z̃u
siG

u

Both Xsi and Z2si have a covariance of 0 with Zu
si by definition of Zu

si . [Xi −Xsi ] also has 0 covariance
with Zu

si . Thus, all three variables have a covariance of 0 with Zu
siG

u. Consequently, all three regression
coefficients are 0.
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Thus B′ ≡ (B + ΠXuXB
u) and G′ ≡ (G + ΠXuZB

u) are the parameters identified by

an OLS regression Ysii on Xi and Zsi .

It is clear that in general, var(ZsG
′) differs from the variance of var(Z∗siG

∗).

On one hand, var(Zs[G + ΠXuZB
u]) will tend to overstate var(Z∗siG

∗) to the extent

that G′ are biased upward by correlation between Zs and Xu
i B

u conditional on Xi. On

the other hand hand, var(Zsi [G + ΠXuZB
u]) will tend to underestimate var(Z∗siG

∗) be-

cause it does not include the effect of Z̃u
si
Gu, which is part of the error term. Without

further assumptions, one cannot use the variance across schools in the composite compo-

nent X̃u
i B

u + Z̃u
i G

u + v∗sii to identify the contribution of schools/neighborhoods because

the composite will also include the variation across schools in X̃u
i B

u. The school average

X̃u
i B

u is not a school/neighborhood effect. This is the essence of the problem of distin-

guishing school/neighborhood effects from composititon effects. To say anything more

specific requires a model of sorting, to which we now turn.

3 A Multinomial Model of School Choice and Sorting

In this section we present a model of how parents/students choose schools, with the

goal of placing minimal structure on parental preferences for schools. Suppose that each

location s, s ∈ {1, ..., S}, can be characterized by a vector of K underlying amenities,

{A∗1s, . . . , A∗Ks} and the price of neighborhood s, Ps.

The expected utility for the parents of student i from choosing school/neighborhood s

net of the opportunity cost is denoted by Ui(s), which takes the form

Ui(s) = γ1iA
∗
1s + γ2iA

∗
2s + · · ·+ γKiA

∗
Ks − γPiPs + ε∗s,i. (7)

13



In the above equation the {γki} are the weights that the family of i places on the various

amenities, γPi is the marginal utility of income, and ε∗s,i is an idiosyncratic taste of the

parent/student i for the particular location s. Assuming monotonicity, we can define the

units of the A∗ks so that utility is linear in the variable. However, we are imposing additive

separability. Expected utility is taken with respect to the information available when s is

chosen. The information set includes the price, the amenities, and X∗i , but not v∗s,i, which

is an index of determinants of Ysi that are orthogonal to X∗i and are determined after the

start of secondary school or later, or components of neighborhood and school quality that

are not observable to families when location is chosen. The set of amenities may include

school/neighborhood characteristics that influence educational attainment and labor market

outcomes.

The strength of tastes for particular amenities varies across parent/student combi-

nations. In particular, each taste parameter γki and the marginal utility of income γPi can

be written as:

γki =
L∑

`=1

δ∗k`x
∗
`i + κ∗ki; , k = 1, ..., K; , γPi =

L∑
`=1

δ∗P`x
∗
`i + κ∗Pi; , (8)

where x∗`i is the `th element of X∗i Thus, δ∗`k captures the extent to which the utility

weight on amenity k depends on the determinant x∗`i of student outcomes. The variable

κ∗ki is the component of i’s taste for amenity k that is unpredictable given X∗i . Since X∗i

is the complete set of student variables that determine Ys,i , this means that κ∗ki influences

school choice but has no direct effect on student outcomes. Using (8), collecting the terms

involving the κ∗ki, and combining them with ε∗si, one may rewrite (7) as

Ui(s) =
K∑
k=1

L∑
`=1

δ∗k`x
∗
`siA

∗
ks + εsi − γP,iP (A∗) (9)
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where

εsi =
K∑
k=1

κ∗kiA
∗
ks + ε∗si

Parents i choose the school si if net utility Ui(si) is the highest among the options. That

is, si is determined by

si = arg max
s=1,..,S

Ui(s) =
K∑
k=1

L∑
`=1

δ∗k`x
∗
`siA

∗
ks + εsi − γP,iP (A∗)

Let Lo and Lu be the number of elements of Xi and Xu
i , respectively, where L =

Lo + Lu. Rewrite equation (9) using matrix notation as

U(Xi, X
u
i , κ

∗
i ) = XiδxA

∗ +Xu
i δxuA∗ + κ∗iA

∗ − γP,iP (A∗) + ε∗si (10)

where δx is an Lo × K matrix with the k-th column [δ1k, ..., δLok]′, δxu is an Lu ×

K matrix with the k-th column [δ1k, ..., δLuk]′, A∗ is the K × 1 matrix [A∗1, . . . , A
∗
K ]′, and

κ∗i = [κ∗i1, ..., κ
∗
iK ].

3.1 The Link Between Sorting on Observables and Unobservables

We now show that the school average of the unobservables Xu
s is an exact linear

function of Xs. A necessary (but not sufficient) condition for the result that captures the

essence is that if preferences for an amenity depend on Xu
i , they must also depend on at

least one element of Xi. The result provides the justification for using Xs to control for

Xu
s when assessing the importance of school/neighborhood effects on outcomes.

For analytic simplicity, assume that S is sufficiently large so that it can be well ap-
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proximated by a continuum of neighborhoods that create a continuous joint distribution of

amenities A∗. Thus, choosing a school is equivalent to choosing the vector of amenities

that maximizes utility, given the price function Ps = P (A∗s). Assume further that in equi-

librium P (A) is an increasing convex function, so that prices rise at an increasing rate as

amenities increase.8

Under these assumptions, the choice of school/neighborhood is characterized by a sys-

tem of first order conditions, one for each amenity factor. The conditions are:

δ
T

xX
T

i + δ
T

xuXuT

i + κ∗
T

i = γP,i∇P (A∗si)

where the T superscript is the transpose operator and∇P (Asi) is the K × 1 column vector

of partial derivatives of P (A∗) with respect to A∗ evaluated at A∗ = A∗si . Since P (A∗si) is

strictly convex, second order conditions will be satisfied.

Note that the system of FOCs is a K-dimensional linear function of the row vectors Xi,

Xu
i , and κ∗i (since γP,i∇P (A∗si) is constant across choices for i).

To see what choice of school/neighborhood si implies about the relationship between

Xu
si

and Xsi , it is useful to consider the projection of XT
i and XuT

i onto the index that de-

termines location preference, XT
i δx +XuT

i δx +κ∗Ti . Note that since (1) Xu
i is uncorrelated

with Xi by definition, and (2) κ∗i is uncorrelated with both Xi and Xu
i , we have:

Cov(Xiδx +Xu
i δx + κ∗i , Xi) = δT

xV ar(Xi)

Cov(Xiδx +Xu
i δxu + κ∗i , X

u
i ) = δu

T

x V ar(XU
i ).

8We are making the implicit assumption that convexity of the price function holds for the tranformation
of the A∗

ks that leads to the linear utility function above. This would hold if, for example, costs of producing
amenities are linear and there is diminishing marginal utility in them.
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Thus, these projections can be written as:

Xi = [Xiδx +Xu
i δxu + κ∗i ]V ar(Xiδx +Xu

i δxu + κ∗i )
−1Cov(Xiδx +Xu

i δxu + κ∗i , Xi) + errori

= [Xiδx +Xu
i δxu + κ∗i ]V ar(Xiδx +Xu

i δxu + κ∗i )
−1δT

xV ar(Xi) + errori

and

Xu
i

= [Xiδx +Xu
i δxu + κ∗i ]V ar(Xδx +Xu

i δxu + κ∗i )
−1Cov(Xiδx +Xu

i δxu + κ∗i , X
U
i ) + errori

= [Xiδx +Xu
i δxu + κ∗i ]V ar(Xδx +Xu

i δxu + κ∗i )
−1δT

xuV ar(Xu
i ) + errori

Using the set of first order conditions provide above, we can rewrite these equations as:

Xi = γP,i∇P (A∗si)
T [V ar(Xiδx +Xu

i δxu + κ∗i )]
−1δT

xV ar(Xi) + errori

Xu
i = γP,i∇P (A∗si)

T [V ar(Xδx +Xu
i δxu + κ∗i )]

−1δTxuV ar(Xu
i ) + errori

Note that since choice of si depends on Xi, Xu
i , and κ∗i only through the function

[Xiδx + Xu
i δxu + κ∗i ], the error terms in the vector equations above are unrelated to si.

Taking conditional expectations of both sides of the above equations with respect to the

chosen school si, we obtain:

Xsi ≡ E(Xi|si) = E(γP,i|si)∇P (A∗si)
T [V ar(Xiδx +Xu

i δxu + κ∗i )]
−1δT

xV ar(Xi) (11)

Xu
si
≡ E(Xu

i |si) = E(γP,i|si)∇P (A∗si)
T [V ar(Xδx +Xu

i δxu + κ∗i )]
−1δTxuV ar(Xu

i ) (12)

Next, suppose that the columns of δxu are spanned by δx, which means that one can
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write δT
xu as

δT
xu = δT

xM (13)

for some matrix : Lo × Lu matrix M . To understand the restriction, consider the k-th row

of δT
xu . Note that the k-th row of δT

xu (k-th column of δxu) is the vector of coefficients that

determines how each of the Lu elements of Xu
i affect preferences for amenity A∗k. The

kth row of δT
x is the corresponding set of coefficients that determine how preferences for

A∗k shift with the various elements of Xi. For each k, the restriction says that each of the

weights δxu,`k, ` = 1, ..., Lu, can be written as a linear combination of the weights δx,`′k,

`′ = 1, ..., Lo. This is possible if at least one element of X affects taste for A∗k. It will hold

trivially if preferences for A∗k do not depend on Xu
i , in which case the k-th row of δT

xu = 0.

However, the restriction requires more than this. It would fail if the column rank of

δx is less than the column rank of δxu . For example, suppose that Xi1 influences tastes for

all amenities for which γk depends on Xu,but none of the other elements of Xi influence

tastes. In that case, all columns of δx would be 0 except for the first, and the restriction

will fail if Xu
i influences tastes for more than one amenity.

Substituting for δT
xu implies that

Xu
si

= E(Xu
i |si) = E(γP,i|si)∇P (A∗Si

)T [V ar(Xδx +Xu
i δxu + κ∗i )]

−1

δTx V ar(Xi)[V ar(Xi)]
−1MV ar(Xu

i )

= Xsi [V ar(Xi)]
−1MV ar(Xu

i )

where the third line follows from substitution using (11).

