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Vergata.”

‡Toulouse School of Economics (CNRS, GREMAQ, IDEI).
§Toulouse School of Economics (INRA, LERNA, IDEI).



1 Introduction

Markets where risks are traded face the threat of adverse selection: insurees may be better

informed about their risk characteristics than insurers are, and, because these characteristics

directly matter to the profits of the latter, such informational asymmetries may impede trade,

as emphasized by the well-known theoretical analyses of Akerlof (1970) and Rothschild and

Stiglitz (1976). The possibility of this phenomenon raises the question of public intervention,

and each reform of an insurance market is soon followed by discussions on how to best

tackle the adverse selection problem. To take but one example, the recent reform wave of

health insurance has led to a revival of important policy debates related to adverse selection:

on whether basic coverage should be made compulsory; and on how competition between

insurance providers should be organized, especially when it comes to policies that propose

optional, additional coverage.

In this paper, we argue that answering such questions requires to take into account the

possibility that a given insuree buys several insurance policies from several distinct insurers.

Indeed, multiple contracting turns out to be a widespread phenomenon. In health-insurance

markets, it is quite common for consumers in Europe and in the US to complement a basic

coverage with an additional insurance policy. For example, 92% of the French population

have both a mandatory coverage and a private coverage,1 while in the US, 10 million out of

the 42 million individuals covered by Medicare opt for buying an additional, private coverage

(Medigap).2 The US life-insurance market also typically allows for multiple contracting,3 and

so does the UK annuity market.4

In spite of the empirical relevance of multiple contracting, the theoretical literature has

so far mostly relied on models à la Rothschild and Stiglitz (1976) and Wilson (1977), which

postulate exclusive relationships between insurers and insurees, so that multiple contracting

is a priori excluded. The literature on nonexclusive competition in insurance markets is

not very conclusive either: as shown by Attar, Mariotti, and Salanié (2014a), existence of

pure-strategy equilibria requires demanding assumptions, such equilibria when they exist do

not feature the empirically prevalent distinction between basic and additional coverage, and,

moreover, equilibrium allocations can often be sustained by exclusive relationships on the

equilibrium path.

1See Thompson, Osborne, Squires, and Jun (2013).
2See http://www.protectmedigap.org.
3As stated in Cawley and Philipson (1999), “multiple contracting is highly prevalent” and represents

roughly one quarter of agents with at least one insurance policy.
4See Finkelstein and Poterba (2004), in particular Footnote 2: “[...] we view the exclusivity condition as

unlikely to be satisfied in annuity markets,” and the end of Section IV.A.
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This paper proposes a model of an insurance market in which multiple contracting is

allowed for, and in which it indeed emerges as an equilibrium phenomenon. As in the

Rothschild–Stiglitz–Wilson setting, first contracts are offered by insurers, and then each

type of consumer chooses which contract(s) to accept—the key difference in our model being

that the insuree may accept several contracts from several distinct insurers. As in the original

Rothschild and Stiglitz (1976) model, each insurer is restricted to offer a single contract. We

consider the two-type case, and we show that pure-strategy equilibria exists under reasonably

general assumptions; moreover, the equilibrium aggregate allocation is unique. This model

may thus be helpful for evaluating market reforms. It also yields several insights that we

now detail.

In models that postulate exclusivity, competition bears on the pricing of the aggregate

coverage bought by each insuree. Allowing for nonexclusivity changes the focus: from the

insuree’s viewpoint, each additional contract represents an additional layer of coverage, and

the study naturally focuses on the pricing of such additional layers. The unique equilibrium

aggregate outcome has a nice and natural structure: both low- and high-risk types buy the

same basic coverage, and additionally the high-risk type buys a complementary coverage.

Competition ensures that each contract makes zero expected profit: being sold to both low-

and high-risk types, basic coverage is priced at the average cost, whereas complementary

coverage is priced at marginal cost, reflecting that it is only sold to the high-risk type. In

short, our equilibrium allocation offers a natural generalization of Akerlof (1970) pricing to

divisible coverage, as each additional layer is priced at the expected cost associated to the

set of insurees who buy this layer. A novel contribution of our analysis is to show how this

allocation, originally studied by Jaynes (1978), Hellwig (1988), and Glosten (1994), naturally

emerges in a game in which insurers compete in simple contract offers.5

It is worth noting that multiple contracting must take place in equilibrium for the high-

risk type: no insurer would be ready to sell her aggregate coverage at the equilibrium price,

as this would make losses. Thus the high-risk type type must buy basic coverage from one

insurer, and complementary coverage from another insurer. As a result, the contracts bought

by this type are qualitatively different: multiple contracting emerges because competition

deals with layers of coverage that are sold independently.6

5Unlike Jaynes (1978, 2011) and Hellwig (1988), our construction does not rely on explicit communication
between firms, in the spirit of decentralized markets. Unlike Glosten (1994), we show how this allocation can
be sustained in an equilibrium of a competitive game with a finite number of strategic insurers. Properties
of the Jaynes–Hellwig–Glosten allocation are also studied in Attar, Mariotti, and Salanié (2014a, 2014b).

6Notice also that in our setting multiple contracting is not related to the insuree splitting her aggregate
demand between identical insurers. (See Biais, Martimort, and Rochet (2000, 2013) and Back and Baruch
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In equilibrium, the low-risk type subsidizes the high-risk type: this is in contrast to

the Rothschild and Stiglitz (1976) allocation, in which profits extracted from each type are

exactly zero, but is reminiscent of the Wilson (1977), Miyazaki (1977), and Spence (1978)

allocations. The fact that cross-subsidies survive cream-skimming deviations relies on two

features. Recall first that the associated tariff for aggregate coverage has been proven by

Glosten (1994) to be the only tariff that makes entry unprofitable. We reinforce this result by

showing that no incumbent insurer can deviate by offering a single contract. Such deviations

are made unprofitable by the existence of a latent contract (Arnott and Stiglitz (1993)),

which is inactive on the equilibrium path but efficiently deters cream-skimming deviations.

Second, each insurer is only allowed to offer a single contract. Otherwise, and as shown

by Attar, Mariotti, and Salanié (2014a), an incumbent insurer could profitably deviate by

offering two different contracts designed so as to dump high risks on other insurers.7 We thus

acknowledge that our equilibrium allocation may be vulnerable to strategic behavior on the

insurers’ part; as we argue in Section 5 below, this calls for some regulation of this side of the

market. By contrast, there is no need to constraint insurees’ choices, for instance by requiring

basic coverage to be mandatory. This contrasts with standard policy recommendations from

exclusive-competition models of insurance markets under adverse selection.

An important feature of our setting is that, compared to models that postulate exclusivity,

it allows to draw a distinction between the set of contracts offered by the insurers and the

set of equilibrium aggregate coverage levels chosen by an insuree by combining some of these

contracts. Under a standard single-crossing condition, the latter has a familiar structure:

a riskier type buys a higher aggregate coverage, at a unit price which is increasing with

coverage. Yet, the former set has a very different structure; indeed, we show that, under the

very same assumptions that ensure the existence of an equilibrium, the supply of coverage

involves a unit price that is decreasing with coverage. That is, the contracts offered by

insurers exhibit quantity discounts. The empirical predictions of our model are thus richer

than in the exclusive case, and may be more in line with empirical findings; we comment on

these points at more length in Section 6. In particular, both the predictions of a unit price

that increases with coverage, and of a positive correlation between riskiness and coverage,8

may be reversed when multiple contracting takes place, depending on whether data originate

(2013) for common-value environments in which multiple contracting arises for precisely this reason.)
7More precisely, the first contract would be profitable by attracting only the low-risk type on a basic

coverage. The second contract would offer additional coverage at a small loss, so as to attract only the
high-risk type, the key point being that this type would find it profitable to buy the basic coverage from
other insurers.

8See Chiappori and Salanié (2000), and Chiappori, Jullien, Salanié, and Salanié (2006) for general results.
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from the demand side or the supply side of the market.

The paper is organized as follows. Section 2 describes the model. Section 3 characterizes

equilibrium aggregate trades. Section 4 shows how to construct equilibria sustaining such

trades for a special class of preferences. Section 5 shows that the equilibria constructed

in Section 4 are robust in the sense that similar equilibria exist for any preferences in a

neighboring class. Section 6 draws the main theoretical, empirical, and normative lessons

from our analysis.

2 The Model

We consider a buyer who can simultaneously trade a divisible good of uncertain quality

with several identical sellers. A typical example is an insurance market in which a privately

informed risk-averse agent can buy coverage from several insurance companies. The key

difference with the nonexclusive-competition models studied in Biais, Martimort, and Rochet

(2000, 2013) and Attar, Mariotti, and Salanié (2011, 2014a) is that sellers are restricted to

make take-it-or-leave-it offers to the buyer. In the case of an insurance market, this means

that each insurance company can issue only a single contract, that is, a single vector of

state-contingent payments, as in Rothschild and Stiglitz’s (1976) analysis.

2.1 The Buyer

The buyer is privately informed of her preferences. She may be of two types, i = 1, 2,

with positive probabilities m1 and m2 such that m1 + m2 = 1. Type i has preferences

over aggregate quantity-transfer bundles (Q, T ) in some consumption set X ⊂ R+ × R, the

precise specification of which depends on the interpretation of the model. We require that

X contain the no-trade point (0, 0), that it be convex with a nonempty interior, and that

it be comprehensive in the sense that (Q, T ′) ∈ X if (Q, T ) ∈ X and T ′ < T . Type i’s

preferences over X are taken to be representable by a function Ui defined over an open,

convex, and comprehensive neighborhood V of X.9 We assume that Ui is twice continuously

differentiable, with ∂Ui/∂T < 0, and that Ui is strictly quasiconcave.10 Hence type i’s

marginal rate of substitution of the good for money

τi ≡ − ∂Ui/∂Q

∂Ui/∂T
(1)

9This last assumption is a standard technical trick that allows us to define marginal rates of substitution
over the boundary of X (see, for instance, Mas-Colell (1985, Definition 2.3.17)).

10We do not assume that Ui is monotone in quantities, as, indeed, need not be the case for the quadratic
specification of Section 2.4.2.
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is well defined over V and strictly decreasing along her indifference curves. The following

single-crossing property is key to our results.

Assumption SC For each (Q, T ) ∈ V, τ2(Q, T ) > τ1(Q, T ).

Geometrically, an indifference curve for type 2 crosses an indifference curve for type 1

only once, from below. Consequently, type 2 is more eager to increase her purchases than

type 1 is.

2.2 The Sellers

There are n identical sellers, with n large but finite. If a seller provides type i with a quantity

q and obtains a transfer t in return, he earns a profit t− viq, where vi is the cost of serving

type i. The following common-value assumption will be maintained throughout the analysis.

Assumption CV v2 > v1.

Combined with Assumption SC, Assumption CV implies that, whereas type 2 is more

willing to trade at the margin than type 1 is, she faces sellers who are more reluctant to trade

with her than with type 1. These assumptions are satisfied in the main examples presented

below. We let v ≡ m1v1 +m2v2 be the average cost of serving the buyer, so that v2 > v > v1.

2.3 The Trading Game

As in Biais, Martimort, and Rochet (2000, 2013) and Attar, Mariotti, and Salanié (2011,

2014a), no seller can control, and, a fortiori, contract on the trades that the buyer makes

with his competitors. The novel feature of our analysis is that sellers compete to serve the

buyer by proposing bilateral contracts, that is, quantity-transfer bundles, rather than menus

of such contracts. Therefore, the timing of our trading game is as follows:

1. Each seller k proposes a contract (qk, tk) ∈ R+ × R.11

2. After privately learning her type, the buyer selects which contracts to trade with the

sellers, if any.

Given a vector of contract offers ((q1, t1), . . . , (qn, tn)), type i’s problem is then

max

{
Ui

(∑

k∈K

qk,
∑

k∈K

tk

)
: K ⊂ {1, . . . , n} and

(∑

k∈K

qk,
∑

k∈K

tk

)
∈ X

}
, (2)

11The null contract is (0, 0). A contract (qk, tk) with qk > 0 has unit price tk/qk.
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with
∑

∅ = 0 by convention. Note that, because, by assumption, (0, 0) ∈ X, the feasible

set in type i’s problem is always nonempty. We use perfect Bayesian equilibrium as our

equilibrium concept. Throughout the paper, we focus on pure-strategy equilibria.

2.4 The Main Examples

We now present a family of specifications of the above model that plays a key role in our

analysis. The buyer’s preferences in these specifications satisfy two further restrictions.

First, each type i has quasilinear preferences,

Ui(Q, T ) = ui(Q)− T, (3)

where the utility function ui is twice continuously differentiable, with ∂2ui < 0. The marginal

rate of substitution τi(Q, T ) = ∂ui(Q) of type i is then independent of T , so that all her

indifference curves are vertical translates of each other. Assumption SC amounts to ∂u2(Q) >

∂u1(Q) for all Q.

Second, and less standardly, there is a positive constant Q0 such that

∂u2(Q) = ∂u1(Q−Q0) (4)

for all Q ≥ Q0. Hence, in terms of the buyer’s preferences, everything happens as if type 1

were identical to type 2, except that she had already traded a quantity Q0. (Note, however,

that, unlike in a private-value environment, this is not the only difference between types 1

and 2, because, by Assumption CV, the costs of serving them are not the same.)

Geometrically, properties (3)–(4) imply that any pair of indifference curves for types 1

and 2 are, over the relevant domain, oblique or horizontal translates of each other. The

translating vector connects the points of these indifference curves where type 1 and type 2

have equal marginal rates of substitution, as illustrated in Figure 1. This vector defines a

contract stipulating a positive quantity and a transfer.

