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Abstract

We study the validity of the pairs bootstrap for Lasso estimators in linear regression

models with random covariates and heteroscedastic error terms. We show that the naive

pairs bootstrap may have some issues in approximating the sampling distribution of the

Lasso estimator. In particular, we identify two different sources for the failure of the boot-

strap. First, in the bootstrap samples the Lasso estimator fails to correctly mimic the

population moment condition satisfied by the regression parameter. Second, the bootstrap

Lasso estimation criterion does not reproduce the sign of the zero coefficients with sufficient

accuracy. To overcome these problems we introduce a modified pairs bootstrap procedure

that consistently estimates the distribution of the Lasso estimator. Finally, we consider

also the adaptive Lasso estimator. Also in this case, we show that the modified pairs boot-

strap consistently estimates the distribution of the adaptive Lasso estimator. Monte Carlo

simulations confirm a desirable accuracy of the modified pairs bootstrap procedure. These

results show that when properly defined the pairs bootstrap may provide a valid approach

for estimating the distribution of Lasso estimators.
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1 Introduction

1.1 Background and Results

Consider the linear regression model

yt =

p∑
i=1

βixt,i + εt, t = 1, . . . n, (1)

where yt is the response variable, xt = (xt,1, . . . , xt,p)
′ is a vector of covariates, εt is the disturbance

of the regression, and β = (β1, . . . , βp)
′ is the unknown parameter of interest. Throughout the

paper, we assume that p is fixed, while n is large (the extension of our theoretical results to
high-dimensional settings where the regression parameter is allowed to depend on the sample
size n is briefly discussed in Remark 8 below). Furthermore, we also assume that the covariate
vector xt is random, and the error term εt may be related to xt.

In the first part of the paper, we focus on the Lasso estimator β̂Ln = (β̂Ln,1, . . . , β̂
L
n,p)
′ of β

defined as

β̂Ln = argmin
u

n∑
t=1

(yt − u′xt)2 + λn

p∑
i=1

|ui|, (2)

where λn > 0 is a tuning parameter. Since the introduction in Tibshirani (1996), Lasso estima-
tors attained widespread applicability in different statistics and econometrics problems. Indeed,
the Lasso approach enjoys many desirable properties. In particular, besides point estimation
Lasso estimators may also perform valid model selection. Therefore, in several settings they
may be preferred to alternative estimating procedures such as least squares estimators, among
others. Important studies that investigate the model-consistency properties of the Lasso ap-
proach include Zhao and Yu (2006), Wainwright (2006), and Zou (2006); see also Bühlmann and
van de Geer (2011) for a detailed discussion on the properties of Lasso estimators.

Knight and Fu (2000) derive the limit distribution of the Lasso estimator in linear regression
models with nonrandom covariates and homoscedastic error terms. Wagener and Dette (2012)
extend the results in Knight and Fu (2000) to linear regression models with nonrandom covariates
and heteroscedastic error terms. By adapting their approach to our setting, we derive the
limit distribution of the Lasso estimator in linear regression models with random covariates
and heteroscedastic error terms. In particular, we show that under some regularity conditions
the law of TLn =

√
n(β̂Ln − β) converges weakly to TL = argminu∈Rp RL(u), where RL(u) is a

random process over Rp. As highlighted in Chatterjee and Lahiri (2010), limit distributions of
this form are quite complicated, and in practice it may be difficult to construct confidence sets
or implement testing hypotheses on the regression parameter. Therefore, also in our setting it is
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suitable to verify whether we may approximate the sampling distribution of TLn with alternative
methods. To this end, we investigate the validity of bootstrap approximations.

In this setting, the standard approach to bootstrapping is the pairs bootstrap; see, e.g.,
Freedman (1981). More precisely, let (z1, . . . , zn) be the observation sample, where for t =

1, . . . , n, zt = (yt, x
′
t)
′. The pairs bootstrap constructs random samples (z∗1 , . . . , z

∗
n) by selecting

from (z1, . . . , zn) with replacement. Let β̂L∗n be the solution of (2) based on the bootstrap
sample (z∗1 , . . . , z