Thus, the vector Xu
si

will be an exact linear function of Xsi if the coefficient vectors
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relating tastes for amenities to the Xu
i

are linear combinations of the coefficient vectors

relating tastes for amenities to the observables Xi. Remarkably, this is true even if Xu
i is

uncorrelated with Xi.

An interesting special case is the one in which δxu = 0, so that unobservable char-

acteristics do not affect location preferences. When δxu = 0, M = 0. One can see

from the above equation or directly by substituting δxu = 0 into (12) that in this special

case Xu
si

= 0, so that there is no variation in average unobservable characteristics across

schools. That is, there is no sorting on Xu
si

. In this case V ar(ZsG) will accurately reflect

the school/neighborhood contribution to outcomes.

We summarize the result in the following proposition.

Proposition 1: Assume (i) preferences are given by (10), (ii) the price function P (A∗)

is increasing and strictly convex in A∗, and (iii) the columns of the coefficient matrix δxu

relating tastes for A∗ toXu are spanned by the columns of the coefficient matrix δx relating

tastes for A∗ to Xi. Then the expectation Xu
si

is linearly dependent on the expectation Xo
si

.

The finding that Xu
si

is linear function of Xsi suggests that school averages of student

characteristics can serve as an effective control function that purges estimates of school

contributions of the influence of sorting on unobservable characteristics.

However, there is a price for using Xsi in this way. Xsi spans the space of Xu
si

because

the variation in both Xsi and Xu
si

is driven by the same underlying variation in the desired

amenity vector, {A∗1s, A∗2s, ...A∗K,s}. Re-examining equations 11 and 12 above, we see that

if δX (δUX) is full rank, then the vector As = [A∗1s, A
∗
2s, ...A

∗
K,s]

′ can also be written as a

linear function of Xsi (Xu
si

).

Hence, while the inclusion of Xsi in the estimated specification is effective in control-

ling for unobserved sorting, it also absorbs the variation in the underlying amenity factors
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for which Xsi affects tastes. Given that parents are likely to value the contributions of

schools to student outcomes, many of the characteristics that affect school quality are likely

to be reflected in {A∗1s, A∗2s, ...A∗K,s}.

To the extent that a component of school/neighborhood quality Z∗sG
∗ is unknown (or

unvalued) by parents at the time the school/neighborhood is chosen, though, this component

will not be reflected in the vector of amenities A∗1s, A
∗
2s, ...A

∗
K,s that are the basis of choice.

However, it will still produce variation in average outcomes across schools. Similarly, if

the outcome is measured after high school is completed, any common shocks that affect

the outcomes of all those who attended a particular high school will also not be absorbed

by Xsi , yet will produce between-school variation in outcomes.

Proposition 1 and the above discussion has important implications concerning the com-

mon practice of controlling for average characteristics of students in a school (or class

room) in addition to the characteristics of the individual students when estimating school

(or teacher) value added. There are many good reasons to include such controls, including

peer effects. However, our analysis implies that including these controls may lead to an

understatement of the school or teacher value added if preferences for school quality (or

teacher quality) in choosing a school or a teacher depends on observed student characteris-

tics.
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4 Estimating the Contribution of Schools and Neighbor-

hoods

4.1 Variance Decomposition

In the empirical work below, we estimate models of the form

Yi = Xiβ + Z1G1 + Z2G2 + ZU
s G

U + v∗sii (14)

, where Z1s = Xsi is a vector of school-averages of student characteristics, and Z2s is a

vector of observed school characteristics (such as school size or student-teacher ratio).

Consider rewriting this estimating equation as:

Yi = (Xi −Xsi)β +Xsβ + Z1sG1 + Z2sG2 + ZU
s G

U + (v∗sii − v
∗
si

) + v∗si (15)

Then we can decompose the variance in Yi into observable and unobservable compo-

nents of both within- and between- school variation via:

V ar(Yi) (16)

= V ar(Yi − Ys) + V ar(Ys) (17)

= [V ar((Xi −Xsi)β) + V ar(v∗sii − v∗si)]+ (18)

[V ar(Xsβ) + 2Cov(Xsβ, Z1sG1) + 2Cov(Xsβ, Z2sG2) + V ar(Z1sG1)+ (19)

2Cov(Z1sG1, Z2sG2) + V ar(Z2sG2) + V ar(ZU
s G

U + v∗si)] (20)
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Motivated by the model of sorting presented in Section III, we introduce two alterna-

tive lower bound estimates of the contribution of school/neighborhood choice to student

outcomes.

First, due to the presence of Z1s, V ar(Z2G2) + V ar(ZU
s G

U + v∗si) will be purged

of any effects of student sorting (observable or unobservable), so that it isolates only

school/neighborhood factors.

However, in addition to unobserved school characteristics, V ar(ZU
s G

U + v∗si) will in-

clude common location-specific shocks (such as local employment demand shocks) that

occur after high school has been completed for the chosen cohort. To the extent that these

shocks should not be attributed to schools (since one could argue that they are beyond the

control of school or town administrators), we also consider a second, more conservative

lower bound estimate: V ar(Z2G2). This estimate only attributes to schools/neighborhooods

the part of residual between-school variation that could be predicted based on observable

characteristics of the schools at the time students were attending. This estimate removes

true school quality variation that is orthogonal to observed characteristics, but also removes

any truly idiosyncratic local shocks that occur after graduation.

Appendix Sections 1 and 2 describe the process by which the coefficients β, G1, and

G2 are estimated, as well as the process by which the empirical variance decomposition

is performed. The implementation differs depending on whether the outcome is binary or

continuous.

4.2 Measuring the Effects of Shifts in School/Community Quality

The variance decompositions provide a good indication of the importance of school/community

factors relative to student-specific factors. However, the effect of a shift in school/community
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quality from the left tail of the distribution to the right tail of the distribution might be

socially significant even if most of the outcome variability is student-specific. This is par-

ticularly true in the case of binary outcomes such as high school graduation and college

enrollment, where many students may be near the decision margin. Below we report esti-

mates of the effect of a shift in the unknown/unvalued component of school/neighborhood

quality from 1.28 standard deviations below the mean to 1.28 standard deviations above

the mean. This would correspond to a shift from the 10th percentile to the 90th percentile

if this component has a normal distribution. We interpret these as lower bound estimates

of the change in outcomes from a 10th-to90th quantile shift in the full distribution of stu-

dent/neighborhood quality.

The more comprehensive estimate measures the unknown component of schoo/neighborhood

quality via V̂ ar(Z2G2 + ZU
s G

U + v∗si), while the more conservative estimates that attempt

to remove common shocks use V̂ ar(Z2G2).

For the binary outcomes, we estimate the effect of the shift in Z2G2 as a weighted

average over individuals i:

Enoshocks[Ŷ 90 − Ŷ 10] = (21)

Φ(
[XiB̂ + Z1sĜ1 + Z2Ĝ2 + 1.28(V ar(Z2G2))

.5]

(1 + V ar(ZU
s G

U + v∗si))
.5

) (22)

− Φ(
[XiB̂ + Z1sĜ1 + Z2Ĝ2 − 1.28(V ar(Z2G2))

.5]

(1 + V ar(ZU
s G

U + v∗si))
.5

) (23)

This weighted average effectively integrates over the distribution of Xiβ + Z1G1 +

ZU
s G

U +v∗i , but uses the empirical distributions ofXiβ and Z1G1 (since they are observed)

instead of imposing normality.

We estimate the effect of the shift in Z2G2 + ZU
s G

U + v∗si analogously via:
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Ew/shocks[Ŷ 90 − Ŷ 10] = (24)

Φ(
[XiB̂ + Z1sĜ1 + Z2Ĝ2 + 1.28(V ar(Z2G2 + ZU

s G
U + v∗si))

.5]

(1)
) (25)

− Φ(
[XiB̂ + Z1sĜ1 + Z2Ĝ2 − 1.28(V ar(Z2G2 + ZU

s G
U + v∗si))

.5]

(1)
) (26)

We also report lower bound estimates of the impact of a shift from a school at the 10th

percentile of quality to one at the 50th percentile. For the binary outcomes, the impact of

a 10th-90th percentile shift in either Z2G2 or (Z2G2 + ZU
s G

U + v∗si) will depend on the

values of a student’s observable characteristics, XiB. Thus, we report average impacts for

certain subpopulations of interest as well.

5 Monte Carlo Simulations (very preliminary)

While Proposition 1 provides a strong theoretical foundation for our control function

approach to distilling school contributions to long run outcomes, it is derived from a con-

tinuous, infinite dimensional model of school choice. Furthermore, Proposition 1 refers

to links between the link between the expectations of X and Xu given As. Given random

variation associated with κ∗i , ε
∗
si, and γP,i, the realizations for a school/neighborhood a point

in time might differ from the expectations.

In this section, we provide suggestive evidence that our control function approach is still

viable in a context with a finite number of schools and students per school. In particular, we

present the results of a series of monte carlo simulations that explore the properties of our

control function across a number of key dimensions. These simulations are not intended

to represent a rigorous analysis of the finite sample properties of our estimator. Instead,

24



we focus on a stylized test case that merely serves to 1) illustrate that the control function

approach has the potential to be effective in settings where a large population sorts into

a fairly large number of groups and 2) highlight a few key factors that play a major role

in determining the degree to which average values of observable characteristics effectively

control for average values of unobservable characteristics.

5.1 Methodology

Note that while our proof of Proposition 1 does not require an analytically characteriza-

tion of the equilibrium sorting of students to schools, simulating the model does require us

to compute a large scale spatial equilibrium. Consequently, we alter the model presented

in Section III slightly to ease the computation.

Specifically, we convert the utility function from 7 into a money-metric utility function

by dividing both sides by the individual’s marginal utility of income, γP,i:

UMM
i (s) = γ̃1iA

∗
1s + γ̃2iA

∗
2s + · · ·+ γ̃KiA

∗
Ks + ε̃s,i − Ps (27)

where

γ̃ki =
γki
γPi

∀ k ≤ K

ε̃∗si =
εsi
γPi

(28)

and we recall that εsi ≡
∑K

k=1 κ
∗
kiA
∗
ks + ε∗si.

We can then project these renormalized coefficients γ̃ki onto the set of observable and

unobservable characteristics:
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γ̃ki =
L∑

`=1

δ̃∗k`x
∗
`i + κ̃∗ki ∀ k < K (29)

We can then re-express preferences via

Ui(s) =
K−1∑
k=1

L∑
`=1

δ̃∗k`x
∗
`siA

∗
ks + ε̃si − Ps ,

where

ε̃si =
∑
k

κ∗kiA
∗
ks + ε̃∗si.

This can be re-written as

Ui(s) = WTPi(s)− Ps , (30)

where WTPi(s) is i’s willingness to pay for s.