We shall illustrate these properties by means of two examples.

2.4.1 The CARA Example

Our first example is an insurance model in line with Rothschild and Stiglitz (1976). A risk-

averse agent can purchase coverage from several insurance companies. She faces a binomial

risk on her wealth, which can take two values (WB,WG), with probabilities (vi, 1 − vi)

that define her type. Here WG − WB is the positive monetary loss that the agent incurs

in the bad state and v is the average probability of a loss. The agent’s preferences have
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an expected-utility representation with constant absolute risk aversion α.12 An insurance

contract specifies a reimbursement q to be paid in the bad state, along with a premium t,

implying an expected profit t− viq for the insurance company that trades it with the agent.

In the aggregate, the agent purchases at a price T ≡ ∑
k tk a reimbursement Q ≡ ∑

k qk in

the bad state. Type i’s preferences over aggregate quantity-transfer bundles (Q, T ) ∈ X ≡
R+ × R are then represented by (3), with

ui(Q) ≡ − 1

α
ln(vi exp(−α(WB + Q)) + (1− vi) exp(−αWG)). (5)

For each type i, the marginal rate of substitution (1) of reimbursements for premia is

∂ui(Q) =
1

1 + [(1− vi)/vi] exp(−α(WG −WB −Q))
. (6)

By Assumption CV, type 2 has a higher probability of incurring a loss than type 1. This,

in turn, implies that Assumption SC holds: type 2 is more eager to buy larger amounts of

insurance than type 1. According to (6), condition (4) holds for

Q0 ≡ 1

α
ln

(
(1− v1)/v1

(1− v2)/v2

)
> 0.

The first-best level of trade is the same for type 1 as for type 2 and entails full insurance,

Q∗
1 = Q∗

2 = WG −WB.

2.4.2 The Quadratic Example

Our second example is a pure-trade model in line with Biais, Martimort, and Rochet (2000,

2013) and Back and Baruch (2013). In these market-microstructure models, a risk-averse

insider with constant absolute risk aversion α trades shares of an asset with several market

makers partly for informational and partly for hedging purposes, while facing Gaussian noise

with variance σ2. Here vi is the expected value of the asset conditional on the insider’s type

i. Type i’s preferences over aggregate quantity-transfer bundles (Q, T ) ∈ X ≡ R+ × R are

then represented by (3), with

ui(Q) ≡ θiQ− ασ2

2
Q2. (7)

For each type i, the marginal rate of substitution (1) of shares for money is

∂ui(Q) = θi − ασ2Q, (8)

12That is, we abstract from income effects associated to price changes. A similar assumption underlies the
estimation of the welfare cost of adverse selection proposed by Einav, Finkelstein, and Cullen (2010).
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so that Assumption SC requires that θ2 > θ1. According to (8), condition (4) holds for

Q0 ≡ θ2 − θ1

ασ2
> 0.

When dealing with this example, we assume that θ2 − v2 > θ1 − v1 > 0. That is, there are

always gains from trade between the insider and the market makers, and these gains are

higher for type 2 than for type 1. As a result, the first-best level of trade is higher for type 2

than for type 1, Q∗
2 = (θ2 − v2)/(ασ2) > (θ1 − v1)/(ασ2) = Q∗

1. Given Assumption SC, this

is a standard responsiveness condition (Caillaud, Guesnerie, Rey, and Tirole (1988)) that

ensures that first-best quantities are implementable.

3 Equilibrium Characterization

In this section, we show that any equilibrium aggregate outcome of our trading game is of

the form predicted by Jaynes (1978), Hellwig (1988), and Glosten (1994). We give conditions

under which equilibria feature multiple contracting, in that both types first trade the same

basic amount, which type 2 complements by conducting additional trades. All contracts are

priced fairly given the types who trade them. As a result, equilibria involve zero expected

profit for the sellers and cross-subsidies between types. We also provide a necessary condition

for the existence of an equilibrium.

3.1 Jaynes–Hellwig–Glosten Pricing

Let us fix an equilibrium, and let (Q1, T1) and (Q2, T2) be the equilibrium aggregate trades

of types 1 and 2. According to Assumption SC together with the fact that marginal rates

of substitutions are well defined for each type, we know that Q2 ≥ Q1. Our first result

describes the price structure of equilibrium.

Theorem 1 Suppose that there are at least three sellers. Then, in any equilibrium,

T1 = vQ1, (9)

T2 − T1 = v2(Q2 −Q1). (10)

Moreover, any traded contract is issued at unit price v or v2 and makes zero expected profit.

Hence, in the aggregate, type 2 first trades a quantity Q1 at unit price v, just as type 1

does, and then, on top of this, a quantity Q2 −Q1 at unit price v2. This implies that sellers

earn zero expected profit. Theorem 1 also gives us information about the price of traded
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contracts. As in Jaynes (1988), Hellwig (1988), and Glosten (1994), any marginal quantity

is bought at a unit price equal to the expected cost of providing it, given the types who

trade it: basic contracts that are traded by both types have unit price v, and thus involve

cross-subsidies between types, whereas complementary contracts that are only traded by

type 2 have unit price v2. In the case of insurance, this corresponds to a situation in which

the agent can purchase basic coverage at a relatively low premium rate v, which she can

complement by further coverage at a relatively high premium rate v2. Premium rates reflect

in a fair way the composition of the pool of types trading each policy.

The characterization of equilibrium aggregate trades in Theorem 1 differs from earlier

results in the literature in several ways. Unlike in Jaynes (1978, 2011) and Hellwig (1988),

it does not rely on the possibility of inter-seller communication or on a specific timing of

the sellers’ offers. Unlike in Glosten (1994), it does not result from the derivation of an

entry-proof tariff, but rather from the analysis of the sellers’ deviations. In that respect, a

novel insight of Theorem 1 is that one only needs to consider single-contract deviations to

obtain Jaynes–Hellwig–Glosten pricing in equilibrium.

3.2 Gains from Trade

Hereafter, and to focus on the most interesting case, we restrict parameter values to be such

that type 1 would be ready to buy a positive quantity at unit price v.

Assumption 1-v τ1(0, 0) > v.

That is, WG −WB > ln([(1 − v1)/v1]/[(1 − v)/v])/α in the CARA example and θ1 > v

in the quadratic example. If Assumption 1-v did not hold, then, according to Theorem 1,

we would have Q1 = 0, so that type 1 would be excluded from trade in any equilibrium.13

Under Assumption 1-v, it follows as a corollary to Theorem 1 that type 1 trades the optimal

quantity at unit price v, which pins down the value of Q1:

τ1(Q1, vQ1) = v. (11)

That is, Q1 = WG −WB − ln([(1− v1)/v1]/[(1− v)/v])/α < WG −WB = Q∗
1 in the CARA

example and Q1 = (θ1 − v)/(ασ2) < (θ1 − v1)/(ασ2) = Q∗
1 in the quadratic example: type 1

purchases a positive but suboptimal quantity at a unit price v strictly higher than the cost

v1 of serving her.

13It should be noted that this somewhat degenerate outcome is the only one consistent with equilibrium
when sellers can compete through menus of contracts (Attar, Mariotti, and Salanié (2014a)).
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We also restrict parameter values to be such that type 2, having already bought a quantity

Q1 at unit price v, would be ready to buy an additional positive quantity at unit price v2.

Assumption 2-v2 τ2(Q1, vQ1) > v2.

This assumption is always satisfied in the CARA example because type 2 wants to obtain

full coverage at the fair premium rate v2, whereas, as seen above, type 1 gets less than

full coverage at the premium rate v. In the quadratic example, this assumption amounts

to θ2 − v2 > θ1 − v, which is automatically satisfied under the responsiveness condition

θ2− v2 > θ1− v1. If Assumption 2-v2 did not hold, then, according to Theorem 1, we would

have Q1 = Q2, so that a pooling outcome would emerge. Under Assumption 2-v2, it follows

as a corollary to Theorem 1 that type 2 trades, on top of (Q1, T1), the optimal quantity

complement at unit price v2, which pins down the value of Q2:

τ2(Q2, vQ1 + v2(Q2 −Q1)) = v2. (12)

That is, Q2 = WG−WB = Q∗
2 in the CARA example and Q2 = (θ2− v2)/(ασ2) = Q∗

2 in the

quadratic example: type 2 purchases her first-best quantity at a unit price v2−(v2−v)Q1/Q2

strictly lower than the cost of serving her. This property also holds in any model in which

type 2 has quasilinear preferences or in any insurance model in which her preferences have an

expected-utility representation, or more generally, exhibit second-order risk aversion (Segal

and Spivak (1990)).

It should be noted that Assumptions 1-v and 2-v2 were implicit in the insurance models

of Jaynes (1978) and Hellwig (1988). The following corollary summarizes the aggregate

features of candidate equilibria.

Corollary 1 Under Assumptions 1-v and 2-v2, any equilibrium satisfies (9)–(12).

The corresponding Jaynes–Hellwig–Glosten outcome is illustrated in Figure 2.

3.3 Indispensability and Incentive Compatibility

A key feature of equilibrium is that, as in standard Bertrand competition, no seller can be

indispensable in providing either type 1 or type 2 with their equilibrium trades; otherwise,

he could earn a strictly positive expected profit by slightly increasing his price. This means,

in particular, that the buyer has the opportunity to trade more than the quantity Q1 at the

relatively low price v. Whereas, according to (11), this opportunity is of no value for type 1,

it could attract type 2, thereby destabilizing the equilibrium. Hence, a necessary condition
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for the existence of equilibrium is that these additional trades would be of such a magnitude

that type 2 would not be willing to make them, given her convex preferences. An additional

condition is that these trades cannot be profitably exploited by a deviating seller. These two

conditions can be formulated as follows.

Corollary 2 Under Assumptions 1-v and 2-v2, any equilibrium satisfies

U2(Q2, T2) ≥ U2(2Q1, 2T1), (13)

2Q1 > Q2. (14)

Conditions (13)–(14) are most easily understood when only two sellers issue contracts at

unit price v. Then, by the dispensability property, each of them must offer a contract equal

to type 1’s entire equilibrium aggregate trade (Q1, T1). Thus the incentive-compatibility

condition (13) must hold, expressing that type 2 is not willing to trade (Q1, T1) twice on

the equilibrium path. Now, if condition (14) were not satisfied, then some other seller could

attract type 2 by proposing her to trade the quantity Q2−2Q1 at a unit price slightly above

v2. Indeed, combined with (2Q1, 2T1), such a contract would allow type 2 to buy the same

quantity Q2 as in equilibrium, in exchange for a transfer decreased by almost (v2 − v)Q1.

Such a deviation would clearly be profitable, thereby upsetting the equilibrium.14 This logic

easily extends when more than two sellers issue contracts at unit price v. The economic

implications of condition (14) are discussed at greater length in Section 6.2.

Geometrically, conditions (13)–(14) state that the aggregate trade (2Q1, 2T1) is located

in the lower contour set of (Q2, T2) for type 2, to the right of (Q2, T2). As T1 = vQ1 according

to Theorem 1, this implies that

v > τ2(2Q1, 2T1). (15)

Conditions (13)–(14) are satisfied whenever the complement Q1 − Q2 that type 2 wants to

trade at unit price v2 is sufficiently small relative to the basic quantity Q1 that both types

want to trade at unit price v. In the case of insurance, this holds whenever type 1 wants to

purchase some insurance at the premium rate v (Assumption 1-v) and type 1 and type 2’s

risk characteristics are not too far apart.

4 Equilibrium Existence: The Main Examples

In Section 3, we characterized the basic structure of aggregate and individual trades in

14This argument presumes that 2Q1 6= Q2, which is necessarily the case, for, otherwise, type 2 would
trade (2Q1, 2T1) instead of (Q2, T2) on the equilibrium path, because one would then have 2T1 = 2vQ1 <
vQ1 + v2(Q2 −Q1) = T2.
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any candidate equilibrium. Henceforth, we investigate whether and how these trades can

effectively be sustained in equilibrium through appropriate contract offers. We start in this

section with the class of examples presented in Section 2.4. Our construction relies on two

kinds of contracts: first, contracts that can be traded in equilibrium, and, second, contracts

that are not meant to be traded in equilibrium and the sole role of which is to deter deviations

by the sellers. We describe these in turn.

4.1 Basic and Complementary Contracts

Let us first describe the contracts we use to reach the Jaynes–Hellwig–Glosten outcome that

must prevail in equilibrium. Our construction involves two such contracts, a basic contract

c ≡ (Q1, T1), and a complementary contract c′ ≡ (Q2−Q1, T2− T1). According to Theorem

1, c has unit price v, whereas c′ has higher unit price v2. Type 1 reaches her equilibrium

aggregate trade (Q1, T1) by trading a single contract c, while type 2 reaches her equilibrium

aggregate trade (Q2, T2) by trading a contract c along with a contract c′. Thus types 1 and

2 do not trade the same contracts and type 2 trades two different contracts. As no seller

can be indispensable in providing either of these contracts, we begin our construction of an

equilibrium by imposing that two sellers offer the contract c and that two sellers offer the

contract c′.

Lemma 1 Suppose that Assumptions 1-v and 2-v2 and conditions (13)–(14) are satisfied.

Then, if two sellers offer the contract c and two sellers offer the contract c′, it is a best

response for both types to trade a contract c with the same seller, and for type 2 to additionally

trade a contract c′ with some other seller.