∗
n). The pairs bootstrap approximates the sampling distribution of TLn with

the (conditional) distribution of TL∗n =
√
n(β̂L∗n − β̂Ln ) given the observations (z1, . . . , zn). In

this paper, we show that this approach may have some issues in estimating the distribution
of TLn . In particular, we identify two different sources for the failure of the pairs bootstrap.
First, note that (typically) the regression parameter β satisfies the population moment condition
E[(yt−x′tβ)xt] = 0. On the other hand, E∗[(y∗t −x′∗t β̂Ln )x∗t ] 6= 0, where E∗ denote the expectation
with respect to the distribution of the bootstrap sample conditional on the original sample.
Therefore, the bootstrap moment condition based on the Lasso estimator does not correctly
mimic the population moment condition. This distortion may heavily deteriorate the accuracy
of the pairs bootstrap approximation. Finally, the second source of the failure of the pairs
bootstrap is related to the incapability of the Lasso estimator of capturing the sign of the zero
coefficients with sufficient high probability. Indeed, because of this inaccuracy the bootstrap
Lasso estimation criterion does not properly reproduce the sign of the zero coefficients.

To overcome these problems, we introduce a modified pairs bootstrap procedure. In par-
ticular, first we propose to recenter the bootstrap statistic with respect to the least squares
estimator β̂LSn instead of the Lasso estimator β̂Ln . Note that the least squares estimator β̂LSn
is defined as the solution of (2) with λn = 0. Furthermore, it is important to highlight that
E∗[(y∗t − x′∗t β̂LSn )x∗t ] = 0. Therefore, the least squares estimator correctly mimics the population
moment condition E[(yt − x′tβ)xt] = 0. Second, we replace the standard Lasso estimation cri-
terion with an adjusted bootstrap Lasso estimation criterion that properly reproduces the sign
of the zero coefficients. By adopting these two corrections, we show that the modified pairs
bootstrap consistently estimates the distribution of TLn .

Finally, in the last part of the paper we focus also on the adaptive Lasso estimator β̂ALn =

(β̂ALn,1 , . . . , β̂
AL
n,p )′ of β defined as

β̂ALn = argmin
u

n∑
t=1

(yt − u′xt)2 + λn

p∑
i=1

λn,i|ui|, (3)

where λn > 0 is a tuning parameter, λn,i = 1/|β̂n,i|γ, γ > 0, and β̂n,i is a root-n consistent
estimator of βi. Zou (2006) shows that in linear regression models with nonrandom covariates
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and homoscedastic error terms the adaptive Lasso possesses the so-called oracle properties.
More precisely, the adaptive Lasso performs correct model selection. Furthermore, the adaptive
Lasso estimates the nonzero coefficients of the regression parameter with the same efficiency
(asymptotically) of the least squares estimator. Wagener and Dette (2012) extend the results
in Zou (2006) to linear regression models with nonrandom covariates and heteroscedastic error
terms. By adapting their approach to our setting, we show that the adaptive Lasso possesses
the oracle properties also in linear regression models with random covariates and heteroscedastic
error terms. Furthermore, we study the validity of the pairs bootstrap in approximating the
sampling distribution of TALn =

√
n(β̂ALn − β). In particular, we show that also in this case the

modified pairs bootstrap consistently estimates the distribution of the adaptive Lasso estimator.

1.2 Contributions to the Literature

Existing literature mainly focuses on the validity of residual bootstrap methods for Lasso estima-
tors in homoscedastic linear regression models, when the dimension p of the regression parameter
β is fixed, and the sample size n is large. In particular, Chatterjee and Lahiri (2010) show that
the naive residual bootstrap does not provide a valid method for approximating the sampling
distribution of the Lasso estimator. On the other hand, Chatterjee and Lahiri (2011) prove
that the naive residual bootstrap consistently estimates the distribution of the adaptive Lasso
estimator. Moreover, Chatterjee and Lahiri (2011) also introduce a modified residual bootstrap
procedure for the Lasso estimator. Finally, Hall, Lee and Park (2009) define an m-out-of-n
residual bootstrap approach for the optimal selection of tuning parameters in adaptive Lasso
settings. In this paper, we focus instead on the validity of the pairs bootstrap for Lasso estima-
tors in more general heteroscedastic linear regression models. The more detailed contributions
to the literature are as follows.