The simulation results are presented in Table 1. The full spatial equilibrium sorting of

students to schools depends on all the elements of joint distribution of [Xi, X
U
i , κi] as well

as the joint distribution of the amenities A∗s and the distribution of the idiosyncratic tastes

ε∗is. Rather than attempt to provide a full characterization of how the finite sample properties

depend on all of these relationships, we instead consider a stylized but conservative case in

which 1) all of the elements of [Xi, X
U
i , κi] are i.i.d and normally distributed (so that each

characteristic is orthogonal to all the others), 2) all of the amenities A∗s are i.i.d and nor-

mally distributed, 3) The constants δ̃k` represent draws from a multivariate normal distribu-

tion with an identity variance matrix, and 4) ε∗is = 0 ∀ (i, s). These restrictions correspond

to a scenario in which there is considerable sorting into schools along many dimensions of

school amenities and along many observable and unobservable dimensions of student qual-
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ity. It represents a conservative case because one might expect that in reality a few key ob-

servable (and unobservable) individual level factors (e.g. parental income, education, and

wealth) and a few key school/neighborhood amenities (ethnic composition, crime, principal

quality) drive most of the systematic sorting of students to schools. Given these restrictions,

the model can be completed by choosing particular sets of 6 remaining parameters. The

first parameter sets the total number of students choosing a school/neighborhood. It is de-

noted “# Stu” in Table 1. We choose among three values: 25,000, 50,000, and 100,000. The

second parameter sets the total number school/neighborhood combinations available (de-

noted “# Sch”) to be either 50 or 100. The combination of these two parameters determine

the average number of students per school (either 250,500,1000, or 2000). For simplicity,

we impose that each school has capacity equal to this average student/school ratio.9

The third parameter (denoted “# Cons.”), captures the number of schools in the consid-

eration set for each household. This captures the possibility that most parents only realis-

tically research a limited number of possible locations. We implement this by distributing

schools uniformly throughout the unit square, and drawing a random latitude/longitude

combination for each household. The households then consider the preset number of

schools that are closest to their location. Thus, consideration sets of different households

are overlapping.

The fourth and fifth parameters (denoted “# Obs.” and “# Unobs.”) capture the num-

ber of observed and unobserved characteristics that affect outcomes. The sixth parameter

determines the dimension of the amenity vector over which households have preferences,

which is set at either 10 or 20. It is always less then or equal to the number of observed

characteristics, so that δx may span δu
x, as required by Proposition 1.

The seventh column, denoted “R-sq (All)”, presents the R-squared from a regression of

9We believe that this is essentially without loss of generality. Without a finite elasticity of supply of
land/school vacancies though, it is hard to avoid having tiny school sizes in locations with low values of
amenities that tend to be highly desired. Fixed costs would prevent this.
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the total contribution of school-averages of unobservable characteristics (
∑

mX
u
sim
βu) to

each school’s average outcome (which captures the potential bias from unobservable sort-

ing) on the full vector of school-averages of observed characteristic, Xsi . The R-squared

should converge to 1 as the number of students per school gets large. However, the rate at

which it does so is important for the efficacy of the control function approach.

The 8th, 9th, and 10th columns (denoted “R-sq (10)”, “R-sq (20)”, and “R-sq (40)”,

respectively) capture R-squared calculated when random samples of 10, 20, or 40 students

from each school are used to estimate the regression (and calculate the school averages Xsi

and Xu
si

).

We draw Xi, Xu
i , κ∗i , and {εis} from the distributions described above to calculate

the willingness-to-pay of each household for each school.10 Since our method does not

require observation of the equilibrium price function P (A∗), rather than iterating on an

excess demand function to find the equilibrium matching, we instead exploit the fact that a

perfectly competitive market will always lead to a pareto efficient allocation. The problem

of allocating students to schools to maximize total consumer surplus can be written as a

linear programming problem, and solved quickly at relatively large scale using the simplex

method combined with sparse matrix techniques. 11

5.2 Simulation Results

The first takeaway from the set of simulations is that our control function approach is

effective even with reasonably-sized school sizes (most of the schools in the North Carolina

sample enroll between 250 and 2000 students) and a moderate number of available schools.

10To minimize the statistical “chatter” introduced by the particular δ̃ matrix that we happened to draw, we
drew six different δ̃ matrices from the prescribed distribution, ran the simulations for all 36 parameter sets
for each of these matrices, and then averaged the results across the six iterations within each parameter set.

11The problem can actually be classified as a binary assignment problem (a subset of linear programming
problems), but we were unable to implement the standard binary assignment algorithms at scale.
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For each of the 36 parameter sets we simulated, at least 83 percent of the variance in the

school-level contribution of unobserved student characteristics can be predicted by a linear

combination of school-average observable characteristics, with the R-squared exceeding

.98 in several specifications.

A closer look reveals a number of insights about the factors determining the perfor-

mance of the control function approach. First, the efficacy does depend somewhat critically

on the number of individuals per group. Comparing rows (1) and (13), which increases

school sizes from 500 to 1000 holding fixed other parameters, we see that the R-squared

increases from .890 to .914. Indeed, the lowest R-squared values in the table appear in

specifications where school sizes are at their smallest (250).

Second, the number of schools has very little impact on performance. Row (19) contains

results from a specification that doubles the number of schools from (1), but holds school

sizes and other parameters fixed. The R-squared is virtually unchanged, moving from .890

to .893 (Rows (13) and (31) show the same pattern).

Third, restricting the number of schools in each household’s consideration set reduces

the control function’s ability to absorb unobservable sorting, but only slightly. Comparing

rows (2) and (5), for example, we see a small increase in the R-squared when increasing

the consideration set from 10 to the 50, while we observe no change at all when comparing

rows (1) and (5). Thus, our approach does not require households to be considering large

numbers of schools.

Fourth, increasing the dimension of the underlying amenity space results in a substantial

decrease in the performance of the control function (compare, for example, rows (5) and

(6), or (11) and (12)). Indeed, we also ran the simulation under a less conservative scenario

in which we restrict δlk = 1 ∀(l, k), which is tantamount to restricting the amenity space to

a single dimension of school/neighborhood “quality”. In this setting we find that at least 97
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percent of the variance in the school-level contribution of unobserved student characteris-

tics can be predicted by a linear combination of school-average observable characteristics

in all 36 parameter sets.

Fifth, increasing the number of observable (and unobservable) characteristics increases

performance (compare rows (1) and (2)). This highlights the importance of collecting data

on a wide variety of student/parent inputs that capture different dimensions of taste (as the

panel surveys we use do).

Finally, the performance of the control function suffers when estimation is based on

small subsamples of students at each school. Examining Row (1), we see that the R-squared

falls from .890 to only .374 when school averages are merely approximated based on sam-

ples of 10 students (Column 8). Increasing the sample size to 20 students per school (Col-

umn 9) raises the R-squared to .494, while increasing it further to 40 students per school

raises the R-squared to .616. In all of these simulations, we assumed that the strength of

sorting on unobservables mirrored the strength of sorting on unobservables. In results not

shown, we also experimented with weakening the degree of sorting on unobservables by

making δUx smaller in magnitude and increasing the variance of κ∗i to compensate. While

the control function absorbs a smaller fraction of the between-school variance in unobserv-

able outcome-relevant characteristics when sorting on these characteristics is weak, this is

precisely the case when the magnitude of the between-school variance in unobservables is

small. Thus, there is very little potential bias to be absorbed!

While these finite-sample monte carlo simulations should be considered preliminary,

they do suggest that our control function approach could work quite well in some school

choice settings, particularly when either the population of students in each school is ob-

served or the number of underlying amenity factors is small relative to the number of un-

derlying factors represented by the observed individual characteristics.
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6 Data

Our analysis uses data from four distinct sources. The first three sources consist of

panel surveys conducted by the National Center for Education Statistics: the National

Longitudinal Study of 1972 (NLS72), the National Educational Longitudinal Survey of

1988 (NELS88), and the Educational Longitudinal Survey of 2002 (ELS2002), and ELS02.

These data sources possess a number of common properties that make them well suited for

our analysis. First, each samples an entire cohort of American students. The cohorts are

students who were 12th graders in 1972 in the case of NLS72, 8th graders in 1988 for

NELS88, and 10th graders in 2002 for ELS02. Second, each source provides a represen-

tative sample of American high schools or 8th grades and samples of students are selected

within each school. Both public and private schools are represented.12 Enough students

are sampled from each school to permit construction of estimates of the school means of

a large array of student-specific variables and to provide sufficient within-school variation

to support a between-/within-school variance decomposition. Third, each survey adminis-

tered questionnaires to school administrators in addition to all sampled individuals at each

school. This provides us with a rich set of both individual-level and school-level vari-

ables to examine, allowing a meaningful decomposition of observable versus unobservable

variation at both levels of observation. Fourth, each survey collects follow-up information

from each student past high school graduation, facilitating analysis of the impact of high

school environment on two or more of the outcomes economists and policymakers care

most about: the dropout decision, college enrollment and completion decisions, and wage

profiles.

While these common properties are very helpful, each survey displays idiosyncratic

features and questions that complicate efforts to compare results across time. We develop

12We include private schools because they are an important part of the education landscape. However, the
connection between characteristics of the school and characteristics of the neighborhood may be weaker for
private school students.
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comparable measures for all of the variables in our baseline specification, restricting atten-

tion only to variables that are available and measured consistently across all three datasets.

In addition, in the baseline specification we only use student-level characteristics that are

unlikely to be affected by the high school the child attends. However, we also provide de-

compositions which include in Xsi scores from standardized tests taken by students in high

school as proxies for ability. These scores may be influenced directly by high school inputs,

so including them could cause an underestimate of the contribution of school-level inputs.

On the other hand, excluding them could instead cause an overestimate of the contribution

of school-level inputs, since we run the risk of understating the extent of ability differences

among students who attend different schools.

Restricting our analysis to measures that are common across datasets, however, pre-

vents us from exploiting the full power of these rich datasets to explain the distribution

of an important set of outcomes. Thus, since NELS88 and ELS02 feature considerably

greater overlap in survey questions, we also constructed a larger set of common variables

for these two datasets, which we labeled our “full” specification. We include in the full

specification measures of student behavior and parental expectations that, like test scores,

are not clearly exogenous, but may allow us to more accurately characterize differences

in the backgrounds of students attending different schools. For NLS72, the specification

we label “w/tests” consists of the variables from the baseline specification plus student

test scores. Table 2 lists the final choices of individual-level and school-level explanatory

measures used in each dataset.