Although the contracts c and c′ lead to the desired aggregate trades, they are in general

not sufficient to sustain an equilibrium. To clarify this point, consider the configuration

illustrated in Figure 3. We have assumed that the only available contracts are c and c′, with

two sellers offering each of them, and that the trade 2c is strictly less preferred by type 2

than c + c′. Now, consider the contract c̃ close to c as shown. Contract c̃ allows the buyer

to purchase a quantity less than Q1 at a price lower than v. This contract certainly attracts

type 1, and it yields a strictly positive profit to a deviating seller proposing it if it does not

attract type 2 along the way. To see that this is indeed the case, observe that combining c̃

with c, c′, or any combination of these contracts, leaves type 2 with a strictly lower utility

than trading a contract c along with a contract c′, which remains feasible following any

seller’s unilateral deviation. This is because c̃ + c is close to 2c and thus is strictly less
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preferred by type 2 than c + c′, just as 2c, and because c̃ + c′ is below the line of slope v2

passing through c and thus is strictly less preferred by type 2 than c + c′. Thus, for any

seller, offering contract c̃ is a successful cream-skimming deviation: it cannot be blocked by

the contracts c and c′ and it is profitable.

4.2 Deterring Cream-Skimming Deviations

To construct an equilibrium, we must supplement the contracts c and c′ by further contracts

preventing sellers from offering profitable deviations such as c̃. This role will be played by a

single contract, denoted c′′, defined as the contract which, combined with c, allows type 2 to

reach a point on her equilibrium indifference curve I2 where her marginal rate of substitution

is equal to v; that is, U2(c + c′′) = U2(c + c′) and τ2(c + c′′) = v. This contract exists and

is unique if conditions (13)–(14) are satisfied. One can verify that c′′ stipulates a quantity

strictly larger than Q2 −Q1, at a unit price strictly between v and v2.
15

As c′′ is not meant to be traded in equilibrium, we first check that its introduction does

not cause the buyer to modify her trades on the equilibrium path.

Lemma 2 Suppose that Assumptions 1-v and 2-v2 and conditions (13)–(14) are satisfied.

Then, if two sellers offer the contract c and two sellers offer the contract c′, and if the other

sellers offer either the contract c′′ or the null contract, it remains a best response for both

types to trade a contract c with the same seller, and for type 2 to additionally trade a contract

c′ with some other seller.

The intuition for this result is simple. As for type 1, she cannot improve her utility by

trading contracts other than c, as these contracts are issued at a price higher than v and

she can buy her optimal quantity at unit price v by trading a contract c. Turning to type

2, observe first that she is indifferent between trading a contract c along with a contract c′

and trading a contract c along with a contract c′′ . Moreover, because her marginal rate of

substitution at c + c′′ is v, the optimal way for type 2 to trade c′′ along with some of the

offered contracts consists in combining it with a contract c. Thus type 2 is not made strictly

better off when contract c′′ is introduced on top of contracts c and c′.

We next investigate the sellers’ deviations. We first show that no profitable deviation can

attract type 2; that is, only cream-skimming deviations may create a problem for equilibrium

15The quantity stipulated by c′′ must be larger than Q2−Q1 because any point on I2 to the left of (Q2, T2)
is such that the marginal rates of substitution for type 2 is higher than τ2(Q2, T2) = v2 and thus, a fortiori,
higher than v. For the same reason, the unit price of c′′ must be strictly lower than v2. Finally, the unit
price of c′′ must be strictly higher than v; otherwise, I2 would lie entirely above the line with slope v going
through (Q1, T1) and thus could not go through (Q2, T2).
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existence.

Lemma 3 Suppose that Assumptions 1-v and 2-v2 and conditions (13)–(14) are satisfied.

Then, if two sellers offer the contract c and two sellers offer the contract c′, and if the other

sellers offer either the contract c′′ or the null contract, there is no profitable deviation by a

seller that at least attracts type 2.

To understand this result, observe first that no profitable deviation can attract both

types, as such a contract would need to have a unit price higher than v and type 1 can buy

her optimal quantity at unit price v by trading a contract c. Furthermore, no profitable

deviation can only attract type 2, as such a contract would need to have a unit price higher

than v2 and type 2 can trade, on top of c, the optimal complement c′ at unit price v2.

Moreover, as noted above, type 2 would be strictly worse off combining such a contract with

a contract c′′.

Observe that Lemmas 1–3 hold independently of whether the buyer’s preferences satisfy

conditions (3)–(4). For instance, they would go through in a standard insurance setting à la

Rothschild and Stiglitz (1976) with nonconstant absolute risk aversion.

It follows from Lemma 3 that the only remaining possibility for a profitable deviation is a

cream-skimming deviation that only attracts type 1, as in the example illustrated in Figure

3. The following result shows that, when sufficiently many sellers offer the contract c′′, such

deviations are ruled out for preferences in the class discussed in Section 2.4.

Lemma 4 Suppose that the buyer’s preferences satisfy (3)–(4) and that Assumptions 1-v

and 2-v2 and conditions (13)–(14) are satisfied. Then, if two sellers offer the contract c and

two sellers offer the contract c′, and if sufficiently many sellers offer the contract c′′, there

is no profitable deviation by a seller that only attracts type 1.

To understand how the contract c′′ succeeds in deterring cream-skimming deviations,

recall that, for preferences that satisfy (3)–(4), the buyer’s indifference curves, whatever her

type, are, over the relevant range, all translates of each other. This is in particular true of the

equilibrium indifference curves I1 and I2 of types 1 and 2; moreover, as τ2(c+c′′) = v = τ1(c),

the vector that translates I1 into I2 corresponds to the contract c′′. Now, consider a potential

cream-skimming deviation such as c̃ in Figure 4. This contracts certainly attracts type 1,

like in Figure 3. However, because of the translation property, type 2 would also increase

her utility by trading c̃ along with c′′. Thus c̃ attracts both types. Because c̃ must have a

unit price at most equal to v to attract type 1, this deviation cannot be profitable. More
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generally, any attempt by a seller at attracting and making profits with type 1 while leaving

the other sellers to trade with type 2 is doomed to fail because, if type 1 can increase her

utility by trading with the deviator, so can type 2 by mimicking type 1 and trading an

additional contract c′′. This is why Lemma 4 requires that there be enough sellers offering

the contract c′′; in any case, at least two of them. Indeed, c′′ must remain available for type

2 to trade following a deviation, taking into account that some contracts c′′ might be traded

by type 1 in those circumstances.

The central result of this section is a direct implication of Lemmas 1–4.

Theorem 2 Suppose that the buyer’s preferences satisfy (3)–(4), that Assumptions 1-v and

2-v2 and conditions (13)–(14) are satisfied, and that there are sufficiently many sellers. Then

an equilibrium exists.

We know from Theorem 1 and Corollary 1 that, under Assumptions 1-v and 2-v2, the

Jaynes–Hellwig–Glosten outcome is the only candidate equilibrium outcome. Moreover,

according to Corollary 2, conditions (13)–(14) are necessary for an equilibrium to exist.

What Theorem 2 shows is that these conditions are actually sufficient provided there are

sufficiently many sellers and the buyer’s preferences satisfy conditions (3)–(4).

5 Robustness

In this section, we investigate to which extent Theorem 2 can be extended to a more general

class of preferences for the buyer than those satisfying conditions (3)–(4). We shall restrict

attention to equilibria that only rely on the contracts c, c′, and c′′ introduced above. Because

Lemmas 1–3 do not require conditions (3)–(4) to hold, the analysis can focus on Lemma 4,

that is, on the possibility of deterring cream-skimming deviations through the single contract

c′′. It is easy to convince oneself that a sufficient condition for c′′ to deter any profitable

deviation that would attract type 1 is that the translate of the upper contour set of c for

type 1 along the vector c′′ lies in the upper contour set of c + c′ for type 2. Preference

specifications that satisfy conditions (3)–(4) correspond to the knife-edge case where these

two sets coincide. We first provide, in the quasilinear case, an economically meaningful

condition on the demand function of the two types of buyer such that this property is

upheld. In a second step, we relax the quasilinearity assumption and show that there is,

in an appropriate sense, an open set of preferences for the buyer such that an equilibrium

involving the same strategies as in our main examples exists.
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5.1 Quasilinear Preferences

The desired translation property for upper contour sets is a special case of the property

that, if type 1 is ready to trade a bundle (q, t), given that she can already buy any quantity

at unit price p, then type 2 facing the same options would also choose to trade the bundle

(q, t).16 Theorem 3 below provides, in the quasilinear case, a condition on both types’ demand

functions that ensures that this is so, and thus that an equilibrium can be constructed along

the lines of Theorem 2.

Formally, let type i’s preferences over X ≡ R+×R be represented by (3). Then, for each

p in the relevant range, the demand of type i at price p is given by

Di(p) ≡ (∂ui)
−1(p).

Because ∂2ui < 0, the demand functions Di are strictly decreasing, that is, ∂Di < 0 as long

as Di > 0. Moreover, because, by Assumption SC, ∂u2 > ∂u1, they are strictly ordered,

that is, D2 > D1 as long as D2 > 0. The following result shows that a strengthening of this

property is sufficient to ensure the existence of an equilibrium.

Theorem 3 Suppose that the buyer’s preferences satisfy (3), that Assumptions 1-v and 2-v2

and conditions (13)–(14) are satisfied, and that there are sufficiently many sellers. Then, if,

for any price p in the relevant range,

|∂D2(p)| > |∂D1(p)|, (16)

an equilibrium can be constructed along the lines of Theorem 2.

Observe that (16) represents a strengthening of the single-crossing property: not only is

type 2 always more willing to buy than type 1 at any price p, but the demand of type 2 is

always more sensitive to price increases than that of type 1. The primary use of Theorem 3

is to show that perturbations of our leading examples admit similar equilibria. For instance,

in the insurance example of Section 2.4.1, we maintain that the agent has constant absolute

risk aversion and, thus, quasilinear preferences, but we perturb her preferences by making

the low-risk agent more risk averse than the high-risk agent.

Example 1 Type i has preferences represented by (3), with

ui(Q) = − 1

αi

ln(vi exp(−αi(WB + Q)) + (1− vi) exp(−αiWG)),

where v2 > v1, α1 > α2, and [(1− v1)/v1]/[(1− v2)/v2] > exp((α1 − α2)(WG −WB)).

16Observe that the quantity q could be negative, so that the bundle (q, t) need not be a contract.
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In the pure-trade example of Section 2.4.1, we perturb the seller’s quadratic cost function.

Example 2 Type i has preferences represented by (3), with

ui(Q) ≡ θiQ− C(Q),

where θ2 > θ1, ∂2C > 0, ∂3C < 0, and limQ→∞ ∂C(Q) = ∞.

A noticeable feature of the functions (u1, u2) satisfying condition (16) is that they form

a contractible subspace of the pairs of twice continuously differentiable and strictly concave

utility functions over R+; that is, it can be continuously shrunk into a point. This property

notably implies that this subspace is simply connected: it has no “holes.” This means that,

between two examples such as Examples 1–2, one can construct one, and essentially only

one, path of similar examples connecting them.

5.2 General Preferences

Examples 1–2 show that the existence of an equilibrium of the kind constructed in Section 4 is

not confined to preference specifications for the buyer that satisfy (3)–(4). We now establish

that these examples are robust, in the sense that the desired translation property for upper

contour sets is satisfied for any choice of preferences that are “close enough” to those in these

examples. That is, we show that Theorem 2 holds for an open set of preferences, including

preferences that are not quasilinear.

5.2.1 A Geometrical Condition

We first provide a geometrical interpretation of condition (16). Recall from Debreu (1972) or

Mas-Colell (1985, Proposition 2.5.1) that the (Gaussian) curvature κi of type i’s indifference

curve at an arbitrary point of V is

κi ≡ 1

‖∂Ui‖3

∣∣∣∣
−∂2Ui ∂Ui

−∂U ′
i 0

∣∣∣∣. (17)

For quasilinear preferences represented by (3), simple algebra using τi(Di(p), pDi(p)) = p

and Di(p) = (∂ui)
−1(p) yields that, at type i’s optimal demand at price p,

κi(Di(p), pDi(p)) = − ∂2ui(Di(p))

(1 + p2)3/2
=

1

|∂Di(p)|(1 + p2)3/2
. (18)

Hence an alternative way of stating (16) is that

τ1(Q, T ) = τ2(Q
′, T ′) implies κ1(Q, T ) > κ2(Q

′, T ′). (19)
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That is, the curvature of any indifference curve of type 1 is strictly higher than that of any

indifference curve of type 2 at any pair of points where they have equal slopes. Note that

(19), unlike (16), does not require preferences to be quasilinear. This property has a natural

interpretation in terms of variations of marginal rates of substitution. Indeed, from (17),

dτi

dQ

∣∣∣∣
Ui=const

= − (1 + τ 2
i )3/2κi. (20)

Together with (19), this identity implies that, at any pair of points (Q, T ) and (Q′, T ′)

where type 1’s and type 2’s marginal rates of substitution coincide, type 1’s marginal rate of

substitution at (Q, T ) decreases faster than type 2’s marginal rate of substitution at (Q′, T ′)

along the corresponding indifference curves. As a result, the demand of type 1 reacts less to

changes in prices than the demand of type 2, which in the quasilinear case is expressed by

(16). It is clear from (20) that preferences which satisfy (19) also satisfy the desired property

for deterring cream-skimming deviations: the translate of the upper contour set of c for type

1 along the vector c′′ lies in the upper contour set of c + c′ for type 2.

