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Abstract

In this paper I identify a condition on stochastic choices from budget sets, called Bayesian

GARP (BGARP), which characterizes the purchases of consumers who base their decisions

on noisy signals of price. For a balanced panel of grocery purchases, I show that while most

households fail GARP, BGARP is satis�ed. In addition, I show that BGARP is restrictive for

this data set.
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1 Introduction

There is evidence that consumers may not know the exact prices of the goods they select for

purchase (Chetty, Looney, and Kroft [2009]). Such failures could be the result of lack of attention

to prices, poor memory about prices, or uncertainty about prices due to complex pricing or tax

policies.

However, existing revealed preference tests, such as the Generalized Axiom of Revealed Pref-

erence (GARP), assume that decision makers are certain about prices when they select bundles

(see Cherchye, Crawford, De Rock, and Vermeulen [2008] for a review). This is even true for those

tests, following Varian�s [1985], that allow for error in the measurement of prices.1

�I thank Abigail Adams, Andrew Caplin, Ian Crawford, Mark Dean, Paola Manzini, Marco Mariotti, Hiroki

Nishimura, Collin Raymond, and John Quah for valuable comments.
yParis School of Economics.
1The substantive di¤erence between measurement error and imperfect perception is that measurement error does

not impact the consumer�s optimization problem, whereas imperfect perception does.
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In this paper I produce a revealed preference test for a simple model of consumption in which

consumers base their purchases on noisy signals of price. In the spirit of Afriat [1967] and Varian

[1982], this test is nonparametric. In addition to no functional form assumptions about utility,

there are also no functional form assumptions about signals. The only two assumptions I preserve

are common to most models of demand with uncertainty: utility maximization and Bayes�rule.

I call the condition that characterizes this behavior Bayesian GARP (BGARP) because of its

close connection to traditional GARP. There are two innovations in this test that allow it to account

for noisy signals of price. The �rst is that unlike GARP, BGARP is a revealed preference condition

on stochastic choices, as in Hoderlein and Stoye [2013], Caplin and Dean [2014], Caplin and Martin

[2014a,b], and Manzini and Mariotti [2014]. The second is that revealed preferences are determined

using an expected price that is generated by looking across all budget sets where a bundle is chosen.

I apply GARP and BGARP to a balanced panel of grocery purchases for 977 households in the

Denver metropolitan area over 2 years.2 It is in a similar setting and for a similar set of goods

that Chetty, Looney, and Kroft [2009] �nd that consumers are uncertain about price. For these

purchases, I �nd that almost half of households fail GARP. However, I �nd that BGARP is satis�ed.

Moreover, BGARP is restrictive for this data set: for three forms of simulated choice, BGARP is

rarely satis�ed.

2 Theory

In the model I characterize, consumers make standard consumption choices, but are uncertain about

the prices of goods. Formally, in each decision problem consumers face a price vector p 2 P � Rn++
and choose a bundle x 2 Rn+. Let X be the �nite set of observed choices, and P be the �nite set of

possible price vectors. In most theoretical work, the set P is assumed to be in�nite, but it is natural

to imagine that this set is large, but �nite, because stores may be limited in the prices they can

realistically set. In addition, there is a probability distribution over possible prices � 2 � = �(P ).

Let �p be the probability of price p.
3

2As in Hoderlein and Stoye [2013], stochastic choice functions are generated by looking across households. However,

I attribute variation in choices to variation in perception, not variation in preferences.
3A suitably amended version of the characterization theorem also holds when this probability distribution is

unobservable or decision makers hold subjective priors.
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Because consumers are uncertain about prices when they select a bundle, it is necessary to make

assumptions about the budget constraint that consumers face. I assume that they maximize subject

to an expected budget constraint in each decision problem.4 In an era of ubiquitous consumer credit,

it seems reasonable to assume that most consumers do not have a hard budget constraint when

they make smaller purchases, but instead maximize over a long run constraint. In section 2.1, I

present a behaviorally equivalent representation with a �xed budget and an unobservable residual

good.