The one major drawback associated with the three panel surveys is that only around

20 students per school are generally sampled. The simulation results presented in Section

V suggest that samples of these size can erode the ability of sample school averages of

observable characteristics to serve as an effective control function for variation in average

unobservable student contributions across schools. Consequently, we also exploit ad-
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ministrative data from North Carolina on the universe of public schools and public school

students (including charter schools) in the state.

Since the North Carolina data contains information on every student at each school, it

does not suffer from the same small subsample problem as the panel surveys. On the other

hand, the set of observable characteristics is not quite as diverse as in the panel surveys,

though it is surprisingly rich for administrative data. In addition to test scores from each

grade 3-8, the NC data contain information on each student’s race and gender, the student’s

history of free lunch eligibility and limited english proficiency status, whether the student

has been deemed “gifted”, parental education, hours per week spent reading for leisure and

watching TV. Table 3 provides a full list of the student- and school-level variables included

in specifications using the North Carolina data.

More importantly, the data we possess does not link student records to college atten-

dance or future wages, so that the only outcome we observe is high school graduation.

Nonetheless, by comparing the graduation results between the North Carolina and panel

survey datasets, we can gain some assurance that the small sample problem is distorting

results too badly. We explore this issue in greater depth in the next section.

The outcome variables are defined as follows. COLL, the measure of college atten-

dance, is an indicator for whether the student is enrolled in a four year college in the

second year beyond the high school graduation year of his/her cohort. It is available in

each dataset except the North Carolina data.13 For NELS88 and ELS 2002 HSGRAD is

an indicator for whether a student has a high school diploma (not including a GED) as of

two years after the high school graduation year of his/her cohort. For the North Carolina

data, HSGRAD indicates whether the student is classified as graduated for the official

state reporting requirement. Notice, though, that since ELS02 first surveys students in 10th

13However, in NLS72 enrollment status is reported in January-March of the second full school year after
graduation, while in NELS88 and ELS02 it is reported in October.
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grade, it misses a substantial fraction of the early dropouts. Indeed, in NELS88, about

one third of the 16 percent who eventually drop out do so before the first follow up survey

in the middle of 10th grade. The North Carolina data considers students as eligible for

official dropout statistics if they are enrolled in a North Carolina school at the beginning

of 9th grade, so there is little scope for underestimating the incidence of dropout. Given

that NLS72 first surveys students in 12th grade, we cannot properly examine dropout be-

havior in this dataset. However, because NLS72 re-surveys students in 1979 and 1986,

when respondents are around 25 and 32 years old, respectively, we can use it to analyze

completed years of postsecondary education and wages during adulthood. We use years of

academic education as of 1979, because attrition and subsampling reduced the 1986 sample

by a considerable amount relative to the 1979 follow-up survey, and most respondents have

completed their education as of 1979. For the wage analysis, we include only respondents

who report wages in both 1979 and 1986.

In each specification, we restrict our sample to those individuals whose school admin-

istrator filled out a school survey, and who have non-missing information on the outcome

variable and the following key characteristics: race, gender, SES, test scores, region, and

urban/rural status.14 We then impute values for the other explanatory variables to preserve

the sample size, since no one other variable is critical to our analysis.15 Finally, each

specification makes use of a set of panel weights. The appropriate weights depend on the

analysis. Our rationale for using weights and the details of how we construct them are

provided in Appendix Section 3

14SES and Urban/rural status are not available in the North Carolina data.
15This results in sample sizes for the four year college enrollment analyses of: 12,100 for NLS72, 10,990

for NELS88 using the grade 8 school, 10,710 for NELS88 using the grade 10 school, and 12,440 for ELS02.
The sample sizes for the high school graduation analyses are 11,340 for NELS88 (using grade 8 school),
11,040 for NELS88 (using grade 10 school) and 12,370 for ELS02, respectively. The analysis of years of
postsecondary education uses 12,070 observations from NLS72, and the wage analysis uses 4,930 individ-
uals with 9,860 wage observations. We also create a missing indicator for mother’s education, and include
mother’s education combined with the missing indicator when performing imputation, along with school
averages of all the key characteristics above.
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7 Results

7.1 High School Graduation Results from the North Carolina Admin-

istrative Data

The first column of Table 4 displays the variance decomposition associated with the

latent variable determining high school graduation using the baseline specification from

the North Carolina administrative data. Each entry in Panel A presents the fraction of

variance contributed by the component associated with the row label.

The 4th row reveals that only 8.5% of the variance in the underlying latent variable

consists of differences in school-average dropout rates across schools, with the remaining

variation coming from the identities of the dropouts within schools. We also see that while

within-school variation in observable characteristics, V ar(XiB − XsB) composes up a

substantial 12.44 percent of the variance, its between-school counterpart V ar(XsB) only

accounts for 1.81 percent, for an intraclass correlation of 1.8/14.25 = .127, suggesting that

observable characteristics only drive a small amount of the variance in school preferences.

Once we remove the between school variation that could be potentially attributed to stu-

dent sorting, V ar(XsB) + V ar(Z1sG1) + 2Cov(Z1sG1, XsB) + 2Cov(Z2sG2, XsB) +

2Cov(Z1sG1, Z2sG2), we are left with the two components V ar(Z2G2) and V ar(ZU
s G

U +

v∗si). These two components combine to produce our lower bound estimate of the school

contribution: 4.9 percent of the total student-level variance. Since V ar(ZU
s G

U + v∗si

may partially reflect common shocks determined near the end of high school, which may

or may not be appropriate to include with other school contributions, V ar(Z2G2) pro-

vides a more conservative estimate of 1.81 percent of the total variance attributable to

school/neighborhood choice.

The two rows in Panel B use these two alternative lower bound variance estimates to
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form estimates of the average impact across the student distribution of moving from a

school at the 10th percentile of the distribution of school/neighborhood contributions to

graduation to a school at the 90th percentile. We can think of this as a thought experiment

in which two students at each quantile in the student background distrbution are placed

either in the 10th or the 90th quantile school, and the difference in the graduation status of

these two pairs is summed over all such pairs.

The estimate that excludes common shocks suggests that, averaged across the student

distribution, attending a 90th quantile school increases graduation rates by 10.6 percent-

age points relative to a school at the 10th quantile. Notice that this estimate is quite large

despite the fact that the fraction of variance upon which it is based is quite small, 1.81

percent. This is driven partly by the use of the probit function and the assumption of nor-

mality. If the true distribution of latent student contributions is normal, and the graduation

rate in North Carolina is not too high (around 80 percent), then there is likely to be large

mass of students near the decision margin. Thus, even a small push from the surrounding

school/neighborhood environment may be enough to induce a significant fraction of stu-

dents to graduate. The estimate including common shocks is even higher: 17.4 percentage

points.

7.2 Evaluating the Magnitude of Bias from Limited Samples of Stu-

dents Per School

Before considering estimates from the three survey datasets, however, we first use the

North Carolina sample to better gauge the biases produced by the student sampling schemes

used by each survey. The monte carlo simulations in Section V suggested that estimation

based on subsamples of 20 students per school (similar to those in the three datasets) could

result in a substantial decrease in the ability of school-average observables to capture sort-
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ing on unobservables. However, these simulations are based on particular assumptions

about the dimensionality of the underlying desired amenities, the joint distribution of the

observable and unobervable characteristics, and the degree to which these characteristics

predict tastes for schools/neighborhoods.

A potentially more direct way to determine whether the sampling schemes are biasing

our bound estimates is to draw a sample students from North Carolina schools using either

the NLS72, NELS88, or ELS2002 sampling schemes and re-estimate the model for high

school graduation using each this sample. By comparing the results derived from such

samples to the true results based on the universe of students discussed above, we can de-

termine which if any of the survey datasets is likely to produce reliable results. Columns

2-5 of Table 4 present the results of this exercise. To remove the chatter produced by a sin-

gle draw from these sampling schemes, each column displays averages over 100 samples

drawn from each sampling scheme.

Comparing Column 1 with Column 2, which uses the distribution of school sample

sizes observed among 10th grade schools in the NELS88, we see that small samples at each

school can produce a considerable bias. Looking at the last two rows of Panel A, we that the

NELS grade 10 size distribution overstates the true variance fraction for the lower bound

without common shocks, V ar(Z2G2), by 1.7 percent, and the lower bound with common

shocks, V ar(Z2G2 + ZU
s G

U + v∗si), by 1.4 percent. These translate to overestimates of

the impact of a 10th-90th quantile shift in school quality of 3.9 percentage points and 2.2

percentage points, respectively.

However, grade 10 schools in the NELS88 have particularly small samples, since they

were not part of the original sampling frame, and only produce large samples of students to

the extent that many students from a given grade 8 school attend the same grade 10 school.

If we instead compare Column 1 with Column 3, which uses the NELS grade 8 school

to classify students, we observe much smaller biases: the lower bound variance fraction
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without common shocks is overstated by 0.5 percent in the NELS grade 8 sample, and

the estimate that includes common shocks is understated by 0.25 percent. The biases in

10th-90th shift estimates are 1.1 percentage points and -1.0 percentage points, respectively.

The NLS72 and ELS2002 comparisons, displayed in Columns 4 and 5, are very similar

to the NELS grade 8 results. These results are comforting, and suggest that the estimates

from these samples may overstate the lower bound slightly in the estimates that attempt to

exclude common shocks, but may even understate appropriate lower bound estimates that

include common shocks. Due the poor performance of the NELS grade 10 school sample

size distribution, however, we do not report any NELS88 results that group students by

their grade 10 school.

7.3 High School Graduation and College Enrollment Results from

NLS72, NELS88, and ELS2002

Panel A of Table 5 displays the “w/shocks” and “no shocks” lower bound estimates

of the fraction of variance attributable to school/neighborhood choices. The first column

re-displays the results from the baseline specification using the North Carolina data, while

the second column displays results from the full specification that includes past test scores

and measures of behavior that could potentially have been altered by the school. Including

these additional observable characteristics does reduce both lower bound estimates, from

1.8 percent of total variance to 1.3 percent for the estimate that excludes common shocks

and from 4.9 percent to 3.6 percent for the estimate that includes common shocks.

Comparing the North Carolina results to those of NELS88 (Columns 3 and 4), however,

we see that both lower bound estimates are surprisingly stable between administrative and

survey datasets. Comparing the NELS88 results to the ELS2002 results (Columns 5 and

6), we see that the results also differ very little between the 1988 and 2002 cohorts. This is
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true for both the baseline and full specifications.