5.2.2 The Openness Result

To establish our openness result, we first specify a set Psc of strictly convex preferences for

each type of the buyer, endowed with a suitable topology. This set, which we construct in

Appendix B, can be identified to a subspace of C2(V ), the space of real-valued C2 functions

over V endowed with the topology of uniform convergence over compact subsets of V of

functions and of their derivatives up to the order 2. In line with the assumptions made

in Section 2.1, any preference in Psc can be represented by a strictly quasiconcave utility

function U ∈ C2(V ) such that ∂U/∂T < 0.

Then, the following openness result holds.

Theorem 4 For buyer’s preferences in an open subset of Psc × Psc, an equilibrium can be

constructed along the lines of Theorem 2.

The proof proceeds by showing that, around the preferences constructed in Examples

1–2, there is an open set of preferences in Psc×Psc such that condition (19) uniformly holds

over a large enough compact subset of V . Key to this logic is that condition (19) involves a

strict comparison of curvatures, and that marginal rates of substitution and curvatures vary

continuously with preferences in the topology of Psc.

Theorem 4 in turn sheds light on the main examples of Section 2.4: as the indifference

curves for type 1 and type 2 are then translates of each other, preferences in these examples
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do not satisfy condition (19), but instead a limit condition, namely

τ1(Q, T ) = τ1(Q
′, T ′) implies κ1(Q, T ) = κ2(Q

′, T ′).

This suggests that such preferences lie on the boundary of the set of preferences in Psc such

that the contract offers considered in Theorem 2 are consistent with equilibrium. Indeed, it

can be shown that a necessary condition for preferences to belong to that set is

κ1(c) ≥ κ2(c + c′′). (21)

Condition (21) provides a simple test to rule out certain equilibrium configurations.

Example 3 Consider preferences as in Example 2, where θ2 > θ1, ∂2C > 0, and ∂3C > 0.

Then an equilibrium cannot be constructed along the lines of Theorem 2.

Thus Theorem 2 applies to C(Q) = Qγ/γ for 1 < γ < 2, but not for γ > 2. This, of

course, does not prejudge the possibility of alternative equilibrium constructions.

6 Discussion

6.1 Theoretical Insights

In our model, an equilibrium exists because sellers are only allowed to make take-it-or-leave-

it offers to the buyer. This assumption is often made for simplicity, as in Rothschild and

Stiglitz’s (1976) canonical analysis of exclusive insurance markets. Indeed, under exclusivity,

whether one allows sellers to compete through menus of contracts or through take-it-or-

leave-it offers does not fundamentally alter the characterization of equilibrium: the same

allocations emerge in both cases, although existence conditions become more stringent in the

former case.17 This insight does not carry over to nonexclusive competition. Attar, Mariotti,

and Salanié (2014a) provide a full characterization of equilibrium allocations in a generalized

version of Rothschild and Stiglitz’s (1976) model in which sellers can offer arbitrary menus

of nonexclusive contracts. They show that, in any pure-strategy equilibrium, a type of the

buyer may trade only if the other type does not trade at all, a type of market breakdown

reminiscent of that emphasized by Akerlof (1970).18 By contrast, the present paper shows

the existence of an equilibrium in which both types trade. In that respect, nonexclusive

competition thus appears to be qualitatively different from exclusive competition.

17See, for instance, Hahn (1978), Fagart (1996), and Farinha Luz (2012).
18This result applies to the version of their model in which in which the buyer is restricted to trade

nonnegative quantities, as in the present paper (see Attar, Mariotti, and Salanié (2014a, Section 5.1)).
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That a restriction on the sellers’ contractual opportunities is instrumental to sustain the

Jaynes–Hellwig–Glosten outcome in equilibrium is also a novel contribution of our analysis.

In contrast with Hellwig (1988) and Jaynes (2011), who rely on extensive forms with multiple

rounds of communication between sellers to sustain this equilibrium outcome, we show that

an equilibrium exists in a standard competitive game without communication. Explicit

communication about a seller attempting to deal with type 1 only is replaced by the single

latent contract c′′, the presence of which makes it also profitable for type 2 to trade with

this seller, thereby defeating any cream-skimming deviation.

From a game-theoretical viewpoint, our work is closely related to the common-agency

literature, in which principals compete through mechanisms to attract a single agent. In

that literature, a well-known result, sometimes acknowledged as a failure of the Revelation

Principle, is that some outcomes are sustainable in equilibrium in the game relative to an

arbitrary set of indirect mechanisms, but not in the corresponding direct-mechanism game.19

In the present paper, sellers (principals) make take-it-or-leave-it offers to a single buyer

(agent) who can be of two types. That is, the set of mechanisms available to each principal

is even smaller than the set of direct mechanisms. Despite this restriction, existence of a pure-

strategy equilibrium obtains. Moreover, expanding the sellers’ strategy sets by allowing for

arbitrary indirect mechanisms would lead, under Assumption 1-v, to nonexistence, as shown

by Attar, Mariotti, and Salanié (2014a). The intuition for this counterintuitive result is

that, when sellers are restricted to take-it-or-leave-it offers, none of them can exploit cross-

subsidization between contracts at the deviation stage. As a consequence, a larger set of

equilibrium allocations can be sustained.

Finally, the restriction to contracts with nonnegative quantities is crucial for our existence

result. If negative quantities were allowed, a seller not trading with type 1 could use the fact

that type 2 can buy the quantity Q1 twice at a relatively low price v on the equilibrium path

to offer re-buying a positive quantity from her at a price higher than v, but still lower than

v2. The corresponding quantity can moreover be chosen in such a way that it is attractive

for type 2 but not for type 1 to seize this opportunity, giving rise to a profitable reverse

cream-skimming deviation. Notice that this problem arises in our setting because the buyer

can combine several contracts, in contrast with models of exclusive competition.

6.2 Testable Predictions

When applied to the insurance sector, the equilibrium allocation we have characterized is

19See, among others, Peck (1997), Peters (2001), and Martimort and Stole (2002).
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natural and simple. Both types first buy the same basic coverage, priced at average cost v;

the high-risk type 2 then buys an additional coverage at the fair price v2, which is higher.

In spite of its simplicity, this allocation has rich, and sometimes unanticipated, properties.

First, one may notice from the zero-profit result that there are no cross-subsidies between

contracts. Still, there are cross-subsidies between types: the low-risk type subsidizes the

high-risk type in the pricing of basic coverage. In other words, there is pooling on one

contract, in contrast to the classical, separating allocation that prevails under exclusivity.

Second, there is multiple contracting, as the same consumer sometimes buys two different

contracts from two different insurance companies. This is in line with many existing or

proposed health insurance systems, as we noticed in the introduction.

In this section, we discuss more precisely the testable predictions of our analysis. Recall

that, under exclusivity, the standard predictions of the Rothschild and Stiglitz (1976) model

are that the unit price of coverage should increase with coverage, and that there should be

a positive correlation between the aggregate coverage bought by an agent and this agent’s

risk. Empirically, these properties may be tested by surveying consumers to get data on

their total coverage and total insurance premium. One may alternatively choose to gather

information on the contracts offered by firms. Under exclusivity, these two approaches make

no difference, as the aggregate demand of a consumer must be supplied by a single contract

offered by a single firm. However, under nonexclusivity, the second approach yields strikingly

different results, as we now argue.

Recall that three contracts are offered in equilibrium: a basic contract c = (Q1, T1), a

complementary contract c′ = (Q2 −Q1, T2 − T1), and a latent contract c′′ = (q′′, t′′). Under

conditions (13)–(14), which are necessary for an equilibrium to exist, it is easily checked that

one must have

Q1 > q′′ > Q2 −Q1.

Now, the unit price of coverage Q1 is low, as it is bought by both types; the unit price of

coverage Q2 −Q1 is high, as it is bought by the high-risk type only; and, as can be seen in

Figure 4, the unit price of coverage q′′ is intermediate. A testable prediction of our model is

thus that the contracts offered by firms exhibit quantity discounts, whereas consumers end

up paying quantity premia. This is a striking result that contrasts with a natural intuition,

namely, that nonexclusivity should push consumers towards splitting their demands between

firms (Chiappori (2000)). The reason why, in our competitive setting, firms end up proposing

quantity discounts, is that basic coverage must be larger than complementary coverage to
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prevent high-risk consumers from purchasing several basic policies from different firms.20

Each consumer then finds in her own interest to concentrate her trades on a minimum

number of contracts. The key is that firms together only propose a few contracts, which the

consumer may combine. The low-risk type then ends up trading a single contract, while the

high-risk type ends up buying two different contracts.

Importantly, according to the above analysis, one should observe a positive correlation

between risk and coverage when considering total coverage for each consumer: indeed, the

single-crossing property is enough to ensure that riskier types buy more coverage. On the

other hand, with data originating from a single firm, one should now observe a negative

correlation between risk and coverage: the relatively small complementary coverage Q2−Q1

is bought only by the riskiest type. Such remarks are useful when considering the empirical

evidence, as exemplified by the work of Cawley and Philipson (1999) on life insurance or

the work of Finkelstein and Poterba (2004) on annuities. Because the reference model in

those papers is Rothschild and Stiglitz’s (1976), the above distinction between demand- and

supply-side approaches is overlooked. As a result, evidence of quantity discounts, or the

absence of a positive correlation property, is interpreted as rejecting the presence of adverse

selection on life-insurance or annuity markets. However, such markets being nonexclusive,

one must be very careful when testing for the existence of quantity discounts, as one needs

to observe the total insurance coverage and the total insurance premium paid by individuals.

In particular, checking only the contracts offered by firms, or the contracts sold by a given

firm, may be insufficient and even misleading. Such an empirical inquiry is beyond the scope

of the present paper; but it would certainly be worth proceeding to this task, while taking

all precautions to ensure that data are comprehensive.21

6.3 Normative Analysis: Constrained Efficiency

As noted in Section 3, a key implication of our analysis is that aggregate quantities and

transfers in any equilibrium of our model are of the form predicted by Jaynes (1978), Hellwig

(1988), and Glosten (1994). An important feature of the corresponding aggregate allocation

is that it is constrained efficient, in a sense that we define now.

20This explanation for quantity discounts differs from that proposed by Chade and Schlee (2012), who
consider a monopolistic insurance company as in Stiglitz (1977).

21At least one of the econometric treatments performed in Cawley and Philipson (1999) seems to escape
this criticism, as it is based on a consumer survey (AHEAD) that includes information on aggregate demand.
We acknowledge that the candidate explanation given above is not the end of the story: the quoted paper
remains a sizable stone in our garden, and a precious contribution. For a recent and positive test for adverse
selection using the same data, see He (2009).
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Formally, an aggregate allocation specifies an aggregate trade xi ∈ X for each i. An

aggregate allocation (xi)i=1,2 is implemented by a set of trades M⊂ X, (0, 0) ∈M, if

xi ∈ arg max{Ui(x) : x ∈M}.

for each i. The set M may correspond to a tariff, as in the standard taxation principle

(Rochet (1985)), or, as in our model, may result from the combinations of contract offers

made by competing sellers, as in (2). Then M typically contains more than two trades

besides the no-trade point, unlike in standard definitions of incentive compatibility.

A set of trades M ⊂ X, (0, 0) ∈ M, is entry proof, if there exists no set of trades

M′ ⊂ X, (0, 0) ∈ M′, such that, for any optimal combination of trades in M and M′ for

each type i, the corresponding expected profit over trades in M′ is positive; that is, for each

i, there exist xi ∈M and x′i ∈M′ such that

(xi, x
′
i) ∈ arg max{Ui(x + x′) : x ∈M and x′ ∈M′}

and the expected profit for an entrant from trading x′i with each type i is nonpositive; that

is, letting (Q′
i, T

′
i ) ≡ x′i,

m1(T
′
1 − v1Q

′
1) + m2(T

′
2 − v2Q

′
2) ≤ 0.

Note that the criterion for a successful entry embedded in this definition is that it ensures a

positive expected profit no matter the optimal choice of the buyer.

Our constrained-efficiency concept superimposes an entry-proofness constraint to the

standard implementability constraint.

Definition 1 An aggregate allocation (xi)i=1,2 is constrained efficient if it is implemented

by an entry-proof set of trades, and any aggregate allocation (x′i)i=1,2 that strictly Pareto

dominates (xi)i=1,2 from the two types of buyers’ viewpoint either cannot be implemented by

an entry-proof set of trades or generates negative expected profit for the sellers.

Let us now see how these concepts apply to our context. Observe first that, according

to Theorem 1 and Corollary 1, the equilibrium aggregate allocation (xi)i=1,2 ≡ (Qi, Ti)i=1,2

is implemented by the set of trades M associated to the Glosten (1994) tariff, that is, the

piecewise-linear convex tariff defined by

T (Q) ≡ 1{Q≤Q1}vQ + 1{Q>Q1}[vQ1 + v2(Q−Q1)]. (22)

It follows from arguments paralleling Glosten (1994) that this tariff is entry proof. From

this it is easily seen that (Qi, Ti)i=1,2 is constrained efficient. Suppose, for instance, that
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one wants to increase the utility of type 1. Because T1 = vQ1 and τ1(Q1, T1) = v, the

new aggregate allocation (x′i)i=1,2 ≡ (Q′
i, T

′
i )i=1,2 must satisfy T ′

1 < vQ′
1. Moreover, the

requirement that (Q′
i, T

′
i )i=1,2 be implemented by an entry-proof set of trades implies that

the additional profit T ′
2− T ′

1− v2(Q
′
2−Q′

1) on the marginal trade Q′
2−Q′

1 be nonpositive.22

Otherwise, an entrant could make a profit by proposing a trade (Q′
2−Q′

1, T
′
2−T ′

1−ε) for some

small positive number ε: this trade, in combination with (Q′
1, T

′
1), profitably attracts type 2,

and makes a further profit if it also attracts type 1. Overall, it follows that, if the aggregate

allocation (Q′
i, T

′
i )i=1,2 strictly increases the utility of type 1 compared to (Qi, Ti)i=1,2 and is

implemented by an entry-proof set of trades, the corresponding expected profit

m1(T
′
1 − v1Q

′
1) + m2(T

′
2 − v2Q

′
2) = T ′

1 − vQ′
1 + m2[T

′
2 − T ′

1 − v2(Q
′
2 −Q′

1)]

is negative. A similar argument can be used to show that one cannot increase the utility

of type 2 and maintain that of type 1, while satisfying the entry-proofness and break-even

constraints. Thus the equilibrium allocation (Qi, Ti)i=1,2 is constrained efficient in the sense

of Definition 1.