The data set I consider is a set of stochastic choices from these decision problems, given by

the function q, which is a map from possible prices P into probability distributions over observed

bundles X. Let qxp be the probability of choosing bundle x when the price is p.

The revealed preference exercise is to �nd unobservables as if consumers base their purchase

decisions on noisy signals of price. For this exercise, I use the imperfect perception framework

of Caplin and Martin [2014a], which has three unobservables: a perception function �, a choice

function C, and a utility function U .

The perception function summarizes the consumer�s private information about price. It is a

function,

� : P ! �(�)

that maps prices into probability distributions with �nite support over posterior beliefs  2 �.5

Let � (�) be the set of possible posterior beliefs for a given set of prior beliefs �, and p be the

posterior belief of price p. The perception function is assumed to satisfy Bayes�Rule, so that,

p =
�p�p ()P
r2P �r�r ()

for all  2 � (�) and p 2 P:

Next, the choice function C : �! �(X) maps posterior beliefs into bundle choices and allows

for mixed strategies. Finally, the utility function U : X ! R+ over bundles is assumed to be

nonsatiated, continuous, concave, and monotonic.
4Because prices are almost always treated as known to decision makers, expected budget constraints are not

standard in the literature. One exception is Feenstra [1986], who considers a precautionary model with an expected

budget constraint because individual must make several decisions before price uncertainty is resolved. Another is

Varian [1988], who considers choices from Arrow-Debreu contingent commodities that have consumption and prices

which vary by state.
5Kamenica and Gentzkow [2011] establish that it is possible to work directly with posterior beliefs, so it is not

necessary to specify the exact signal process.
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For choices from budget sets, a Bayesian expected utility maximizing (BEU) representation is

de�ned by the following three conditions.

De�nition 1 (�;C; U) is a BEU representation of (X;P; �; q) if it satis�es:

1. Data Matching: For all p 2 P and x 2 X,

qxp =
X
2�(�)

�p ()C
x():

2. Bayesian Updating: For all p 2 P and  2 �(�),

p =
�p�p()P
r2P �r�r()

:

3. Maximization: For all  2 �(�) and x 2 X such that Cx() > 0,

U (x) � U (y)

for all y 2 X such that, X
p2P

ppx �
X
p2P

ppy.

There are two extreme cases nested inside of this Bayesian approach. The �rst is full information,

in which prices are known with certainty. In this case, consumers can still mix between indi¤erent

bundles, so the representation does not collapse to the standard deterministic one. The second is

no information (beyond the prior), which is often called the �null� information structure. In this

case, the perception function does not vary with price, so by Data Matching, the data should also

not vary with price.

This Bayesian approach also nests a type of �salience�in which consumers only notice extreme

prices (relative to the prior) as in Bordalo, Gennaioli, and Shleifer (2013). With such an information

structure, the perception function for an extreme price (one that is far from the expected price)

would put a large weight on posteriors that give a high probability to that extreme price. This

would satisfy Bayes� rule if the overall probability of that posterior re�ected the probability of

encountering the extreme price. In the languages of signals, this would be as if the consumer gets

a very informative signal only in the case of extreme prices.
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However, some behavioral biases related to signals are not included in the Bayesian approach.

For example, an optimistic consumer who overweighs positive signals about price (signals of low

price) or an overcon�dent consumer who overweighs the precision of their signals about price may

not satisfy Bayes�rule.

To characterize the BEU representation, I �rst de�ne the direct revealed preference relation

BR0 as xBR0y if, X
p2P

�pq
x
ppx �

X
p2P

�pq
x
ppy.

This relation says that x is revealed preferred to y if the expenditure of bundle x, given the expected

price whenever x is chosen, is at least as high as the expenditure of bundle y, given the expected price

whenever x is chosen. The central feature of this relation is looking across all decision problems

where the bundle x is chosen.

Let BR be the transitive closure of BR0. Further, the strict relation BP is de�ned as xBPy if,

X
p2P

�pq
x
ppx >

X
p2P

�pq
x
ppy.

These two relations can be used to produce the following revealed preference condition.

De�nition 2 (X;P; �; q) satis�es Bayesian GARP (BGARP) if whenever xBRy, then not

yBPx.