Panel B of Table 5 presents results for the decomposition of the latent index determin-

ing enrollment in a 4-year college. Comparing the baseline specifications from NLS72,

NELS88, and ELS2002 (Columns 1, 3, and 5), we again observe a surprising consistency

in both lower bound estimates of the school/neighborhood contribution across datasets and

generations. Estimates that exclude common shocks attribute at least 2.4 to 2.7 percent of

outcome variance to schools/neighborhoods, while estimates that include common shocks

attribute 5.3 to 5.6 percent. Including test scores and behavioral variables (for NELS88

and ELS2002) reduces these lower bound estimates in a consistent fashion across the three

panel surveys (Columns 2, 4, and 6), with the estimates that exclude common shocks drop-

ping to 1.6 to 2.1 percent, and the estimates that include common shocks dropping to 3.6

to 4.1 percent.

Table 6 converts these variance fractions into the more easily interpreted average im-

pacts of a 10th-to-90th quantile shift in school/neighborhood environment. Notice first

that despite the striking similarity across datasets in the estimated lower bound fractions of

variance attributable to schools, the 10th-90th impact estimates differ significantly across

datasets, particularly for the high school graduation results in Panel A. This is due to differ-

ences in the sample average graduation rates across the datasets. The gradation rate is 80

percent16 in the North Carolina data, 86 percent in NELS88, and 90 percent in ELS2002.

As a result, a shift of the same magnitude will induce a greater increase in North Carolina

than in ELS2002, because there seem to be fewer students near the decision margin. Intu-

itively, as the sample average converges to 100 percent graduation, the variation in the latent

index determining the personal relative benefit from graduating becomes less relevant, as

the entire population is far from the decision threshold at 0. Likewise, the sample average

college enrollment rate is 27 percent in NLS72, 31 percent in NELS88, and 37 percent in

16re-check this!
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ELS2002. Since more of the students are not close to the college attendance threshold in

1972, fewer of them reach the decision margin for a given shift in school/neighborhood

environment, relative to the cohorts from later generations.

The next striking feature of the results is the magnitude of the estimated changes in

both graduation and enrollment rates. Even when common shocks are excluded, and the

full specification is considered, lower bound estimates of the impacts of the 10th-to-90th

shifts in school quality are associated with an increase in the graduation rate of between

5.6 and 8.4 percentage points, depending on the dataset. This would be enough to halve

the dropout rate in each sample. Including common shocks scales up the estimated impacts

to between 7.6 and 15.2 percentage points, about three quarters of the dropout rate in each

sample. When less dramatic 10th-to-50th quantile shifts are considered (Rows 3 and 4),

estimated average impacts are still between 3 and 4 percentage points for lower bounds that

exclude common shocks, and between 4 and 8 percentage points for the lower bounds that

include common shocks.

Furthermore, these estimates put the full distribution of students at a 10th quantile

school to begin with, when many of the students with superior background characteristics

would be quite unlikely to be observed in such an environment. A more realistic estimate

might put greater weight on estimates produced for the kinds of students most likely to

be observed in 10th quantile schools. Note, though, that our method does not allow us

to discern the quality of any given school. Average impacts for particular subpopulations,

however, will be explored in the next section.

The corresponding estimates for college enrollment, displayed in Panel B, are of a simi-

larly large magnitude. When common shocks are excluded and the full specification is con-

sidered, the lower bound on the estimated increase in the 4-year enrollment rate from mov-

ing every student (one at a time) from the 10th to the 90th quantile school/neighborhood are

between 11 and 14 percentage points (Row 1 of Panel B). Including the residual between-
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school component boosts the range of estimates to 17 to 19 percentage points. 10th-to-50th

quantile shifts still produce average estimated impacts between 5 and 9 percentage points.17

7.4 Heterogeneous Effects of 10th-90th Percentile Shifts in School Qual-

ity

To what extent do the 10-90 differentials reported in Table 6 conceal heterogeneity in

the impact of moving schools across students with varying student backgrounds? Because

of nonlinearity in the probit function that links Yi to the binary outcome indicators for high

school graduation and enrollment in a 4-year college, the sensitivity to school quality is

higher for groups with values of XsiB̂ that place them closer to a probability of .5. High

school graduation is therefore more sensitive to school quality for disadvantaged groups

and less sensitive for advantaged groups. The opposite tends to be true for college enroll-

ment.

Table 8 reports the lower bounds (excluding and including common shocks) for the

effect of a 10th to 90th percentile shift in school quality on graduation rates for two extreme

cases: students whose value of the background index XiB̂ places them at the 10th quantile

of the XiB̂ distribution (Rows 1 and 2), and students at the 90th quantile of the XiB̂

distribution (Rows 3 and 4). For the North Carolina sample and the full specification,

the lower bound estimates that exclude common shocks suggest a 12.7 percentage point

increase for students at the 10th quantile and a 3.6 percentage point increase for students

at the 90th quantile, while the lower bound estimates that include common shocks are 22.9

and 6.3 percentage points, respectively. For NELS88 grade 8 (Column 4), the numbers

17Note that in the case of college enrollment, many of the students who would be induced to attend college
by moving from a 10th to 90th quantile school are those from more privileged backgrounds who are already
attending high quality schools. Thus, unlike the case of high school graduation, the 10-90 estimates may
overstate the college enrollment gains to improving school quality for the kinds of students attending low
quality schools.
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are smaller, particularly for the 90th quantile: lower bound estimates that exclude common

shocks are 13.0 percentage points and 0.6 percentage points, and lower bound estimates that

exclude common shocks are 21.5 percentage points and 1.0 percentage points in the full

specification. This reflects the fact that the average dropout rate is lower for the NELS88

than for the state of North Carolina between 2007 and 2009. ELS2002 results are generally

similar to NELS88 grade 10, but slightly smaller. The results show that advantaged students

tend to graduate high school regardless of the school they attend, while disadvantaged

students are strongly affected by school quality.

Table 8 also reports the average impact of a 10th-90th shift on high school graduation

rates for three subpopulations of interest: black students, white students with single moth-

ers who did not attend college, and white students with both parents present, at least one

of whom completed college. For the full specification in the North Carolina sample, the

estimates without and with common shocks are 8.5 and 15.2 percentage points for black

students. The estimates for white students with single mothers who did not attend col-

lege are 11.4 and 20.6 percentage points, while the estimates for white students with both

parents, at least one of whom completed college, are 4.7 and 8.4. The estimates are consis-

tently smaller in the NELS88 and ELS samples, but are still between 7 and 10 percentage

points for black students and for white students with single mothers who did not attend

college.

Table 9 reports a corresponding set of results for enrollment in a 4-year college. The

college enrollment rates for students at the 10th percentile of the XiB̂ distribution are

substantially less sensitive to school quality, reflecting the fact that most such students

are nowhere near the college enrollment margin. The lower bound estimates that exclude

and include common shocks are between 3 and 6 percentage points and between 4 and 8

percentage points, respectively, depending on the sample. By contrast, the lower bound

estimates excluding and including common shocks for students at the 90th percentile of
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the XiB̂ distribution are between 14 and 17 percentage points and 19 and 26 percentage

points, respectively. The values for blacks and for whites with non-college-educated single

mothers are similar to the results for the full sample, while the values for whites with

college educated parents are close to those for the 90th percentile of the XiB̂ distribution.

Overall, it appears that, except for the lowest stratum of student background, there are

considerable pools of students that are close enough to the decision margin for a major shift

in school quality to be a deciding factor in determining college enrollment.

7.5 NLS Results for Years of Postsecondary Education and Perma-

nent Log Wages

Table 7 displays the lower bound estimates of the impact of 10th-to-90th and 10th-to-

50th shifts in school quality on years of postsecondary education and permanent wages for

the NLS72 sample. The baseline lower bound estimate that excludes common shocks im-

plies that a 10-90 shift in school quality increases years of postsecondary education by .39

years, while including standardized tests among the observable characteristics reduces this

estimate to .27 years. Note, though, that since the NLS72 data is collected in 12th grade,

the standardized test scores are particularly likely to reflect high school quality, making

the w/tests specification a likely underestimate. Adding the variance in the unobserved

between-school component raises these estimates to .56 and .45 years respectively. Even

10th-to-50th quantile shifts are half as large by construction, since no non-linear transfor-

mation takes place when the outcome is continuous. Nonetheless, they suggest a substan-

tive impact of shifts in school quality on years of college education: the corresponding four

estimates are .19, .14, .28, and .20 years of college, respectively.

Columns 3-6 contain analogous estimates for the permanent component of log wages.

Columns 3-4 reflect specifications in which years of postsecondary education is not in-
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cluded as a control, while columns 5-6 includes years of postsecondary education to focus

on the effect on log wages that does not occur via postsecondary education. In practice, the

two sets of estimates are quite similar. The estimates that exclude common shocks imply

that a 10-90 shift in school quality increases wages by around 12 percent. The 10-50 shifts

are again half as large at around 6 percent. Estimates that include common shocks imply

that a 10-90 shift in school quality increases wages by around 20 percent. Thus, at least for

the 1972 cohort, shifts in school quality seem to have important impacts as well for longer

run outcomes of particular importance for worker welfare.

8 Discussion

The key takeaway from the results presented in this paper should be that even very

conservative estimates of the contribution of schools and surrounding neighborhoods to

later outcomes suggest that improving school/neighborhood environments could have a

very large impact on high school graduation rates and college enrollment rates. Indeed, this

is quite consistent with the lottery-based estimates of (Deming et al. 2011), and suggests

that their results are likely to generalize beyond the specific high poverty Charlotte context

they consider. Their results, perhaps combined with the Moving to Opportunity results,

suggest that perhaps schools make a more important part of the contribution of the external

environment than do neighborhoods, though the two may be complementary.

Of course, there are clearly extensions to our framework that are likely to produce a

more nuanced interpretation. In particular, our model of outcomes does not explicitly allow

for complementarities and other interactions between school and student quality.18 For

example, it could be the case that the types of students who attend low quality schools

18Recall, though, that our model does allow for school treatments to differ across students within a school.
This variation is not captured, however, in our lower bound estimates, which focus only on correctly attribut-
ing across-school variation to schools/neighborhoods versus students.
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are those that are least likely to profit from improvements in school quality, although the

(Deming et al. 2011) results suggest otherwise. Similarly, our static model does not reflect

the many school transfers and residential moves that take place during students’ educational

careers that are explicitly motivated by the perceived payoff to a better school.

A final point worth re-emphasizing is that the control function approach we utilize here

could be employed in any setting in which individuals sort into units, and where both the

individuals and the units themselves have independent impacts on individual outcomes.