It may be—rightly—objected to this line of reasoning that the tariff (22) cannot be

generated by a finite number of contract offers, as must be the case in our model, owing to

the assumption that each seller can only propose a single contract. One may then wonder

why we did not instead consider the set of trades associated to the equilibrium constructed

in Theorems 2–4. The answer is simple: this set is not entry proof in the above sense. The

reason is that an entrant could propose two contracts: one designed to profitably attract

type 1, and one designed to limit his losses with type 2.23

This objection seems to undermine our claim that the equilibrium aggregate allocation is

constrained efficient, for it could be argued that such a claim should be interpreted relatively

to a specific set of contractual instruments. The flip side of this observation, however, is that

the concept of entry proofness should also be amended to reflect such restrictions. Indeed,

if potential entrants are restricted to make take-it-or-leave-it offers, that is, if the set of

trades M′ in the above definitions must contain a single trade besides the no-trade point,

then it can be shown along the lines of Lemmas 3–4 that the set of trades associated to the

22Observe that Q′2 ≥ Q′1 by the single-crossing property together with the implementability constraint.
23The argument follows Attar, Mariotti, and Salanié (2014a, Proposition 3). In the case of quasilinear

preferences, observe that, under the assumptions of Theorem 2, any contract c̃1 that allows type 1 to increase
her utility by a positive amount ε also allows type 2, through the use of the latent contract c′′, to increase
her utility by ε. However, the entrant may also propose a contract c̃2 = c′ − (0, 2ε), which, coupled to a
contract c offered by an incumbent, allows type 2 to increase her utility by 2ε. Choosing c̃1 close enough to
c and ε close enough to zero then enables the entrant to reap almost the entire aggregate profits T1 − v1Q1

associated with type 1, while making arbitrarily small losses when trading with type 2.
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equilibrium constructed in Theorems 2–4 is robust to entry. These considerations call for

a deeper discussion of the policy implications of restricting contractual offers, to which we

now turn.

6.4 Policy Implications for Insurance Markets

In the context of insurance markets, especially health insurance, our analysis suggests that,

when multiple contracting is allowed, coverage can be provided by the private sector in a

constrained-efficient way (see Definition 1 above). Thus, strictly speaking, social security is

not needed to provide such coverage. In a similar vein, notice that neither is there a need

to make basic coverage mandatory: the state need not directly interfere with the choices of

consumers, who can remain sovereign in their decisions to purchase insurance. This contrasts

with policy recommendations from exclusive models of competitive insurance markets under

adverse selection.24 Similarly, there is no need for taxes or subsidies: competition is enough

to select a unique equilibrium in which prices efficiently reflect costs—though this rule applies

to successive layers of insurance, and not to the aggregate coverage bought by each type of

insuree.25

However, whereas there is no need to tamper with demand in the framework we consider,

an important insight of our analysis is that the supply side of the economy needs to be

carefully regulated. Indeed, if firms were freely allowed to engage in strategic behavior,

notably in cross-subsidizing between contracts, then the market would typically break down

and equilibria with multiple contracting would fail to exist (Attar, Mariotti, and Salanié

(2014a)). As a result, public intervention in nonexclusive insurance markets should aim at

preventing cross-subsidies between contracts at the firm level so as to sustain cross-subsidies

between types at the industry level.

In our model, the absence of cross-subsidies directly stems from the requirement that

each insurer offers at most one contract; this extreme assumption may be relaxed as follows.

Suppose that firms are allowed to offer several contracts, under the requirement that each

contract be (weakly) profitable. Then it is easily seen that the situation described in Theorem

2 remains an equilibrium.26 A public intervention that would prohibit firms from strategically

24Under exclusivity, mandatory insurance is evoked in Akerlof (1970), and has been the focus of much
empirical work (Finkelstein (2004), Einav, Finkelstein, and Cullen (2010), Einav and Finkelstein (2011)).
Wilson (1977), Dahlby (1981), and Crocker and Snow (1985a) show that making basic coverage mandatory
and simultaneously allowing private insurers to compete on an extended coverage allows one to reach an
informationally constrained efficient outcome. In the nonexclusive case, Villeneuve (2003) performs a similar
analysis, however in a model that assumes linear pricing.

25See Crocker and Snow (1985b) for a study of taxes and subsidies under exclusivity.
26We sketch here a proof. A deviation with two contracts must attract the high-risk type on one contract
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making losses on a contract in order to boost their profits by cream skimming on some other

contract could take various forms. One could require that each insurance contract forms its

own profit center in each insurance company, or rely on a monitoring of the level of risk borne

by firms on each contract: for instance, one may prohibit firms from making large profits

on basic coverage. An alternative approach that has been followed by several countries in

the case of health insurance is to make the market for basic coverage entirely nonprofit;27

but this imposes to define precisely what is basic coverage, something which is not required

according to our analysis.

and the low-risk type on the other contract. Because the low-risk type still can buy his demand at price v
after the deviation, this last contract must thus be sold at a unit price below v. Then, because the latent
contract c′′ is still available, it might also attract the low-risk type, a situation in which it would not be
profitable. To avoid this, the former contract must allow the high-risk type to get strictly more than her
equilibrium utility; but given the existing offer of contracts this means that it must be sold at a price below
v2, and thus would make losses.

27The case of Germany and Switzerland is discussed in Thomson, Osborne, Squires, and Jun (2013, pages
57 and 119).
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Appendix A

Proof of Theorem 1. Subscripts i and j refer throughout to the buyer’s possible types,

with i 6= j by convention. For all i and k, let (qk
i , t

k
i ) be the equilibrium trade of type i with

seller k, with (qk
i , t

k
i ) ≡ (0, 0) by convention if type i does not trade with seller k. Denote

by bk
i ≡ tki − viq

k
i the corresponding profit for seller k; his expected profit then writes as

bk ≡ m1b
k
1 + m2b

k
2. We let Bi ≡

∑
k bk

i and B ≡ ∑
k bk be the corresponding aggregate type-

by-type and expected profits. Define sk
i ≡ tki − tkj − vi(q

k
i − qk

j ) to be the profit from trading

(qk
i − qk

j , t
k
i − tkj ) with type i, and similarly define Si ≡

∑
k sk

i = Ti − Tj − vi(Qi −Qj) to be

the profit from trading (Qi − Qj, Ti − Tj) with type i. Because of the accounting identity

B = T1 − vQ1 + m2S2, establishing (9)–(10) amounts to proving that

B = S2 = 0, (23)

an implication of which, because sellers cannot make negative expected profits, is that they

all earn zero expected profit in equilibrium, bk = 0 for all k.

The proof of (23) goes through a series of steps, corresponding to various deviations for

the sellers. We will thereby establish a number of intermediate results that are explicitly

labelled as formulas (24)–(38) below.

As a preliminary remark, note that Si = Bi−Bj+(vi−vj)Qj, which, because Q2 ≥ Q1 ≥ 0

by Assumption SC and c2 > c1 by Assumption CV, implies that

S2 ≥ B2 −B1 (24)

and

S1 + S2 ≤ 0. (25)

We can now proceed to the bulk of the argument.

Step 1 The first deviation we examine consists for any seller k in offering a contract

(Qi, Ti − ε) for some positive number ε. This attracts type i for sure. If this only attracts

type i, then one must have bk ≥ mi(Bi − ε) or, equivalently, mjBj ≥ B − bk −miε. If this

attracts both types, then one must have bk ≥ Ti−vQi−ε or, equivalently, mjSj ≥ B−bk−ε.

Letting ε go to zero, we get that, for each k,

m1 max{B1, S1} ≥ B − bk, (26)

m2 max{B2, S2} ≥ B − bk. (27)
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Note that B − bk =
∑

k′ 6=k bk′ ≥ 0 for all k. Several consequences follow.

First, the sellers’ aggregate profits on type 1 are nonnegative,

B1 ≥ 0. (28)

To see why, observe that, if B1 < 0, then S1 ≥ 0 by (26), so that S2 ≤ 0 by (25), and

hence B2 < 0 by (24). But then the aggregate profits B = m1B1 + m2B2 are negative, a

contradiction.

Second, B1 ≥ S1, so that (26) reduces to

bk ≥ m2B2 (29)

for all k. To see why, observe that, if B1 < S1, then S1 > 0 by (28), so that S2 < 0 by (25),

and hence B2 ≥ 0 by (27) and S2 + B1 ≥ 0 by (24). But then, because, by assumption,

B1 < S1, we get that S1 + S2 > 0, which contradicts (25).

Third, the profit from trading (Q2 −Q1, T2 − T1) with type 2 is nonnegative,

S2 ≥ 0. (30)

To see why, observe that, if S2 < 0, then B2 ≥ 0 by (27), which reduces to bk ≥ m1B1.

Summing this inequality to (29), we get that 2bk ≥ B. In turn, summing these inequalities

over k, we get that 2B ≥ nB, which, as n ≥ 3, implies that B = 0. But then, from (28) and

B2 ≥ 0, we get that B1 = B2 = B = 0 and thus, by (24), that S2 ≥ 0, a contradiction.

Fourth, the profit from trading (Q1 −Q2, T1 − T2) with type 1 is nonpositive,

S1 ≤ 0. (31)

This follows at once from (25) and (30).

Fifth, S2 ≥ B2, so that (27) reduces to

m2S2 ≥ B − bk (32)

for all k. To see why, observe that, if S2 < B2, summing the inequalities (27) over k yields

nm2B2 ≥ (n − 1)B, whereas summing the inequalities (29) over k yields B ≥ nm2B2. It

follows that nm2B2 ≥ n(n − 1)m2B2 and thus, as n ≥ 3, that B2 ≤ 0. But then, we get

from (30) that S2 ≥ B2, a contradiction.

Step 2 The second deviation we examine consists for any seller k in offering a contract

(qk
i , t

k
i − ε) for some positive number ε. This attracts type i for sure, for instance along
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with the contracts (qk′
i , tk

′
i ), k′ 6= k. If this only attracts type i, then one must have bk ≥

mi(b
k
i − ε) or, equivalently, bk

j ≥ −(mi/mj)ε. If this attracts both types, then one must have

bk ≥ tki − vqk
i − ε or, equivalently, mjs

k
j ≥ −ε. Letting ε go to zero, we get that, for each k,

max{bk
1, s

k
1} ≥ 0, (33)

max{bk
2, s

k
2} ≥ 0. (34)

A consequence of this is that sellers make nonnegative profits with type 1,

bk
1 ≥ 0 (35)

for all k. To see why, observe that, if bk
1 < 0 for some k, then bk

2 > 0 because seller k must

earn nonnegative expected profit. But then we get that sk
1 = bk

1− bk
2 +(v1− v2)q

k
2 < 0, which

contradicts (33).

Step 3 The third deviation we examine consists for any seller k in offering a contract

(qk
1 +Q2−Q1, t

k
1 +T2−T1− ε) for some positive number ε. This attracts type 2 for sure, for

instance along with the contracts (qk′
1 , tk

′
1 ), k′ 6= k. If this only attracts type 2, then one must

have bk ≥ m2[t
k
1 + T2 − T1 − ε− v2(q

k
1 + Q2 −Q1)] or, equivalently, m1b

k
1 ≥ m2(S2 − sk

2 − ε).

If this attracts both types, then one must have bk ≥ tk1 + T2 − T1 − ε − v(qk
1 + Q2 − Q1)

or, equivalently, m1S1 ≥ m2(S2 − sk
2) − ε. Letting ε go to zero, we get that, for each k,

m1 max{bk
1, S1} ≥ m2(S2 − sk

2) and thus

m1b
k
1 ≥ m2(S2 − sk

2) (36)

by (31) and (35). Two consequences follow.

First, the sellers’ aggregate profits on type 2 are nonpositive,

B2 ≤ 0. (37)

To see why, observe that summing (36) over k yields m1B1 ≥ (n−1)m2S2, whereas summing

(32) over k yields nm2S2 ≥ (n − 1)B or, equivalently, m1B1 ≤ −m2B2 + [n/(n − 1)]m2S2.

Chaining these inequalities yields m2B2 ≤ [n/(n− 1)− n + 1]m2S2, from which (37) follows

as n ≥ 3 and S2 ≥ 0 by (30).