The following theorem establishes that this condition is both necessary and su¢ cient for the

decision maker to be modeled as basing their purchase decisions on noisy signals of price. The

necessity of BGARP is straightforward, but the su¢ ciency is more surprising. If BGARP is satis�ed,

there always exists a signal process that can rationalize the observed data.

Theorem 1 (X;P; �; q) has a BEU representation if and only if it satis�es Bayesian GARP

(BGARP).

Proof. Necessity: Suppose that (�;C;U) de�ne a BEU of (X;P; �; q). First, assume xBRy, so

that, X
p2P

�pq
x
ppx � ::: �

X
p2P

�pq
x
ppy.
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By Data Matching, division by
P
r2P �r�r(), and Bayesian Updating,X

p2P

X
2�(�)

�p�p ()C
x()px �

X
p2P

X
2�(�)

�p�p ()C
x()py.

For this to hold, it must be that for some  where Cx() > 0,X
p2P

ppx �
X
p2P

ppy.

Thus, by Maximization U (x) � U (y). Next, assume that BGARP does not hold, so that yBPx

or, X
p2P

�pq
y
ppy >

X
p2P

�pq
y
ppx.

Following the steps above, this implies that U (y) > U (x), a contradiction.

Su¢ ciency: Assume that (X;P; �; q) satis�es BGARP. The next steps will identity ��, �C, and

�U such that (��; �C; �U) provides a BEU representation of (X;P; �; q). Given x 2 X and p 2 P , de�ne

the posterior �xp by,

�xp �
�pq

x
pP

r2P �rq
x
r

:

Because actions can have identical posteriors, it is necessary to partition the set of chosen

bundles into H � jXj sets, where all bundles in a partition have identical posteriors. Let �X(h) be

the h-th partition of bundles with identical posteriors, and �(h) be the distinct posterior for that

partition. Technically, x; y 2 �X(h) if and only if �x = �y = �(h). Hence for x; y 2 �X(h) and p 2 P ,X
r2P

�rq
y
r = �pq

y
p

�P
r2P �rq

x
r

�pq
x
p

�
: (1)

De�ne the domain of the perception function as �(��) = [Hh=1�(h). De�ne the perception function

itself as,

��p(�(h)) =
X

y2 �X(h)

qyp : (2)

De�ne the choice function as,

�Cx(�(h)) =

8<:
P
r2P �rq

x
rP

y2 �X(h)

P
r2P �rq

y
r
2 (0; 1] if x 2 �X(h);

0 if x =2 �X(h):
; (3)

Finally, to de�ne the utility function �U , �rst de�ne the expected price px as,

px =
X
p2P

�pq
x
pp.

6



Thus, xBR0y if pxx � pxy and xBPy if pxx > pxy. From BGARP, we know that GARP is

satis�ed for the observations f(px; x)gx2X . Hence, using the main results from Afriat (1967) and

Varian (1985), it is possible to construct a nonsatiated, continuous, concave, and monotonic �U with

�U (x) � �U (y) for all y 2 X such that pxx � pxy.

To verify (��; �C; �U) provides a BEU representation of (X;P; �; q), it is necessary to show that it

satis�es Data Matching, Bayes�Rule, and Maximization. To show that Data Matching is satis�ed,

�rst note that by construction, given p 2 P and x 2 �X(h), the choice function sets �Cx(�(h)) = 0

unless x 2 �X(h). Also, from substitution of equations (2) and (3), for each p 2 P and x 2 �X(h),

X
2�(��)

��p() �C
x() =

HX
h=1

��p(�(h)) �C
x(�(h)) =

HX
h=1

0@ X
y2 �X(h)

qyp

1A" P
r2P �rq

x
rP

y2 �X(h)
P
r2P �rq

y
r

#
: (4)

Further, from equation (1), X
y2 �X(h)

X
r2P

�rq
y
r =

X
y2 �X(h)

�pq
y
p

�P
r2P �rq

x
r

�pq
x
p

�
: (5)

By substituting equation (5) into the denominator of equation (4),

HX
h=1

��p(�(h)) �C
x(�(h)) =

HX
h=1

0@ X
y2 �X(h)

qyp

1A" �pq
x
pP

y2 �X(h) �pq
y
p

#
=

HX
h=1

P
y2 �X(h) �pq

y
pqxpP

y2 �X(h) �pq
y
p

= qxp

HX
h=1

"P
y2 �X(h) �pq

y
pP

y2 �X(h) �pq
y
p

#
= qxp ;

which con�rms Data Matching.