While we mentioned the patient/hospital case in the introduction, one could easily apply

this framework to product choice in a differentiated goods market, in which individuals

with different characteristics place different weights on different product characteristics (a

la (Rosen 1974)). For example, one could evaluate the success of any advertising campaign

where the object of interest is the degree to which the public has internalized and acted

on the information provided about a particular product feature that affects a measurable

individual outcome. One can simply regress average outcomes for each given product (e.g.

cavity rate among users each toothpaste) on the average characteristics of the buyers, if

sufficient information on buyers is collected. If the value of the particular product feature

(e.g. the amount of a particular anti-cavity agent) predicts the residual difference in average

outcomes across products, then buyers have not fully internalized (or do not care) about the

role of this product feature in producing the measured outcome.

A final appropriate application for our model relates to government regulation. The

standard textbook treatment of occupational safety regulation (e.g. (Ehrenberg and Smith

2010)) suggests that government intervention only increases worker welfare if the safety

risks are unknown at the time the occupation is chosen; otherwise such regulations remove

the opportunity for risk-loving workers to get paid welfare-enhancing compensating differ-

entials for taking on risky jobs. The sorting model we presented suggests that the resid-

ual from a regression of occupation-average age at death on a large vector of occupation-
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average worker characteristics can potentially isolate the part of the long run occupational

contribution to health that was unknown to workers when they chose the occupation. It ad-

dresses the concern that sorting on occupational sorting on unobserved characteristics that

influence mortality are responsible for occupation differences in mortality rates. Thus, one

can directly identify the occupations that merit government-supported information cam-

paigns or other safety regulations. We are currently pursuing this application.
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Table 1: Monte Carlo Simulation Results

Row # Stu. # Sch. # Cons. # Obs. # Unobs. # Amen. R-Sq (All) R-Sq (10) R-sq (20) R-sq (40)

(1) 25000 50 10 10 10 10 0.890 0.374 0.494 0.616

(2) 25000 50 10 20 20 10 0.967 0.549 0.673 0.770

(3) 25000 50 10 20 20 20 0.934 0.528 0.629 0.727

(4) 25000 50 50 10 10 10 0.890 0.400 0.528 0.644

(5) 25000 50 50 20 20 10 0.978 0.599 0.711 0.815

(6) 25000 50 50 20 20 20 0.933 0.546 0.639 0.738

(7) 25000 100 10 10 10 10 0.836 0.300 0.452 0.591

(8) 25000 100 10 20 20 10 0.927 0.392 0.549 0.701

(9) 25000 100 10 20 20 20 0.872 0.364 0.503 0.639

(10) 25000 100 50 10 10 10 0.855 0.339 0.483 0.623

(11) 25000 100 50 20 20 10 0.943 0.456 0.615 0.752

(12) 25000 100 50 20 20 20 0.872 0.410 0.536 0.663

(13) 50000 50 10 10 10 10 0.914 0.372 0.499 0.619

(14) 50000 50 10 20 20 10 0.981 0.552 0.664 0.770

(15) 50000 50 10 20 20 20 0.964 0.539 0.650 0.740

(16) 50000 50 50 10 10 10 0.942 0.391 0.523 0.652

(17) 50000 50 50 20 20 10 0.987 0.589 0.710 0.811

(18) 50000 50 50 20 20 20 0.956 0.563 0.658 0.756

(19) 50000 100 10 10 10 10 0.893 0.294 0.449 0.590

(20) 50000 100 10 20 20 10 0.960 0.403 0.548 0.696

(21) 50000 100 10 20 20 20 0.918 0.382 0.517 0.653

(22) 50000 100 50 10 10 10 0.891 0.333 0.479 0.611

(23) 50000 100 50 20 20 10 0.973 0.456 0.618 0.755

(24) 50000 100 50 20 20 20 0.909 0.409 0.544 0.664

(25) 100000 50 10 10 10 10 0.962 0.371 0.502 0.632

(26) 100000 50 10 20 20 10 0.992 0.539 0.659 0.777

(27) 100000 50 10 20 20 20 0.972 0.544 0.651 0.757

(28) 100000 50 50 10 10 10 0.962 0.398 0.530 0.650

(29) 100000 50 50 20 20 10 0.994 0.592 0.709 0.811

(30) 100000 50 50 20 20 20 0.968 0.550 0.665 0.740

(31) 100000 100 10 10 10 10 0.912 0.287 0.430 0.573

(32) 100000 100 10 20 20 10 0.980 0.394 0.548 0.701

(33) 100000 100 10 20 20 20 0.949 0.374 0.520 0.660

(34) 100000 100 50 10 10 10 0.924 0.332 0.483 0.613

(35) 100000 100 50 20 20 10 0.985 0.455 0.612 0.751

(36) 100000 100 50 20 20 20 0.944 0.416 0.551 0.676
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Table 2: Variables Used in Baseline and Full (in Italics) Specifications

Student Characteristics

Female, Black, Hispanic, Asian, Immigrant

Student Ability

Math Standardized Score*, Reading Standardized Score*

Student Behavior

Hrs./Wk. Spent on Homework, Parents Often Check Homework,
Hrs./Wk. Spent on Leisure Reading, Hrs./Wk. Spent Watching TV,
Often Arrives at Class Without a Pencil, Physical Fight This Year

Family Background

Standardized SES, Number of Siblings, Both Bio. Parents Present,
Mother and Male Guardian Present, Father and Female Guardian Present,
Mother Only Present, Father Only Present, Father’s Years of Education,
Mother’s Years of Education, Moth. Yrs. Ed. Missing, English Spoken at Home,
Log(Family Income), Immigrant Mother, Immigrant Father,
Employed Mother, Employed Father, Parents are Married

Parental Expectations

Mother’s Desired Yrs. of Ed., Father’s Desired Yrs. of Ed.

School Characteristics

School is Catholic, School is Private Non-Catholic, Student-Teacher Ratio,
Pct. Teacher Turnover Since Last Year, Pct. on College Prep. Track,
Pct. of Teachers w/ Master’s Degrees or More, Average Pct. Daily Attendance,
School Pct. Minority, School Teacher Pct. Minority, Total School Enrollment
Log(Min. Teacher Salary), School Pct. Free/Reduced Price Lunch,
School Pct. LEP, School Pct. Special Ed.,
School Pct. Remedial Reading, School Pct. Remedial Math

Neighborhood Characteristics

School in Urban Area, School in Suburban Area, School in Rural Area,
School in Northeast U.S. Region, School in South U.S. Region,
School in Midwest U.S. Region, School in West U.S. Region

*Standardized test scores are also included in the w/tests specifications, along with all of the baseline variables.
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Table 3: Variables Included in Specifications Using
North Carolina Administrative Data

Student Characteristics

Female, Black, Hispanic, Asian

Student Ability

Math Standardized Score (Grades 7 & 8), Reading Standardized Score (Grades 7 & 8)
Designated Gifted Student (Math), Designated Gifted Student (Reading)

Student Behavior

Hrs./Wk. Spent on Homework (Indicator Variables),
Hrs./Wk. Spent on Leisure Reading (Indicator Variables)
Hrs./Wk. Spent Watching TV (Indicator Variables)

Family Background

Responding Parent Educational Attainment Category Indicator Variables
Ever Eligible for Free/Reduced Price Lunch
Currently Limited English Proficiency
Ever Limited English Proficiency

School Characteristics

Magnet School, Charter School, Student-Teacher Ratio,
Pct. Teacher Turnover Since Last Year
Pct. on College Prep. Track
Pct. of Teachers w/ Master’s Degrees or More
Average Pct. Daily Attendance,
School Teacher Pct. Highly Qualified
Total School Enrollment

Neighborhood Characteristics

Urbanicity Indicator Variables (12 Categories)

School averages of all individual-level variables are also included in each specification.
Classroom averages of all individual-level variables are also employed in some specifications.
See Section 10 for details.
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Table 4: Bias from Observing Subsamples of Students from Each School: Comparing
Results from the Full North Carolina Sample to Results from Subsamples Mirroring the

Sampling Schemes of NLS72, NELS88, and ELS2002

Panel A: Fractions of Total Outcome Variance

Row Full NC Sample NELSg10 NELSg8 ELS2002 NLS72

Within School:
Total

0.9153 0.8763 0.9131 0.9120 0.9126

V ar(Yis − Ys)

Observable Student-Level (Within):
0.1244 0.1301 0.1296 0.1285 0.1296

V ar((Xsi −Xs)B)

Unobservable Student-Level (Within)
0.7909 0.7461 0.7834 0.7834 0.7828

V ar(Vsi)

Between School:
Total

0.0847 0.1237 0.0869 0.088 0.0874
V ar(Ys)

Observable Student-Level:
0.0181 0.0179 0.0183 0.0184 0.018

V ar(XsB)

Student-Level/
0.0165 0.0187 0.0170 0.175 0.0175

School-Level Covariance
2 ∗ Cov(XsB,Z1sG+ Z2sG)

School-Avg. Student-Level/
-0.0166 -0.0053 0.0061 -0.0054 -0.0047

School Char. Covariance
2 ∗ Cov(Z1sG,Z2sG)

School-Avg. Student-Level
0.0178 0.029 0.0137 0.0139 0.0125

V ar(Z1s)

School Char.
0.0181 0.0353 0.023 0.0238 0.0269

V ar(Z2sG2)

Unobservable School-Level
0.0309 0.0283 0.0211 0.0199 0.0173

V ar(ZU
s )

Panel B: 10th to 90th Quantile Shifts in School Quality

Row Full NC Sample NLS72 NELSg8 NELSg10 ELS2002

10-90 Lower Bound no unobs
0.1056 0.1435 0.1167 0.1177 0.1254

V ar(Z2sG2)

10-90 Lower Bound w/unobs
0.1742 0.1959 0.164 0.1626 0.1631

V ar(Z2sG2 + ZU
s )
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Table 5: The Fraction of Variance in the Latent Index Determining High School
Graduation Attributable to School/Neighborhood Quality: Approximate Lower Bound

Estimates

Panel A: High School Graduation

Upper/Lower Bound NC NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.018 0.013 0.018 0.011 0.021 0.016
V ar(Z2sG2) (0.024) (0.023) (0.024) (0.015) (0.021) (0.016)

LB w/ unobs 0.049 0.036 0.049 0.031 0.044 0.029
V ar(Z2sG2 + ZU

s ) (0.092) (0.078) (0.092) (0.078) (0.092) (0.076)

Panel B: Enrollment in a Four Year College

Upper/Lower Bound NLS NELS gr8 ELS

Baseline w/Tests Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs 0.027 0.016 0.026 0.021 0.024 0.019
V ar(Z2sG2) (0.026) (0.021) (0.032) (0.027) (0.024) (0.019)