First, we show that the naive pairs bootstrap may have some issues in approximating the
sampling distribution of the Lasso estimator. This result completes and extends the findings
in Knight and Fu (2000) and Chatterjee and Lahiri (2010) on the inconsistency of the residual
bootstrap for the Lasso estimator. In particular, Chatterjee and Lahiri (2010) show that the
(only) source of the inconsistency of the residual bootstrap is related to the incapability of the
Lasso estimator of capturing the sign of the zero coefficients with sufficient high probability.
On the other hand, in this paper we identify two different sources for the failure of the pairs
bootstrap: (i) the bootstrap moment condition based on the Lasso estimator does not correctly
mimic the population moment condition satisfied by the regression parameter, and (ii) the pairs
bootstrap Lasso estimation criterion does not properly reproduce the sign of the zero coefficients.
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Second, to overcome these problems we introduce a modified pairs bootstrap procedure that
consistently estimates the distribution of the Lasso estimator. The definition of this bootstrap
method partly relies on the thresholding approach introduced in Chatterjee and Lahiri (2011).
However, the implementation of the modified pairs bootstrap differs considerably from the resid-
ual bootstrap defined in Chatterjee and Lahiri (2011). In particular, to ensure the consistency of
the bootstrap we propose to recenter the bootstrap statistic, and to adjust the bootstrap Lasso
estimation criterion (see Equation (5) below for more details). To the best of our knowledge,
this is the first paper in the Lasso literature that proposes adjustments of the bootstrap Lasso
estimation criterion.

Third, we show that the modified pairs bootstrap can also be implemented to approximate
the sampling distribution of the adaptive Lasso estimator. Since the adaptive Lasso estimator
fails to correctly mimic the population moment condition satisfied by the regression parameter,
the naive pairs bootstrap may have some issues in approximating also the sampling distribution
of TALn . To overcome this problem, we introduce the modified pairs bootstrap and prove its
consistency. Note that also in this setting the modified pairs bootstrap differs considerably from
the residual bootstrap method proposed in Chatterjee and Lahiri (2011), and the wild bootstrap
approach introduced in Minnier, Tian and Cai (2011). In conclusion, these results show that
when properly defined the pairs bootstrap may provide a valid approach for estimating the
distribution of Lasso estimators.

1.3 Outline of the Paper

In Section 2, we consider the pairs bootstrap for the Lasso estimator. In particular, in Section
2.1 we consider the naive pairs bootstrap, while in Section 2.2 we introduce the modified pairs
bootstrap. In Section 3, we focus on the pairs bootstrap for the adaptive Lasso estimator.
In Section 4, we study through Monte Carlo simulations the accuracy of bootstrap methods.
Finally, in Section 5 we provide some concluding remarks.

2 Pairs Bootstrap for the Lasso Estimator

2.1 The Naive Pairs Bootstrap

Consider the regression model (1) and the Lasso estimator β̂Ln defined in (2). In this section,
we study the validity of bootstrap methods in approximating the sampling distribution of TLn =
√
n(β̂Ln − β). Before presenting the main results, we introduce the following assumption.
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Assumption 2.1. The vectors zt are independent, with common distribution. Furthermore, let
E[‖zt‖4] < ∞, where ‖ · ‖ is the Euclidian norm. The parameter β minimizes E[(yt − x′tβ)2].
Finally, let C = E[xtx

′
t] be positive definite, and the law of 1√

n

∑n
t=1 xtεt converges weakly to

normal with mean 0 and variance-covariance Ω.

Assumption 2.1 is a set of mild conditions which are also required to prove the consistency
of the pairs bootstrap in estimating the distribution of the least squares estimator in linear
regression models with random covariates and heteroscedastic error terms; see, e.g., Freedman
(1981). Note that Assumption 2.1 also implies that β satisfies the moment condition E[(yt −
x′tβ)xt] = 0. In the next lemma we derive the limit distribution of TLn .

Lemma 2.1. Let Assumption 2.1 hold. If λn√
n
→ λ0 ≥ 0, then the law of

√
n(β̂Ln − β) converges

weakly to TL = argminu∈Rp RL(u), where

RL(u) = −2u′W + u′Cu+ λ0

p∑
i=1

[uisgn(βi)I(βi 6= 0) + |ui|I(βi = 0)],

W ∼ N(0,Ω), and I(·) is the indicator function.

Proof. To prove Lemma 2.1 we adopt the same arguments of the proof of Theorem 2 in Knight
and Fu (2000). More precisely, first we show that TLn minimizes a particular objective function
RL
n(u). Then, we compute the limit of RL

n(u) denoted by RL(u). Finally, using the results in
Geyer (1994), we conclude that the law of TLn converges weakly to TL = argminu∈Rp RL(u).

To this end, let

RL
n(u) =

n∑
t=1

[
(εt − u′xt/

√
n)2 − ε2t

]
+ λn

p∑
i=1

[
|βi + ui/

√
n| − |βi|

]
.