Second, the profit from trading (qk
2 − qk

1 , t
k
2 − tk1) with type 2 is nonnegative,

sk
2 ≥ 0 (38)

for all k. To see why, observe that, by (36), m2b
k
2 = bk−m1b

k
1 ≤ bk−m2S2 +m2s

k
2. Applying

(32) to some k′ 6= k yields m2S2 ≥ B − bk′ ≥ bk and hence bk −m2S2 ≤ 0. Combining these

inequalities yields bk
2 ≤ sk

2, from which (38) follows by (34).
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Step 4 In this step, we investigate the structure of equilibrium in the hypothetical case

where S2 > 0. Then, Q2 > Q1 and, as each seller offers a single contract, some seller k must

only trade with type 2. For any such k, bk
1 = 0 and bk

2 = sk
2; hence, by (36), bk

2 ≥ S2.

Now, in this situation, it is not possible that all the sellers who trade with type 2, only

trade with type 2. Indeed, in that case, we would have B2 ≥ S2 according to the previous

argument. But then, as S2 > 0 by assumption, we would get that B2 > 0, which contradicts

(37). Thus, if S2 > 0, at least one seller k must trade with both types, which implies that

Q1 > 0.

Let K2 be the set of sellers who trade with type 2 but not with type 1, and let Kc
2 be

its complement. According to the above argument, if S2 > 0, we know that K2 6= ∅, that

Kc
2 6= ∅, and that qk

1 = qk
2 > 0 for some k ∈ Kc

2. We also have sk
2 = bk

2 ≥ S2 for all k ∈ K2

and, therefore,

S2 ≥ S2 −
∑

k∈Kc
2

sk
2 ≥ |K2|S2,

where the first inequality follows from (38). Hence, if S2 > 0, there must be a single seller

in K2 who earns S2 from trading with type 2. From the above inequality along with (38)

and |K2| = 1, we then get that sk
2 = 0 and thus bk = tk1 − vqk

1 for all k ∈ Kc
2.

Let k ∈ Kc
2, so that either qk

1 > 0 or qk
1 = qk

2 = 0. The latter case, in which bk
1 = sk

2 = 0,

is not possible, as we would have m2S2 ≤ 0 by (36), in contradiction with the assumption

that S2 > 0. Thus, if S2 > 0, then qk
1 > 0 for all k ∈ Kc

2: all the sellers are thus active on

the equilibrium path.

Write Kc
2 = K1 ∪K12, where K1 is the set of sellers who only trade with type 1, and K12

is the set of buyers who trade with both types. For each k ∈ K1, we have bk = tk1 − vqk
1 =

m1(t
k
1− v1q

k
1) and thus tk1 = v2q

k
1 ; that is, whether type 2 is attracted by the contract (qk

1 , t
k
1)

is irrelevant for any seller k ∈ K1.

We already know that K12 6= ∅. By (37), B2 ≤ 0. Hence, as the single seller in K2 earns

S2 > 0 from trading with type 2, one must have bk
2 < 0 for some seller k ∈ K12. Any seller

k ∈ K12 such that bk
2 < 0 can deviate by proposing (qk

1 +
∑

k′∈K1
qk′
1 , tk1 +

∑
k′∈K1

tk
′

1 − ε) for

some positive number ε. This attracts type 1 for sure, for instance along with the contracts

(qk′
1 , tk

′
1 ), k′ ∈ K12, k′ 6= k. Because bk

2 = tk1 − v2q
k
1 < 0 and, as observed in the previous

paragraph, tk
′

1 = v2q
k′
1 for all k′ ∈ K1, at worst this also attracts type 2. Letting ε go to zero,

we get that

bk ≥ tk1 − vqk
1 +

∑

k′∈K1

(tk
′

1 − vqk′
1 ).
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As bk = tk1 − vqk
1 and tk

′
1 = v2q

k′
1 for all k′ ∈ K1, this implies that

(v2 − v)
∑

k′∈K1

qk′
1 ≤ 0

and thus
∑

k′∈K1
qk′
1 = 0. It follows that K1 = ∅ and K12 = Kc

2.

For any seller k ∈ K12, we have bk ≥ B − m2S2 by (32). But m2S2 is precisely the

expected profit of the single seller in K2. As K12 = Kc
2, we get that bk ≥ ∑

k′∈K12
bk′ for all

k ∈ K12. Because |K12| = n − 1 and n ≥ 3, this implies that each seller in K12 earns zero

expected profit and thus trades at unit price v.

Under the assumption that S2 > 0, we now have a clear picture of the contracts offered

and traded in equilibrium: n − 1 sellers offer contracts stipulating positive quantities at

unit price v, which make up the aggregate trade (Q1, T1) of type 1 and are traded by both

types, while the remaining seller offers a contract stipulating an additional positive quantity

Q2 − Q1 at a unit price strictly higher than v2, which is only traded by type 2 to overall

reach her aggregate trade (Q2, T2).

Step 5 We now derive a contradiction from the assumption that S2 > 0. We start with

two standard observations.

As in Attar, Mariotti, and Salanié (2014a, Proof of Lemma 4), one can show that no

seller in K12 can be indispensable in providing type 1 with her equilibrium utility. Otherwise,

some seller k ∈ K12 is indispensable and can therefore propose the quantity qk
1 at a unit price

slightly above v. This attracts type 1 for sure, because trading only with the sellers other

than k would yield her a lower utility. Moreover, this deviation yields seller k a positive

profit even in the worst-case scenario where it attracts both types.

As in Attar, Mariotti, and Salanié (2014a, Proof of Lemma 3), one can also show that

τ1(Q1, T1) = v. Otherwise, some seller k ∈ K12 can deviate by proposing a quantity close

to Q1 > 0 at a unit price slightly above v. This attracts type 1 for sure. Moreover, this

deviation yields seller k a positive profit even in the worst-case scenario where it attracts

both types.

The desired contradiction follows from these two observations. Indeed, because, as shown

in Step 4, all contracts are proposed at a unit price at least equal to v, the marginal condition

τ1(Q1, T1) = v implies that the equilibrium indifference curve of type 1 intersects his budget

set {(∑k∈K qk,
∑

k∈K tk) : K ⊂ {1, . . . , n}}∩X only at the point (Q1, T1). Because no seller

in K12 is indispensable in providing type 1 with her equilibrium utility, this means that the

aggregate trade (Q1, T1) remains available if any such seller k withdraws his contract; but

this seller may then propose to trade the quantity Q2 − Q1 at a unit price between v2 and
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(T2− T1)/(Q2−Q1), the latter number being strictly larger than v2 if S2 > 0. This attracts

type 2 for sure, for instance along with the aggregate trade (Q1, T1). Moreover, this deviation

yields seller k a positive profit even in the worst-case scenario where it only attracts type

2. This, however, is impossible as the sellers in K12 earn zero expected profit in equilibrium

according to Step 4.

We are now ready to complete the proof of Theorem 1. That S2 = 0 follows from (30)

along with Step 5. Together with (32), this implies that bk = B = 0 for all k and hence

that (23) holds. That all traded contracts must be issued at unit price v or v2 follows from

considering the families of sellers K1, K2, and K12 introduced in Step 4. Because sellers earn

zero expected profit, sellers in K2 and K12 must respectively trade at unit prices v2 and v.

Now, if one had K1 6= ∅, then type 1 should trade the corresponding contract(s) at unit price

v1 < v. However, as T1 = vQ1, this implies that she should trade some contract(s) at a unit

price strictly above v. But the only contracts satisfying this property are traded at price v2

between type 2 and sellers in K2. Therefore, K1 = ∅. Hence the result. ¥

Proof of Corollary 1. To show that the marginal condition (11) holds under Assumption

1-v, one can follow Attar, Mariotti, and Salanié (2014a, Proof of Lemma 3) as we did in

Step 4 of the proof of Theorem 1. The only thing to be checked is that Q1 > 0. To see

why, observe that, otherwise, any seller can deviate and issue a contract stipulating a small

quantity at a unit price between v and τ1(0, 0). This attracts type 1 for sure. Moreover,

this deviation yields a positive profit even in the worst-case scenario where it attracts both

types.

The proof that (12) holds under Assumption 2-v2 is similar. Arguing as in Step 4 of the

proof of Theorem 1, we first get that the aggregate trade (Q1, T1) remains available if any

seller withdraws his contract. Assumption 2-v2 then implies that there are gains from trade

between type 2 and any seller, who can propose additional trades to type 2 on top of the

aggregate trade (Q1, T1) at a unit price between v2 and τ2(Q1, vQ1). As above, this implies

that Q2−Q1 > 0. The marginal condition (12) then follows from a standard argument along

the lines of Attar, Mariotti, and Salanié (2014a, Proof of Lemma 6). Hence the result. ¥

Proof of Corollary 2. We argued in the proof of Corollary 1 that the aggregate trade

(Q1, T1) remains available if any seller withdraws his contract. One can more precisely show

that the way in which (Q1, T1) thus remains available involves only contracts with unit price

v. To see why, observe that, otherwise, some seller k offers a contract (qk, tk) stipulating a

quantity qk < Q1 at unit price tk/qk < v. (This contract cannot be traded in equilibrium,
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according to Theorem 1.) But then any seller k′ 6= k can deviate and issue a contract

stipulating a quantity Q1 − qk at a unit price v + ε for some positive number ε. Because

tk/qk < v, we have

tk + (v + ε)(Q1 − qk) < vQ1 = T1

when ε is small enough. Hence seller k′’s offer attracts type 1 for sure, because combining

it with the contract (qk, tk) allows her to purchase her equilibrium quantity Q1 in exchange

for a transfer lower than T1. Moreover, this deviation yields a positive profit even in the

worst-case scenario where it attracts both types.

Let Kv be the set of sellers issuing contracts (qk, tk) at unit price tk/qk = v and, for each

k ∈ Kv, let αk ≡ q/Q1. Fix some k ∈ Kv who is active in equilibrium, so that, in particular,

0 < αk ≤ 1. It follows from the previous reasoning that there exists K−k
v ⊂ Kv \ {k} such

that
∑

k′∈K−k
v

αk′ = 1 and, therefore,

1 <
∑

k′∈K−k
v

αk′ + αk = 1 + αk ≤ 2.

Note that the aggregate trade (1 + αk)(Q1, vQ1) is available on the equilibrium path, and

cannot be strictly more preferred by type 2 than c + c′. Moreover, k′′ 6∈ {k} ∪Kk
v for some

seller k′′ because some sellers must issue contracts at unit price v2 according to Theorem 1

and Corollary 1.

Fix k as above. To conclude the proof, we only need to show that

(1 + αk)Q1 > Q2. (39)

Indeed, along with the fact that the aggregate trade (1 + αk)(Q1, vQ1) is not strictly more

preferred by type 2 than c + c′ and that 1 + αk ≤ 2, (39) implies that the aggregate trade

(2Q1, 2vQ1) = (2Q1, 2T1) is also not strictly more preferred by type 2 than c + c′, which is

(13), and that 2Q1 > Q2, which is (14). To establish (39), let us first remark that we cannot

have (1+αk)Q1 = Q2, for, otherwise, type 2 could purchase the quantity Q2 in exchange for

a transfer vQ2 strictly lower than her equilibrium aggregate transfer T2 = vQ1 +v2(Q2−Q1),

a contradiction. Let us then suppose that (1 + αk)Q1 < Q2. Then any seller k′′ 6∈ {k} ∪Kk
v

can deviate by offering a contract stipulating a quantity Q2 − (1 + αk)Q1 at a unit price

v2 + ε for some positive number ε. As 1 + αk > 1, we have

v(1 + αk)Q1 + (v2 + ε)[Q2 − (1 + αk)Q1] < vQ1 + v2(Q2 −Q1) = T2

Hence seller k′′’s offer attracts type 2 for sure, because combining it with the contracts (qk, tk)

and (qk′ , tk
′
) for k′ ∈ K−k

v allows her to purchase her equilibrium quantity Q2 in exchange
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for a transfer strictly lower than T2. Moreover, this deviation yields a positive profit even in

the worst-case scenario where it only attracts type 2. Hence the result. ¥

Proof of Lemma 1. Consider first type 1. Because τ1(c) = v by (11), c is her most

preferred contract with unit price v. As all offered contracts have unit prices at least equal

to v, trading a single contract c is therefore optimal for type 1. Consider next type 2.

Because τ2(c + c′) = v2 by (12) and the unit price v2 of c′ is strictly higher than the unit

price v of c, she is strictly worse off trading only contracts c′ than trading a contract c along

with a contract c′. Thus type 2 optimally trades at least one contract c. By (12) again, if she

trades exactly one contract c, it is optimal for her to additionally trade exactly one contract

c′. Hence we only need to prove that she cannot be strictly better off trading c twice. To

see why, note that, according to (15), τ2(2c) is lower than v and thus, a fortiori, lower than

the unit price v2 of c′. This, together with (13), implies that trading c twice, possibly along

with one or two contracts c′, cannot yield type 2 a higher utility than trading a contract c

along with a contract c′. The result follows. ¥

Proof of Lemma 2. As for type 1, the proof follows along the lines of Lemma 1, observing

that the unit price of c′′ is strictly higher than the unit price v of c. Consider next type 2.

As U2(c + c′′) = U2(c + c′), it is sufficient to check that, if type 2 trades c′′ once, the optimal

thing for her to do is to combine this contract c′′ with exactly one contract c. Indeed, because

τ2(c + c′′) = v, c is, among all contracts with unit price v, the best that type 2 can combine

with c′′. As all offered contracts have unit prices at least equal to v, trading a single contract

c is, therefore, the unique optimal choice for type 2 once she has traded c′′. The result

follows. ¥

Proof of Lemma 3. First, we show that there is no profitable deviation for a seller that

attracts both types. Indeed, to be profitable, the corresponding contract c̃ would need to

have a unit price strictly higher than v. However, recall that τ1(c) = v by (11) and that all

offered contracts have unit prices at least equal to v. Trading c̃ would then yield type 1 a

strictly lower utility than trading a single contract c, which remains feasible following any

seller’s unilateral deviation. Such a deviation is thus not possible.