LB w/ unobs 0.053 0.041 0.056 0.042 0.055 0.036
V ar(Z2sG2 + ZU

s ) (0.226) (0.188) (0.260) (0.225) (0.237) (0.188)
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Table 6: Effect on Outcomes of Transferring from a School at the 10th Percentile of the
Distribution of School Quality to a School at the 50th or 90th Percentile: Approximate

Lower Bound Estimates

Panel A: High School Graduation

Upper/Lower Bound NC NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.106 0.084 0.076 0.063 0.064 0.056
V ar(Z2sG2) (0.060) (0.060) (0.060) (0.046) (0.064) (0.056)

LB w/ unobs: 10th-90th 0.174 0.152 0.127 0.104 0.092 0.076
V ar(Z2sG2 + ZU

s ) (0.092) (0.078) (0.092) (0.078) (0.092) (0.076)

LB no unobs: 10th-50th 0.056 0.044 0.042 0.034 0.036 0.031
V ar(Z2sG2) (0.034) (0.034) (0.034) (0.025) (0.036) (0.031)

LB w/ unobs: 10th-50th 0.096 0.083 0.074 0.058 0.055 0.043
V ar(V ar(Z2sG2 + ZU

s ) (0.056) (0.046) (0.056) (0.047) (0.055) (0.043)

Panel B: Enrollment in a Four Year College

Upper/Lower Bound NLS NELS gr8 ELS

Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.142 0.108 0.153 0.132 0.155 0.136
V ar(Z2sG2) (0.142) (0.108) (0.153) (0.158) (0.155) (0.136)

LB w/ unobs: 10th-90th 0.200 0.174 0.226 0.188 0.237 0.188
V ar(Z2sG2 + ZU

s ) (0.200) (0.174) (0.226) (0.188) (0.237) (0.188)

LB no unobs: 10th-50th 0.066 0.051 0.073 0.063 0.075 0.066
V ar(Z2sG2) (0.073) (0.063) (0.084) (0.076) (0.075) (0.066)

LB w/ unobs: 10th-50th 0.090 0.080 0.105 0.088 0.112 0.090
V ar(Z2sG2 + ZU

s ) (0.105) (0.088) (0.121) (0.106) (0.112) (0.090)
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Table 7: Effect on Outcomes of Transferring from a School at the 10th Percentile of the
Distribution of School Quality to a School at the 50th or 90th Percentile: Approximate

Lower Bound Estimates

Panel C: Years of Postsecondary Education and Permanent Wages (NLS72 data)

Upper/Lower Bound Yrs. Postsec. Ed. Perm. Wages Perm. Wages
No Post-sec Ed. w/ Post-sec Ed.

Baseline w/Tests Baseline w/Tests Baseline w/Tests

(1) (2) (3) (4) (5) (6)

LB no unobs: 10th-90th 0.389 0.270 0.123 0.133 0.124 0.131
V ar(Z2sG2) (0.049) (0.044) (0.064) (0.065) (0.066) (0.066)

LB w/unobs: 10th-90th 0.559 0.409 0.207 0.205 0.269 0.263
V ar(Z2sG2 + ZU

s ) (0.048) (0.039) (0.016) (0.016) (0.015) (0.015)

LB no unobs: 10th-50th 0.194 0.135 0.062 0.067 0.062 0.066
V ar(Z2sG2) (0.025) (0.022) (0.032) (0.032) (0.033) (0.033)

LB w/unobs: 10th-50th 0.280 0.204 0.103 0.102 0.134 0.131
V ar(Z2sG2 + ZU

s ) (0.024) (0.019) (0.008) (0.008) (0.008) (0.008)

w/Tests specification includes student ability measures.
No Post-sec Ed. refers to specifications in which we do not include years of completed
post-secondary education as an element of Xsi.
w/ Post-sec Ed. refers to specifications in which we include years of completed post-
secondary education as an element of Xsi.
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Table 8: The Impact of 10th-90th Percentile Shifts in School Quality on High School
Graduation Rates for Selected Subpopulations

NC NELS gr8 ELS

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.146 0.127 0.132 0.130 0.106 0.114
V ar(Z2sG2) (0.106) (0.126) (0.132) (0.130) (0.106) (0.114)

LB w/ unobs 0.242 0.229 0.221 0.215 0.153 0.154
V ar(Z2sG2 + ZU

s ) (0.164) (0.166) (0.221) (0.215) (0.153) (0.154)

XB: 90th Quantile
LB no unobs 0.060 0.036 0.025 0.006 0.019 0.009
V ar(Z2sG2) (0.020) (0.008) (0.025) (0.006) (0.019) (0.009)

LB w/ unobs 0.098 0.063 0.040 0.010 0.028 0.012
V ar(Z2sG2 + ZU

s ) (0.031) (0.011) (0.040) (0.010) (0.028) (0.012)

Black
LB no unobs 0.107 0.085 0.076 0.070 0.074 0.070
V ar(Z2sG2) (0.067) (0.069) (0.076) (0.070) (0.074) (0.070)

LB w/ unobs 0.176 0.152 0.126 0.114 0.107 0.094
V ar(Z2sG2 + ZU

s ) (0.102) (0.091) (0.126) (0.114) (0.107) (0.094)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.142 0.114 0.121 0.104 0.092 0.079
V ar(Z2sG2) (0.095) (0.101) (0.121) (0.104) (0.092) (0.079)

LB w/ unobs 0.235 0.206 0.202 0.172 0.133 0.106
V ar(Z2sG2 + ZU

s ) (0.147) (0.134) (0.202) (0.172) (0.133) (0.106)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.062 0.047 0.034 0.022 0.028 0.020
V ar(Z2sG2) (0.026) (0.022) (0.034) (0.022) (0.028) (0.020)

LB w/ unobs 0.102 0.084 0.055 0.036 0.039 0.027
V ar(Z2sG2 + ZU

s ) (0.040) (0.028) (0.055) (0.036) (0.039) (0.027)

NELS gr8 refers to a decomposition that uses the 8th grade school as the class variable, and uses 8th
grade measures of student behavior and parental expectations, and 8th grade test scores in the full
specification.
“Lower Bound w/unobs” and “Lower Bound no unobs” refer to lower bound estimates of the increase
in the probability of graduation associated with a move from the 10th percentile school to the 90th
percentile school, independent of differences in student composition, that exclude and include common
shocks to all members of a school that take place after high school begins, respectively.
XB: 10th (90th) Quantile reports results for students whose values of XsiB equal the estimated 10th
(90th) quantile value of the XsiB distribution. See Section 6.
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Table 9: The Impact of 10th-90th Percentile Shifts in School Quality on Four-Year
College Enrollment Rates for Selected Subpopulations

NLS NELS gr8 ELS

Subpopulation Baseline Full Baseline Full Baseline Full

(1) (2) (3) (4) (5) (6)

XB: 10th Quantile
LB no unobs 0.088 0.025 0.082 0.044 0.110 0.056
V ar(Z2sG2) (0.082) (0.044) (0.107) (0.051) (0.110) (0.056)

LB w/ unobs 0.124 0.039 0.119 0.061 0.167 0.076
V ar(Z2sG2 + ZU

s ) (0.119) (0.061) (0.158) (0.071) (0.167) (0.076)

XB: 90th Quantile
LB no unobs 0.190 0.165 0.190 0.162 0.168 0.139
V ar(Z2sG2) (0.190) (0.162) (0.201) (0.175) (0.168) (0.139)

LB w/ unobs 0.269 0.268 0.282 0.230 0.258 0.193
V ar(Z2sG2 + ZU

s ) (0.283) (0.231) (0.299) (0.249) (0.258) (0.193)

Black
LB no unobs 0.132 0.098 0.148 0.130 0.145 0.125
V ar(Z2sG2) (0.148) (0.130) (0.171) (0.153) (0.145) (0.125)

LB w/ unobs 0.186 0.158 0.220 0.185 0.221 0.173
V ar(Z2sG2 + ZU

s ) (0.220) (0.185) (0.254) (0.218) (0.221) (0.173)

White w/ Single Mother
Who Did Not Attend College

LB no unobs 0.110 0.090 0.111 0.090 0.089 0.129
V ar(Z2sG2) (0.111) (0.089) (0.133) (0.115) (0.142) (0.129)

LB w/ unobs 0.154 0.144 0.164 0.126 0.217 0.179
V ar(Z2sG2 + ZU

s ) (0.164) (0.126) (0.197) (0.164) (0.217) (0.179)

White w/ Both Parents,
At Least One Completed College

LB no unobs 0.184 0.146 0.187 0.163 0.173 0.154
V ar(Z2sG2) (0.187) (0.163) (0.203) (0.184) (0.173) (0.154)

LB w/ unobs 0.260 0.237 0.279 0.233 0.265 0.213
V ar(Z2sG2 + ZU

s ) (0.279) (0.233) (0.301) (0.263) (0.265) (0.213)

Notes: See Table 8
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Appendix

1 Estimation of Model Parameters

In this section we discuss estimation of the coefficients B and G. The estimation strat-

egy depends on the outcome, so we consider the outcomes in turn.

1.1 Years of Postsecondary Academic Education

Parameter estimation is most straightforward in the case of years of postsecondary aca-

demic education. We estimate B using ordinary least squares regression with high school

fixed effects, which controls for all observed and unobserved school and neighborhood

influences.

Recall that Zs is comprised of two components: Zs = [Z1
s ;Z2

s ]. Z2
s consists of school

and neighborhood characteristics for which direct measures are available, such as stu-

dent/teacher ratio, city size, and school type. Z1
s consists of school wide averages for each

variable in Xsi, such as parental education or income, which we do not observe directly

but must estimate from sample members at each school. Consequently, the makeup of Z1
s

differs across specifications that use different X vectors. G1 and G2 are the corresponding

subsets of the coefficients in G.

We replace Z1
s with Z̄1

s , where Z̄1
s is the average of Xsi computed over all available
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students from the school.19 We estimate G by applying least squares regression to

Ysi −XsiB̂ = [Z
1

sG1 + Z2
sG2] ≡ ZsG+ esi

using the appropriate panel weights from the surveys.

1.2 Permanent Wage Rates

Abstracting from the effects of labor market experience and a time trend, let the log

wage Wsit of individual i, from school s, at time t be governed by

Wsit = Wsi + esit + ξsit.

In the above equation Wsi is i’s “permanent” log wage (given that he/she attended high

school s) as of the time by which most students have completed education and spent at

least a couple of years in the labor market, which we take to be 1979 in the case of NLS72.

esit is a random walk component that evolves as a result of luck in the job search process

or within a company, and changes in motivation or productivity due to health and other

factors. We normalize esit to be 0 in 1979.20 ξsit includes measurement error and relatively

short term factors that have little influence on the lifetime earnings of an individual. The

determination of the permanent wage is given by 1 with Ysi defined to be Wsi. After

substituting for Wsi, the wage equation is

Wsit = XsiB + ZsG+ ZU
s G

U + v∗sii + esit + ξsit.