Note that RL
n(u) is minimized at

√
n(β̂Ln − β). Consider the first term of RL

n(u). In particular,
we have

n∑
t=1

[
(εt − u′xt/

√
n)2 − (εt)

2
]

= − 2√
n

n∑
t=1

u′xtεt +
1

n

n∑
t=1

u′xtx
′
tu.

Note that 1
n

∑n
t=1 xtx

′
t converges in probability to C. Furthermore, the law of 1√

n

∑n
t=1 xtεt

converges weakly to normal with mean 0 and variance-covariance Ω.
Next, consider the second term of RL

n(u). Then, as in Knight and Fu (2000) we can show
that the limit of this term is

λ0

p∑
i=1

[uisgn(βi)I(βi 6= 0) + |ui|I(βi = 0)].

Therefore, by Geyer (1994) Theorem 2.1 is established.
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By comparing the results in our Lemma 2.1 with those in Theorem 2 in Knight and Fu
(2000), and Lemma 3.1 in Wagener and Dette (2012), we can observe that there are some
obvious similarities between the limit distribution of the Lasso estimator in our setting and
in linear regression models with nonrandom covariates. Furthermore, when λ0 = 0, then
argminu∈Rp R(u) = C−1W ∼ N(0, C−1ΩC−1). Therefore, in this case we have the same limit
distribution of the least squares estimator; see, e.g., Freedman (1981). On the other hand, when
λ0 > 0, then it may be quite complicated to construct confidence sets or implement testing
hypotheses on the regression parameter β using the limit distribution of TLn .

After presenting the limit distribution of TLn , we consider bootstrap approximations. In
this setting, the standard approach to bootstrapping is the pairs bootstrap. More precisely, let
(z∗1 , . . . , z

∗
n) be a random sample selected from (z1, . . . , zn) with replacement. We introduce the

bootstrap Lasso estimator β̂L∗n defined as

β̂L∗n = argmin
u

n∑
t=1

(y∗t − u′x∗t )2 + λn

p∑
i=1

|ui|.

Finally, we approximate the sampling distribution of TLn =
√
n(β̂Ln − β) with the (conditional)

distribution of TL∗n =
√
n(β̂L∗n − β̂Ln ) given the observations (z1, . . . , zn).

To verify the validity of the pairs bootstrap approximation, we apply the same approach
adopted in the proof of Theorem 2.1, and in Section 4 in Knight and Fu (2000). More precisely,
first we show that TL∗n minimizes a particular objective function RL∗

n (u). Then, we compute the
limit of RL∗

n (u) denoted by RL∗(u). Finally, we compare RL∗(u) with RL(u).
To this end, let

RL∗
n (u) =

n∑
t=1

[
(ε̂L∗t − u′x∗t/

√
n)2 − (ε̂L∗t )2

]
+ λn

p∑
i=1

[
|β̂Ln,i + ui/

√
n| − |β̂Ln,i|

]
,

where ε̂L∗t = y∗t − x′∗t β̂Ln . Note that RL∗
n (u) is minimized at

√
n(β̂L∗n − β̂Ln ). Consider the first

term of RL∗
n (u). In particular, we have

n∑
t=1

[
(ε̂L∗t − u′x∗t/

√
n)2 − (ε̂L∗t )2

]
= − 2√

n

n∑
t=1

u′x∗t ε̂
L∗
t +

1

n

n∑
t=1

u′x∗tx
′∗
t u

= − 2√
n

n∑
t=1

u′x∗t (ε̂
L∗
t − ε̂LS∗t )− 2√

n

n∑
t=1

u′x∗t ε̂
LS∗
t +

1

n

n∑
t=1

u′x∗tx
′∗
t u

= − 2√
n

n∑
t=1

u′x∗tx
′∗
t (β̂LSn − β̂Ln )− 2√

n

n∑
t=1

u′x∗t ε̂
LS∗
t +

1

n

n∑
t=1

u′x∗tx
′∗
t u,

where ε̂LS∗t = y∗t − x′∗t β̂
LS
n . Note that under Assumption 2.1, we can show that 1

n

∑n
t=1 x

∗
tx
′∗
t

converges in conditional probability to C, while the conditional law of 1√
n

∑n
t=1 x

∗
t ε̂
LS∗
t converges

weakly to normal with mean 0 and variance-covariance Ω; see, e.g., Freedman (1981).
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Suppose that
√
n(β̂Ln − β) converges weakly to UL = (UL

1 , . . . , U
L
p )′. Then, using the same

arguments in Section 4 in Knight and Fu (2000) we can show that the second term of RL∗
n (u)

converges to

λ0

p∑
i=1

[uisgn(βi)I(βi 6= 0) + (|ui + UL
i | − |UL

i |)I(βi = 0)].