Second, we show that there is no profitable deviation for a seller that only attracts type

2. Indeed, to be profitable, the corresponding contract c̃ would need to have a unit price

strictly higher than v2. However, recall that τ2(c + c′) = v2 by (12) and that, by (15), type

2 cannot gain from combining any contract with unit price strictly higher than v2 with 2c.

Trading c̃, possibly along with some contracts c or c′, would then yield type 2 a strictly lower
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utility than trading a contract c along with a contract c′, which remains feasible following

any seller’s unilateral deviation. The possibility remains that type 2 combines c′′ with c̃.

However, as all offered contracts have unit prices at least equal to v, and strictly so for c̃,

trading a single contract c is the unique optimal choice for type 2 once she has traded c′′,

see the proof of Lemma 2. Such a deviation is thus not possible. The result follows. ¥

Proof of Lemma 4. The result requires that sufficiently many sellers offer the contract

c′′. A simple upper bound on the number of required sellers can be obtained as follows.

Specifically, define

A1 ≡ {(q, t) ∈ R+ × R : q ≤ Q2 and vq ≥ t ≥ v1q},
A2 ≡ {Kc + K ′c′ : (K,K ′) ∈ {0, 1, 2} × {0, 1, 2}},
A3 ≡ {(Q, T ) ∈ R+ × R : U1(Q, T ) ≥ U1(c)}.

To interpret A1, observe that if type 1 were attracted by a contract (q, t) with q ≥ Q2

issued by a deviating seller, then this would mean that by trading (q, t), possibly along with

other available contracts, she could reach an aggregate trade (Q, T ) with Q ≥ Q2, which

she would weakly prefer to the aggregate trade c + c′ that remains available following any

unilateral deviation. Because c+ c′ is the equilibrium aggregate trade of type 2 and involves

an aggregate quantity Q2, it would follow from Assumption SC that type 2 would strictly

prefer (Q, T ) to her equilibrium aggregate trade c+c′, and thus would be strictly attracted by

the contract (q, t). Therefore, we can safely restrict our quest for potential cream-skimming

deviation to the set of contracts (q, t) such that q ≤ Q2. In addition, the contracts in A1

imply no loss for the sellers when only traded by type 1 and have a unit price lower than v, so

that they are potentially attractive for type 1, either per se or combined with other available

contracts. Next, A2 is the set of aggregate trades that can be made with four sellers, two

of whom offer the contract c and two of whom offer the contract c′. Last, A3 is the upper

contour set of c for type 1. Then

K ′′ ≡ max{K ∈ N : (A1 + A2 + Kc′′) ∩ A3 6= ∅} (40)

is the maximum number of contracts c′′ type 1 may ever want to trade, if she were proposed

a contract in A1, which she could complement by aggregate trades in A2 and as many

contracts c′′ as she wishes. Because A1 is compact, c ∈ A1 ∩ A3, (0, 0) ∈ A2, and τ1(c) = v

is strictly lower than v2 and the unit price of c′′, K ′′ is well defined and finite. Suppose now

that two sellers offer the contract c, two sellers offer the contract c′, and max{K ′′ + 1, 2}
sellers offer the contract c′′. Consider now a deviation that attracts type 1. Trading the
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corresponding contract c̃, possibly along with contracts c, c′, and c′′, must yield type 1 at

least her equilibrium utility. However, because τ2(c + c′′) = τ1(c), under conditions (3)–(4)

the equilibrium indifference curve I2 of type 2 is the translate of the equilibrium indifference

curve I1 of type 1 along the vector c′′. Thus type 2 could also weakly increase her utility by

trading the same contracts as type 1, plus one additional contract c′′. The definition (40) of

K ′′ ensures that type 1 will never trade more than K ′′ contracts c′′ following the deviation.

If, as postulated, max{K ′′+1, 2} sellers offer the contract c′′, a contract c′′ remains available

for type 2 to trade even after mimicking type 1. As a result, one can construct the buyer’s

best response in such a way that both types trade c̃ with the deviating seller, which, by

Lemma 3, cannot be profitable for him. The result follows. ¥

Proof of Theorem 3. According to our preliminary discussion, it is sufficient to show that,

for all p < ∂u1(0) and (q, t) ∈ (−D1(p),∞)× R,

u1(D1(p) + q)− pD1(p)− t ≥ u1(D1(p))− pD1(p)

implies that

u2(D2(p) + q)− pD2(p)− t ≥ u2(D2(p))− pD2(p),

or, equivalently, that, for all p < ∂u1(0) and q > −D1(p),

∆(p, q) ≡ [u1(D1(p))− u1(D1(p) + q)]− [u2(D2(p))− u2(D2(p) + q)] ≥ 0. (41)

It follows from the definitions of the functions ∆, D1, and D2 that ∆(p, 0) = 0 and

(∂∆/∂q)(p, 0) = 0 for all p < ∂u1(0). A sufficient condition for ∆(p, ·) to reach a global

minimum over (−D1(p),∞) at q = 0, as required by (41), is thus that, for each q > −D1(p),

(∂∆/∂q)(p, q) = 0 implies that (∂2∆/∂q2)(p, q) > 0. That is, for all p < ∂u1(0) and

q > −D1(p),

∂u1(D1(p) + q) = ∂u2(D2(p) + q)

implies that

∂2u2(D2(p) + q) > ∂2u1(D1(p) + q).

But the first term of this implication simply says that there exists a price p′ < ∂u1(0) such

that D1(p) + q = D1(p
′) and D2(p) + q = D2(p

′). Hence a sufficient condition for (41) to

hold is that, for each p′ < ∂u1(0),

∂2u2(D2(p
′)) > ∂2u1(D1(p

′)). (42)

36



Differentiating the identity ∂ui(Di(p
′)) = p′ with respect to p′ and using the fact that, for

each i, ∂2ui < 0 and ∂Di < 0, shows that (16) and (42) are equivalent. Hence the result. ¥

Proof of Example 1. The parameter restrictions imposed on v1, v2, α1, and α2 ensure

that Assumption SC is satisfied. A direct computation yields

Di(p) = max

{
WG −WB +

1

αi

ln

(
(1− p)/p

(1− vi)/vi

)
, 0

}
.

Thus (16) holds over the relevant range if α1 > α2. ¥

Proof of Example 2. A direct computation yields

Di(p) = max
{
(∂C)−1(θi − p), 0

}
.

Thus (16) holds over the relevant range if ∂2C ◦ (∂C)−1 is decreasing, that is, because

∂2C > 0, if ∂3C < 0. ¥

Proof of the Contractibility of the Set of Preferences Satisfying (16). Observe first

that the equation D(p) = (∂u)−1(p) and its inverse u(Q) =
∫ Q

0
D−1(q) dq define, over the

relevant range, a homeomorphism between the set of twice continuously differentiable and

strictly concave utility functions u over R+ and the space of continuously differentiable and

strictly decreasing demand functions D. The latter space is itself contractible, as is easily

seen by taking convex combinations λD + (1 − λ)D of demand functions, for some fixed

demand function D. Because condition (16) is, over the relevant range, linear in the strictly

negative functions ∂D1 and ∂D2, it follows that the set of pairs (D1, D2) satisfying (16) is

contractible and, hence, by homeomorphism, that so is the corresponding space of utility

functions (u1, u2). ¥

Proof of (20). It follows from the implicit function theorem that the analytic expression

for dτi/dQ|Ui=const is

− [(∂2Ui/∂Q2) + (∂2Ui/∂Q∂T )τi](∂Ui/∂T )− [(∂2Ui/∂Q∂T ) + (∂2Ui/∂T 2)τi](∂Ui/∂Q)

(∂Ui/∂T )2
. (43)

Moreover, using the fact that ∂Ui/∂T < 0, it is straightforward to check from (17) that

κi =
(∂2Ui/∂Q2) + 2(∂2Ui/∂Q∂T )τi + (∂2Ui/∂T 2)τ 2

i

(∂Ui/∂T )(1 + τ 2
i )3/2

. (44)

Using (44) to simplify (43) yields (20). ¥

Proof of Theorem 4. According to Lemmas 1–3, we only need to show that Assumptions 1-

v and 2-v2 and conditions (13)–(14) and (19) hold for preferences for types 1 and 2 in an open
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subset of Psc×Psc. We focus on the last condition, the proof for the first set of assumptions

and conditions following in a similar way. Because a cream-skimming deviation must not

attract type 2, it is sufficient to prove that (19) uniformly holds over a large enough compact

subset K of V , independent of the particular pair of preferences chosen in the required set.

To do so, take any pair of preferences (º1,º2) ∈ Psc × Psc with representation (3) over

X ≡ R+ × R as in Examples 1–2. (For instance, one may take C(Q) = Qγ/γ for 1 < γ < 2

in Example 2, assuming in addition that the inequality in (13) is strict.) Then condition (19)

is satisfied for this pair of preferences. Suppose, by way of contradiction, that condition (19)

is not satisfied over K for preferences in a neighborhood of (º1,º2) in Psc×Psc. Then there

exists a sequence {(ºn
1 ,ºn

2 )} converging to (º1,º2) in Psc × Psc and sequences {(Qn, Tn)}
and {(Q′

n, T
′
n)} in K such that, for each n,

τ1,n(Qn, Tn) = τ2,n(Q′
n, T

′
n) and κ1,n(Qn, Tn) ≤ κ2,n(Q′

n, T
′
n). (45)

Because {(ºn
1 ,ºn

2 )} converges to (º1,º2) in Psc × Psc, it follows from the definition of

the topology of Psc that, for each i, the sequences {τi,n} and {κi,n} converge uniformly to

τi and κi over K. Because K is compact, we can assume without loss of generality that

the sequences {(Qn, Tn)} and {(Q′
n, T

′
n)} converge in K to some (Q, T ) and (Q′, T ′). Taking

limits in (45) then yields that property (19) is not satisfied for (º1,º2) at (Q, T ) and (Q′, T ′),

a contradiction. Hence the result. ¥

Proof of the Necessity of (21). Suppose that the contracts offered are those of Theorem

2, and that κ2(c+c′′) > κ1(c). We show that a profitable cream-skimming deviation consists

in offering a contract c̃ in the upper contour set of c for type 1, close enough to c, and

above the line with slope v2 that passes through c and c + c′. As each type’s utility remains

available if any seller deviates unilaterally, we only need to show that type 1 is strictly better

off trading c̃ and that type 2 would be strictly worse off trading c. The first point is clear.

To show the second point, observe first that, if c̃ is close enough to c and (13) is strict, type 2

would be strictly worse off trading c̃ along with one (or two) c contract(s) instead of trading

c along with c′. Second, as c̃ is above the line with slope v2 that passes through c and c + c′,

and as τ2(c+c′) = v2, type 2 would be strictly worse off combining c̃ with c′ contract(s) only.

It thus only remains to show that type 2 would be strictly worse off trading c̃ along with c′′;

indeed, because c̃ is close to c and c + c′′ gives type 2 her maximum utility if she only trades

contracts other than c̃, and because τ2(c + c′′) = v and no contract other than c̃ is issued at

a unit price lower than v, trading further contracts would clearly be suboptimal for type 2.
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To show this, it is enough to show that, for any small enough ε,

τ1(Q1 + ε, T1(Q1 + ε)) ≷ τ2(Q1 + q′′ + ε, T2(Q1 + q′′ + ε)) if ε ≷ 0,

where the mappings Q 7→ T1(Q) and Q 7→ T2(Q) stand for the analytic expressions of the

indifference curves I1 and I2, and q′′ is the quantity specified by c′′. A sufficient condition

for this to hold is that

dτ1

dQ

∣∣∣∣
U1=U1(c)

(Q1) >
dτ2

dQ

∣∣∣∣
U2=U2(c+c′′)

(Q1 + q′′),

which, according to (20) and to the fact that τ2(c+c′′) = τ1(c), amounts to κ2(c+c′′) > κ1(c),

as postulated. Thus (21) is a necessary condition to construct an equilibrium along the lines

of Theorem 2. ¥

Proof of Example 3. By construction, θ1 − ∂C(Q1) = τ1(c) = v = τ2(c + c′′) = θ2 −
∂C(Q1 + q′′), where q′′ is the quantity specified by c′′. By quasilinearity, D1(v) = Q1 and

D2(v) = Q1 + q′′. Hence, according to (18) and to the fact that, for each i, −∂2ui = ∂2C,

comparing the curvature of I1 at c to that of I2 at c + c′′ just amounts to compare ∂2C(Q1)

to ∂2C(Q1 + q′′). Because ∂3C > 0 and q′′ > 0, one has ∂2C(Q1 + q′′) > ∂2C(Q1), so that

κ2(c + c′′) > κ1(c) and (21) is violated. ¥
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Appendix B

In this appendix, we formally construct the preference space Psc. In line with Section 2.1,

we consider regular preference relations º over an open, convex, and comprehensive set V

that contains the no-trade point (0, 0). We first impose the following restrictions on º:

(i) º is closed relative to V × V .

(ii) º is strictly monotone in transfers: if (Q, T ) ∈ V and T ′ > T , then (Q, T ) Â (Q, T ′).

(iii) º is convex: if (Q, T ) º (Q′, T ′) and λ ∈ [0, 1], then λ(Q, T )+(1−λ)(Q′, T ′) º (Q′, T ′).

(iv) º has closed upper contour sets relative to R× R.

(v) º has a boundary in V × V that is a C2 manifold.