To show that Bayesian Updating is satis�ed, note from Data Matching that for all p 2 P ,

1 � h � H; �(h) 2 �(�), and x 2 �X(h),

�p(h) =
�pq

x
pP

r2P �rq
x
r

=
�p��p(�(h)) �C

x(�(h))P
r2P �r��r(�(h))

�Cx(�(h))
=

�p��p(�(h))P
r2P �r��r(�(h))

:

Finally, to show that Maximization is satis�ed, �rst note that by construction for all x; y 2 X

and �(h) 2 �(��), if �Cx(�(h)) > 0 and �U (x) � �U (y) then
P
p2P �pq

x
ppx �

P
p2P �pq

x
ppy. Then

note that for each p 2 P , 1 � h � H and x 2 �X(h),

�pq
x
p = �p(h)

X
r2P

�rq
x
r ;

so, X
p2P

�p(h)
X
r2P

�rq
x
r px �

X
p2P

�p(h)
X
r2P

�rq
x
r py:
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Division by the constant
P
r2P �rq

x
r > 0 then yields,X
p2P

�p(h)px �
X
p2P

�p(h)py:

As mentioned previously, BGARP can be applied even when � is not known or decision makers

are assumed to hold subjective priors. This is accomplished by modifying the theorem to require

that there exists a prior such that BGARP is satis�ed. Varian [1983] suggests a similar approach

in his tests of expected utility theory. Clearly, this modi�cation makes BGARP less restrictive, but

it does not lose its restrictiveness entirely.

2.1 Fixed Budget Constraint

A behaviorally equivalent representation to the BEU representation is one in which consumers

(1) have a �xed budget, (2) purchase an unobservable residual good of a �xed price q > 0 using

the remainder of their unspent budget set, and (3) get utility ~u, which is strictly increasing over

their utility from the observable bundle x and their expectation of the residual good. Let y 2 R+
represent their expectation of the residual good. For this alternative representation, Maximization

is replaced with: there exists y � 0 and q > 0 such that for all  2 �(�) and x 2 X such that

Cx() > 0,

max
x2X

~u (U (x) ; y)

subject to, X
p2P

ppx+ qy � m.

The results in Polisson and Quah [2013] can be applied in the proof above to show that this

representation holds if and only if BGARP is satis�ed.

3 Application

I test GARP and BGARP on a balanced panel of consumption choices for 977 households in the

Denver metropolitan area. This data set, which is derived from a data set used by Aguiar and

Hurst [2007], contains all packaged grocery purchases over a two year period (February 1993 to
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February 1995).6 Products are aggregated into three categories (beverages, meals, and snacks),

and to reduce storage concerns, consumption is aggregated at the monthly level, producing 24

observations for each household. A market level price index for each month is then constructed

using observed purchases. Since the exact same bundle is very rarely purchased twice, the set of

bundles X is constructed by rounding the quantity consumed to the nearest quartile. This produces

64 representative bundles. As a robustness check, I show how the results change if quantities are

rounded to the nearest octile, for which there are 512 representative bundles.

Of the 977 households, only 57.5% pass GARP in the baseline case, and only 36.1% in the

robustness check. One possibility is that these violations are due to uncertainty about prices. In

fact, Chetty, Looney, and Kroft [2009] conduct a survey for similar goods in similar settings and

�nd uncertainty about prices.7 It is possible to account for this possibility by using the BGARP

condition.