19A substantial number of persons who appear in the base year of the surveys can be used to construct Z̄1
s

but cannot be used to estimate (1.1) because some variables, such as test scores, are missing, or because the
students are not included in the follow-up surveys that provide the measure of Ysi. As we discuss in the data
section, we impute missing values for most of our explanatory variables prior to estimating B and G, but we
do not use the imputed values when constructing the school averages.

20We include esit as well as ξit because the earnings dynamics literature typically finds evidence of a
highly persistent wage component. Several studies cannot reject the hypothesis that esit is a random walk.
Recent examples include (Baker and Solon 2003), (Haider 2001), and (Meghir and Pistaferri 2004).
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We estimate B by OLS with school fixed effects included.21

Let W̃sit ≡ Wsit −XiB̂. We estimate G by applying OLS to

W̃sit = Z̄sG+ ZU
s G

U + v∗sii + esit + ξsit (31)

The presence of ξsit complicates the variance decompositions, as we discuss below.

1.3 High School Graduation and College Enrollment

The methods outlined in Sections 3.1 need to be adapted for binary measures such as

high school graduation and college attendance. Consequently, for high school graduation

we reinterpret Ysi to be the latent variable that determines the indicator for whether a student

graduates, HSGRADsi. That is,

HSGRADsi = 1(Ysi > 0).

Or, after substituting for Ysi,

HSGRADsi = 1(XsiB + ZsG+ ZU
s G

U + v∗sii > 0) (32)

We replace Zs with Z̄s and estimate the equation

HSGRADsi = 1(XsiB + Z̄sG+ (Zs − Z̄s)G+ ZU
s G

U + v∗sii > 0) (33)

using maximum likelihood probit. The procedure for enrollment in a four-year college is
21In reality, we also include a vector Tit consisting of a dummy indicator for the year 1979 (relative to

1986), years of work experience of i at time t, and experience squared. Let Ψ be the corresponding vector of
wage coefficients. We adjust wages for differences in labor market experience and for whether the data are
from 1979 or 1986 by subtracting TitΨ̂ from the wage prior to performing the variance decompositions. The
estimate of Ψ̂ depends on whether tests, postsecondary education, or both are in Xsi. We report results with
and without these variables. In our main specification, we exclude postsecondary education from Xsi.
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analogous to that of high school graduation.

2 Decomposing the Variance in Educational Attainment and Wages

In this section we discuss an analysis of variance based on equation that can be used

to place a lower bound on the importance of factors that are common to students from the

same school.22 As with parameter estimation, the details of our procedure depend upon the

outcome. We begin with years of postsecondary education.

2.1 Years of Postsecondary Education

One may decompose V ar(Ysi) into its within and between school components

V ar(Ysi) = V ar(Ysi − Ys) + V ar(Ys)

where (Ysi−Ys) is the part of Ysi that varies across students in school s and Ys is the average

outcome for students from s. We estimate V ar(Ysi − Ys) by using the sample variances

of V ar(Ysi − Y s) with an appropriate correction for degrees of freedom lost in using the

sample mean Y s in place of Ys. Then V ar(Ys) can be estimated as

V̂ ar(Ys) = V̂ ar(Ysi)− V̂ ar(Ysi − Ys).

Then, from (2),

(Ysi − Ys) = (Xsi −Xs)B + (v∗i − v∗si)
22(Jencks and Brown 1975) propose and implement a similar decomposition.
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and

Ys = XsB + ZsG+ ZU
s G

U + v∗si .

Thus, one may express the outcome variance as23

V ar(Yi) = [V ar((Xi −Xsi)β) + V ar(v∗sii − v∗si)]+ (34)

[V ar(Xsβ) + 2Cov(Xsβ, Z1sG1) + 2Cov(Xsβ, Z2sG2) + V ar(Z1sG1)+ (35)

2Cov(Z1sG1, Z2sG2) + V ar(Z2sG2) + V ar(ZU
s G

U + v∗si)] (36)

Given an estimate ofB, V ar((Xi−Xs)B) can be estimated using its corresponding sample

variance, V ar((Xsi − Xs)B). V ar(v∗i − v∗s) can then be estimated as V̂ ar(Ysi − Ys) −

V̂ ar((Xsi−Xs)B), and V ar(XsB) can be calculated as V̂ ar(XsiB)−V̂ ar((Xsi−Xs)B).

One can also estimate the components V ar(Z1sG1),V ar(Z2sG2) of the school/community

contribution and the common terms 2Cov(XsB,Z1sG1) and 2Cov(XsB,Z2sG2) using the

estimates ofB,G1,G2 and the data X̄s ≡ Z̄1s and Z2s. V ar(ZU
s G

U +v∗si) can be calculated

as

V̂ ar(ZU
s G

U + v∗si) =

V̂ ar(Ys)− V̂ ar(XsB)− V̂ ar(Z1sG1)− V̂ ar(Z2sG2)

− 2Ĉov(XsB,Z1sG1)− 2Ĉov(XsB,Z2sG2)− 2Ĉov(Z1sG1, Z2sG2)

However, V ar(ZU
s G

U) is not identified separately from the common shock component

V ar(v∗si) and Cov(v∗si , Z
U
s G

U) without further assumptions.

23The equation below imposes Cov(XsiB, v
∗
i ) = 0, which is implied by our definition of B and v∗i . The

equation also assumes Cov(Zs, Z
U
s G

U ) = 0, which is implied by our definition of G and ZU
s G

U We do
not need to separately consider Cov(XsB,Z

U
s G

U ) because the elements of Xs are included in Zs, and so
Cov(XsB,Z

U
s G

U ) is also 0.
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2.2 Permanent Wage Rates

We focus on decomposing the permanent wage component Wsi. We take advantage of

the existence of panel data on wages in NLS72 and work with a balanced sample of individ-

uals who report wages in both 1979 and 1986 (the fourth and fifth follow-ups, respectively).

We estimate the variance in the permanent component of the wage, V ar(Wsi), using the

covariance between wage observations from the same individual in different years

Cov(Wsit,Wsit′) = Cov(Wsi + esit + ξsit,Wsi + esit′ + ξsit′)

= V ar(Wsi),

where Cov(ξsit, ξsit′) is assumed to be 0 given that the observations are seven years apart

and Cov(esit, esit′) = 0 from normalizing esit to be 0 in 1979. We use the sample estimate

of Cov(Wsit,Wsit′) as our estimate of V ar(Wsi). We estimate this covariance by sub-

tracting out the global mean for Wsit, calculating the wage product (Wsit)(Wsit′) for each

individual, and taking a weighted average across all the individuals in the sample using the

weights discussed in Section 2 of the Appendix, adjusting for degrees of freedom. Sim-

ilarly, we estimate the between-school component of the permanent wage, V ar(Ws), by

estimating the covariance between wage observations for different years (1979 and 1986)

from different individuals from the same school. Specifically, we use the moment condition

Cov(Wsit,Wsjt′) = Cov(Wsi + esit + ξsit,Wsj + esjt′ + ξsjt′), i 6= j, t 6= t′

= V ar(Ws),

whereCov(esit, esjt′) is defined to be 0, andCov(ξsit, ξsjt′) is assumed to be 0. We estimate

this covariance by first calculating ((WsitWsjt′) + (Wsit′Wsjt))/2 for each pair of individuals

i and j at school s and then computing the weighted mean for each school s. We then

average across schools, weighting each school by the sum of the weights of the individuals
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who contributed to the school-specific estimate.

We estimate the corresponding within school component using

V̂ ar(Wsi −Ws) = V̂ ar(Wsi)− V̂ ar(Ws).

Given V̂ ar(Wsi), V̂ ar(Wsi − Ws), V̂ ar(Ws), Ĝ1, Ĝ2, and B̂, estimation of the con-

tributions of XsiB, Z1sG1, Z2sG2, v∗i , and ZU
s G

U to V ar(Wsi) proceeds as in previous

subsection.

2.3 High School Graduation and College Enrollment

For both of our binary outcomes, high school graduation and enrollment in a four-year

college, we decompose the latent variable that determines the outcome. Given that there is

no natural scale to the variance of the latent variable, we normalize V ar(v∗i − v∗s) to one,

and define the total variance of the latent variable to be

V ar(Ysi) = V̂ ar(XsB) + V̂ ar(ZsG) + Ĉov(XsB,ZsG) + V̂ ar(ZU
s G

U + v∗si) + 1

Given that the raw variance component estimates are subject to the choice of normal-

ization, we instead report fractions of the variance contributed by the various components.

3 Construction and Use of Weights

In the NLS72 analyses of four-year college enrollment and postsecondary years of ed-
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ucation, we use a set of panel weights (w22) designed to make nationally representative a

sample of respondents who completed the base-year and fourth-follow up (1979) question-

naires. For the NLS72 wage analysis, we chose a set of panel weights (comvrwt) designed

for all 1986 survey respondents for whom information exists on 5 of 6 key characteristics:

high school grades, high school program, educational attainment as of 1986, gender, race,

and socioeconomic status. Since there are very few 1986 respondents who did not also re-

spond in 1979, this weight matches the wage sample fairly well. For the NELS88 sample,

we use a set of weights (f3pnlwt) designed to make nationally representative the sample

of respondents who completed the first four rounds of questionnaires (through 1994, when

our outcomes are measured). For the ELS02 sample, we use a set of weights (f2bywt)

designed to make nationally representative a sample of respondents who completed the

second follow up questionnaire (2006) and for whom information was available on cer-

tain key baseline characteristics (gathered either in the base year questionnaire or the first

follow-up). This seemed most appropriate given that our outcomes are measured in the

2006 questionnaire and we require non-missing observations on key characteristics for in-

clusion in the sample.

We use panel weights in the estimation for a number of reasons. The first is to reduce

the influence of choice-based sampling, which is an issue in NELS88 and in the wage

analysis based on NLS72. The second is to correct for non-random attrition from follow-

up surveys. The third is a pragmatic adjustment to account for the possibility that the link

between the observables and outcomes involves interaction terms or nonlinearities that we

do not include. The weighted estimates may provide a better indication of average effects in

such a setting. Finally, various populations and school types were oversampled in the three

datasets, so that applying weights makes our sample more representative of the universe

of American 8th graders, 10th graders, and 12th graders, respectively. Note, though, that

we do not adjust weights for item non-response associated with the key variables required

for inclusion in our sample. Thus, even after weighting, our estimates do not represent
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estimates of population parameters for the populations of American high school students

of which the surveys were designed to be representative.
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