Conditions (i) and (iii) are standard. Condition (ii) requires monotonicity of preferences

in transfers, but not necessarily in quantities. Condition (iv) is a convenient boundary

condition. Condition (v) is our basic regularity condition.

Our first task is to characterize the set P of preferences º that satisfy conditions (i)–(v).

The following notation will be useful. Let U(Q,T ) and L(Q,T ) be the upper and lower contour

sets of (Q, T ) for º, and let I(Q,T ) ≡ U(Q,T ) ∩ L(Q,T ) be the indifference set of (Q, T ) for

º. Also denote by cl and ∂ the closure and boundary operators relative to V or V × V ,

depending on the context. We start with two technical lemmas.

Lemma 5 If º satisfies (i)–(ii), then, for each (Q, T ) ∈ V,

• U(Q,T ) has a nonempty interior relative to R× R.

• I(Q,T ) = ∂U(Q,T ).

Proof. To prove the first claim, observe that V \L(Q,T ) is open relative to V by (i), and thus

relative to R×R as V is an open subset of R×R. Hence, as V \ L(Q,T ) is nonempty by (ii),

U(Q,T ) ⊃ V \ L(Q,T ) has a nonempty interior relative to R × R. To prove the second claim,

observe that, as º is closed relative to V × V by (i), U(Q,T ) and L(Q,T ) are closed relative to

V . Therefore, we have

∂U(Q,T ) ≡ cl(U(Q,T )) ∩ cl(V \ U(Q,T )) = U(Q,T ) ∩ cl(V \ U(Q,T )) ⊂ U(Q,T ) ∩ L(Q,T ) = I(Q,T ).

The reverse inclusion holds if I(Q,T ) ⊂ cl(V \ U(Q,T )), which is obviously true because, for

each (Q′, T ′) ∈ I(Q,T ), (Q′, T ′ + ε) ∈ V for any small enough ε > 0 by openness of V , and

(Q′, T ′) Â (Q′, T ′ + ε) for any such ε by (ii). The result follows. ¥
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Lemma 6 If º satisfies (i)–(iv), then, for each (Q, T ) ∈ V, ∂U(Q,T ) is connected.

Proof. We first show that U(Q,T ) does not contain a vertical line {(Q′, T ′) : T ′ ∈ R}.
Indeed, if this were the case then, by (iii), U(Q,T ) would contain all the points of the form

(1− 1/T ′)(Q, T ) + (1/T ′)(Q1, T
′) for T ′ > 1. Letting T ′ go to infinity, this would imply by

(i) that U(Q,T ) contains the point (Q, T +1), which is ruled out by (ii). Hence the claim. We

next show that, if U(Q,T ) contains a nonvertical line {(Q′, T ′) : T ′ = aQ′ + b}, then U(Q,T ) is

a union of closed half-spaces of the form

⋃

(Q̃,T̃ )∈U(Q,T )

{(Q′, T ′) ∈ R× R : T ′ ≤ T̃ + a(Q′ − Q̃)}. (46)

Indeed, in that case, it follows from (iii) that, for each (Q̃, T̃ ) ∈ U(Q,T ) and for each (Q′, Q′′) ∈
R× R such that (Q′ − Q̃)(Q′′ − Q̃) > 0 and |Q′ − Q̃| < |Q′′ − Q̃|, U(Q,T ) contains the point

[(Q′′ −Q′)/(Q′′ − Q̃)](Q̃, T̃ ) + [(Q′ − Q̃)/(Q′′ − Q̃)](Q′′, aQ′′ + b). Letting |Q′′| go to infinity

and taking advantage of (i), we obtain that U(Q,T ) contains the point (Q′, T̃ + a(Q′ − Q̃)),

and hence, by (ii), all the points (Q′, T ′) with T ′ ≤ T̃ +a(Q′− Q̃). Hence the claim as (Q̃, T̃ )

is arbitrary. It follows from (46) that U(Q,T ) is either the entire space R × R, or a closed

half-space in R × R, and thus also relative to V . The former alternative is impossible as

U(Q,T ) does not contain a vertical line. Thus the latter alternative holds, so that ∂U(Q,T ) is

a line and, therefore, is connected. Finally, suppose that U(Q,T ) does not contain a line. By

Lemma 5, U(Q,T ) has a nonempty interior in R×R. Moreover, because V is comprehensive,

U(Q,T ) is unbounded by (ii) and, according to (iv), U(Q,T ) is closed relative to R×R. Thus, as

U(Q,T ) does not contain a line, its boundary in R×R is homeomorphic to R, and is therefore

connected (Bourbaki (2003, Chapter II, §2, Exercise 19) a)). Because V is open in R × R
and U(Q,T ) is closed in R×R by (iv), the boundary of U(Q,T ) in R×R is nothing but ∂U(Q,T ).

The result follows. ¥

Lemmas 5–6 imply the following representation result.

Lemma 7 º satisfies (i)–(v) if and only if it admits a quasiconcave C2 utility function U

such that ∂U/∂T < 0 and such that U−1((−∞, υ]) is closed in R× R for all υ ∈ R.

Proof. (Direct part.) Suppose that º is representable by U . Then º trivially satisfies (i)–

(iii). Next, because U−1((−∞, υ]) is closed in R× R for all υ ∈ R, º satisfies (iv). Finally,

because U clearly has no critical point, it follows as in Mas-Colell (1985, Proposition 2.3.5)

that º satisfies (v).
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(Indirect part.) By (ii), º is locally nonsatiated, and by (v), ∂ º is a C2 manifold in

V × V . Hence º is of class C2 (Mas-Colell (1985, Definition 2.3.4)). Moreover, by Lemmas

5–6, º has connected indifference sets I(Q,T ). Hence it admits a C2 utility function U over V

with no critical point, that is, ∂U 6= 0 over V (Mas-Colell (1985, Proposition 2.3.9)). That

U is quasiconcave follows from (iii). To show that ∂U/∂T < 0, observe first from (ii) that

∂U/∂T ≤ 0. Now, if (∂U/∂T )(Q, T ) = 0, then (∂U/∂Q)(Q, T ) 6= 0 as U has no critical point.

Thus the line through (Q, T ) orthogonal to ∂U(Q, T ) which supports the convex set U(Q,T ) is

vertical. It follows then that the strict upper contour set of (Q, T ) for º, U(Q,T ) \L(Q,T ), lies

either to the left or to the right of this line, which violates (ii). Finally, that U−1((−∞, υ])

is closed in R× R for all υ ∈ R follows from (iv). The result follows. ¥

Let U be the set of quasiconcave C2 functions U : V → R such that ∂U/∂T < 0 and

such that U−1((−∞, υ]) is closed in R× R for all υ ∈ R. We know from Lemma 7 that any

preference relation in P can be represented by some function in U and, conversely, that any

function U represents a preference relation in P. For each U ∈ U, let P (U) ∈ U×U be the

preference relation represented by U . In line with Mas-Colell (1985, Chapter 2, Section 4), a

topology on P can be constructed as follows. Note that U is a subspace of C2(V ), the Polish

space of real-valued C2 functions over V endowed with the topology of uniform convergence

over compact subsets of V of functions and of their derivatives up to the order 2 (Mas-Colell

(1985, Chapter 1, K.1.2)). Then endow P with the identification topology from P , that is,

let O be open in P if P−1(O) is open in U. It will be convenient to work with a normalized

space of utility functions, Ud ≡ {U ∈ U : u(0, T ) = −T for all T such that (0, T ) ∈ V }. We

are now ready to complete the characterization of P.

Lemma 8 Ud and P are homeomorphic under the natural map P .

Proof. We must prove that P restricted to Ud is one-to-one, onto, continuous, and open.

(One-to-one.) Let U and U ′ in Ud such that P (U) = P (U ′). Then U = ξ ◦ U ′, where

ξ : U ′(V ) → R is C2, increasing, and regular (Mas-Colell (1985, Proposition 2.3.11)). But

for each υ ∈ U ′(V ), ξ(υ) = ξ(U ′(0,−υ)) = U(0,−υ) = υ, so that U = U ′.

(Onto.) Let º ∈ P, and let U ∈ U such that º = P (U) and range(U(0, ·)) = R.

Define U ′ : V → R implicitly by U(Q, T ) = U(0,−U ′(Q, T )). Clearly P (U ′) = º. We

now check that U ′ ∈ Ud. As ∂U/∂T < 0, U ′(0, T ) = −T for all T such that (0, T ) ∈ V .

That U ′ is quasiconcave follows from the observation that {(Q, T ) ∈ V : U ′(Q, T ) ≥ υ} =

{(Q, T ) ∈ V : U(Q, T ) ≥ U(0, υ)} for all υ ∈ R; this also implies that (U ′)−1((−∞, υ]) is

closed in R × R for any such υ. That U ′ is C2 follows from the implicit function theorem
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along with the fact that ∂U/∂T 6= 0. That ∂U ′/∂T < 0 follows from (∂U/∂T )(Q, T ) =

−(∂U/∂T )(0,−U ′(Q, T ))(∂U ′/∂T )(Q, T ), using again the fact that ∂U/∂T < 0. Hence

U ′ ∈ Ud, as claimed.

(Continuous.) This follows from the definition of the topology of P.

(Open.) Mimic the proof of Mas-Colell (1985, Proposition 2.4.2)). The result follows. ¥

Preferences in P are not necessarily strictly convex. Thus we must add this as a further

restriction:

(vi) º is strictly convex: if (Q, T ) º (Q′, T ′), (Q, T ) 6= (Q′, T ′), and λ ∈ (0, 1), then

λ(Q, T ) + (1− λ)(Q′, T ′) Â (Q′, T ′).

Finally, to obtain a topologically complete space of preferences, we require preferences to be

nonlinear, even in a local sense. To do so, observe that because a utility function U ∈ Ud

representing a preferenceº∈ P has no critical point, the curvature κ(Q, T ) of the indifference

curve passing through any point (Q, T ) of V is well defined and given by formula (17). The

last restriction we impose on preferences is that this curvature nowhere vanishes.

(vii) Any point of V is regular for º, that is, κ 6= 0 over V .

Preferences that satisfy conditions (vi)–(vii) are said to be differentiably strictly convex (Mas-

Colell (1985, Definition 2.6.1)). We can now define our fundamental space of preferences as

the space Psc of preferences over V that satisfy conditions (i)–(vii). According to Lemma

8, Psc can be seen as a subset of Ud and, hence, of C2(V ). Our final result is that Psc is

topologically complete, as desired, and that it is contractible.

Lemma 9 Psc is a contractible Polish space.

Proof. We first prove that Psc is a Polish space. Let {Tn} be a sequence in R increasing

to sup{T ∈ R : (0, T ) ∈ V }, and let {Kn} be a countable collection of compact convex sets

covering V . Then Psc is the intersection of the following countable families of open sets:
{

U ∈ C2(V ) :
∂U

∂T
(Q, T ) < 0 for all (Q, T ) ∈ Kn

}
,

{
U ∈ C2(V ) : there exists ε > 0 such that U(Q, T ) < U(0, Tn)

if (Q, T ) ∈ Kn and inf {‖(Q′, T ′)− (Q, T )‖ : (Q′, T ′) ∈ R× R \ V } ≤ ε

}
,

{
U ∈ C2(V ) : max{|U(0, T ) + T | : T ∈ [−n, n] and (0, T ) ∈ V } <

1

n

}
,
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{
U ∈ C2(V ) : there exists ξ : U(V ) → R such that ∂ξ > 0 over U(V )

and ∂2(ξ ◦ U) is negative definite over Kn

}
.

The first family deals with the monotonicity in transfers (condition (ii)), the second family

with the boundary condition (condition (iv)), the third family with the normalization, and

the fourth family with the differential strict convexity of preferences (conditions (vi)–(vii)),

bearing in mind that differentiably strictly convex preferences that can be represented by

a C2 function with no critical point can be represented over any compact convex set K by

a C2 utility function U with no critical point such that ∂2U is negative definite over K

(Mas-Colell (1985, Proposition 2.6.4)). Hence Psc is a Gδ in the Polish space C2(V ) and

thus, by Alexandrov’s lemma (Mas-Colell (1985, Chapter 1, A.3.4)), a Polish space itself in

the relative topology.

To prove that Psc is contractible, we exhibit a contraction h : Psc× [0, 1] → Psc, that is,

we show that the identity function on Psc is homotopic to a constant function. The proof

follows Mas-Colell (1985, Proposition 2.6.7), with some adjustments. Pick an arbitrary

º ∈ Psc with corresponding utility function U ∈ Ud. To each (U, ξ) ∈ Ud × [0, 1] we

associate a utility function Uξ ∈ Ud as follows. We first let U0 ≡ U and U1 ≡ U . For all

ξ ∈ (0, 1) and (Q, T ) ∈ V , we then let µξ(Q, T ) ∈ (0, 1/ξ) be the unique solution to

U(Q,µξ(Q, T )T ) = U

(
Q,

[
1− ξµξ(Q, T )

1− ξ

]
T

)

and we let Uξ(Q, T ) ≡ U(Q,µξ(Q, T )T ). What this transformation does is that, to each

T ′ such that (0, T ′) ∈ V , it assigns an indifference curve U−1
ξ (−T ′), which is the vertical

convex combination of U−1(−T ′) and U−1(−T ′) with weights ξ and 1 − ξ. (Bear in mind

that, by normalization, U(0, T ′) = U(0, T ′) = −T ′.) One can then verify that the mapping

h : (U, ξ) 7→ Uξ is the desired contraction. The result follows. ¥
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