However, before testing BGARP, it is �rst necessary to estimate the stochastic choice function q

and probability distribution of prices �. The data set q is estimated by determining the distribution

of bundle choices across households at each vector of prices (the price in each period). In order

to pool choices across households, I make a number of additional assumptions that are frequently

used in the applied literature, but are admittedly unrealistic. For instance, I assume homogeneity

(of perception and preferences) and stationarity (of preferences and the price distribution).8 Ho-

mogeneity is needed to create a distribution of choices for each price line. Stationarity is needed to

pool household choices across time.9 Finally, to produce �, I assume that all observed prices have

equal likelihood.10

Given the estimated q and �, it is possible to test BGARP.11 The results are presented in table

1. In the baseline case, BGARP is satis�ed, even though there 2,068 pairs in the relation BR. On

6For a detailed description of the data set used in this analysis, see Dean and Martin [2014].
7This is especially true when tax is not included in the price, as in this area.
8For other data sets, some of these assumptions may not be needed. For example, in the �eld experiments of Choi,

Kariv, Müller, and Silverman [2012] choices are taken from many budget sets in a very short amount of time and the

distribution of prices is set exogenously.
9 In many settings, there is seasonal variation in the distribution of priors, especially in grocery purchases. To

make the stationarity assumption more palatable, one could test choices in each season separately.
10 In the analysis that follows, I demonstrate the restrictiveness of BGARP �rst for the equiprobable prior and then

for the case of subjective priors.
11The estimation of q and � might introduce error into the BGARP test. See Caplin and Dean [2014] for a statistical

approach to testing stochastic choice axioms when there are just two actions.
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Baseline Robustness

Number of households 977 977

Pass GARP 57.5% 36.1%

Pass BGARP Yes No

Number of bundles 64 512

Number of relations 2,068 131,736

Number of violations 0 649

Table 1: Summary statistics for GARP and BGARP tests

Type 1 Type 2 Type 3

Number of simulations 1,000 1,000 1,000

Pass BGARP 8.3% 2.7% 1.9%

Average relations 2,081 2,082 2,081

Average violations 5.2 8.5 8.0

Pass BGARP (some prior) 93.3% 57.1% 59.3%

Table 2: Restrictiveness of GARP and BGARP tests

the other hand, BGARP is not satis�ed in the robustness check. However, less than 0.5% of pairs

in the relation BR generate a violation. Given the robustness of these results, it is fair to ask about

the restrictiveness of the condition.

To show the restrictiveness of BGARP for this data set, simulated choices can be run through

the same test. In the baseline case, I �nd that BGARP is almost always violated for three types of

simulated choices. For the �rst type of simulation, the stochastic choice function qxp is determined

by taking for each price p the distribution of bundle choices for some other p (chosen with equal

probability). For the second, the stochastic choice function qxp is determined by taking for each

bundle x the joint distribution for some other x (chosen with equal probability). For the last, the

stochastic choice function qxp is determined by taking for each price p a random distribution of

bundle choices (chosen with uniform probability from all possible distributions).

The results of these tests are presented in table 2. Although the average number of violations

is not large, almost all of the simulations fail BGARP.

If decision makers are allowed to hold subjective priors, the restrictiveness of BGARP can be
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determined by looking to see whether there exists a prior that would rationalize the simulated data.

To do this, I generate 100 uniform random priors for each simulated data set and test BGARP for

those priors. The results are presented in the bottom row of table 2. Except for the �rst type of

randomization, BGARP continues to be restrictive, in that over 40% of simulations fail BGARP

for all 100 of the random priors.

4 Concluding Remarks

In the language of Varian [1982], this paper develops a test of �consistency� with a model in

which consumers base their purchase decisions on noisy signals of price. It is also possible to use

the results of this paper to pursue �recoverability�, both in terms of the utility function and the

perception function. The utility function can be bounded by combining the expected prices that are

�revealed�by choice with the techniques demonstrated by Varian [1982]. The perception function

can be recovered using the �revealed�posteriors, as demonstrated in Caplin and Dean [2014].

Also, as mentioned in the introduction, the existing literature includes tests that assume a

speci�c form for error in the measurement of prices. In this paper, I do not assume there is

measurement error in prices, which is realistic for the detailed scanner data used in the application.

Instead, I assume that the decision maker is uncertain about prices, and I place no functional form

assumptions on the signals about price they receive.
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