Furthermore, suppose that
√
n(β̂LSn − β̂Ln ) converges weakly to ULS,L = (ULS,L

1 , . . . , ULS,L
p )′.

Then, we can conclude that RL∗
n (u) converges to

RL∗(u) = −2u′CULS,L − 2u′W + u′Cu+ λ0

p∑
i=1

[uisgn(βi)I(βi 6= 0) + (|ui + UL
i | − |UL

i |)I(βi = 0)],

where W ∼ N(0,Ω). By comparing RL(u) with RL∗(u), we can note two important differences.
First, the term −2u′CULS,L appears only in RL∗(u), while it is not included in the definition of
RL(u). Second, the penalization of the zero coefficients in RL(u) and RL∗(u) is slightly different.
Note that the source of the term −2u′CULS,L in the definition of RL∗(u) is related to the
distortion E∗[(y∗t −x′∗t β̂Ln )x∗t ] 6= 0. Furthermore, the different penalization of the zero coefficients
in the definition ofRL∗(u) is instead related to the incapability of the Lasso estimator of capturing
the sign of the zero coefficients with sufficient high probability. Because of these two differences
the naive pairs bootstrap could provide a very poor approximation of the distribution of TLn .

This result completes and extends the findings in Knight and Fu (2000) and Chatterjee
and Lahiri (2010) on the inconsistency of the residual bootstrap for the Lasso estimator. In
particular, it is interesting to highlight that unlike Chatterjee and Lahiri (2010) we identify two
different sources for the failure of the pairs bootstrap. In the next section, we show how to
overcome these problems.

2.2 The Modified Pairs Bootstrap

In this section, we introduce a modified pairs bootstrap procedure that consistently estimates
the distribution of TLn =

√
n(β̂Ln − β). Our method partly relies on the thresholding approach

introduced in Chatterjee and Lahiri (2011). Therefore, before presenting our procedure, first
we briefly review the main idea of the modified residual bootstrap introduced in Chatterjee and
Lahiri (2011).

In a linear regression model with nonrandom covariates and homoscedastic error terms the
standard approach to bootstrapping is the residual bootstrap. Chatterjee and Lahiri (2010) show
that the naive residual bootstrap does not consistently estimate the distribution of the Lasso
estimator. In particular, they show that the residual bootstrap fails to reproduce the sign of the
zero coefficients with sufficient accuracy in the formulation of the bootstrap Lasso estimation
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criterion. To overcome this problem, Chatterjee and Lahiri (2011) propose a thresholding pro-
cedure. More precisely, in the implementation of the residual bootstrap they propose to replace
β̂Ln with the modified Lasso estimator β̃Ln = (β̃Ln,1, . . . , β̃

L
n,p)
′, where

β̃Ln,i = β̂Ln,i · I
(
|β̂Ln,i| ≥ an

)
,

and an denote a sequence of real numbers such that

an + (n−1/2 log n)a−1n → 0, (4)

as n → ∞. Examples of sequences that satisfy condition (4) include sequences of the form
an = cn−δ, for c ∈ (0,∞) and δ ∈ (0, 1/2). It is important to highlight that the thresholding
approach has no impact on the nonzero coefficients of β for n large. Indeed, if βi 6= 0, then
|β̂Ln,i| > an for large n with high probability. On the other hand, this approach shrinks to 0 with
high probability the zero coefficients of β. Indeed, if βi = 0, then |β̂Ln,i| < an for large n with
high probability. Therefore, the modified Lasso estimator is able to capture the target sign of
the zero coefficients with high probability. Chatterjee and Lahiri (2011) prove that the modified
residual bootstrap consistently estimates the distribution of TLn .

Obviously, the thresholding approach cannot be applied to the pairs bootstrap. Indeed, the
pairs bootstrap constructs the random samples in a fully nonparametric way. On the other hand,
it is still possible to adjust the bootstrap Lasso estimation criterion in order to properly reproduce
the sign of the zero coefficients. In particular, to introduce a valid pairs bootstrap procedure
we propose the following corrections. First, to overcome the distortion E∗[(y∗t − x′∗t β̂Ln )x∗t ] 6= 0,
we propose to recenter the bootstrap statistic with respect to β̂LSn instead of β̂Ln . Indeed, the
least square estimator satisfies the bootstrap moment condition E∗[(y∗t − x′∗t β̂LSn )x∗t ] = 0, which
mimics the population moment condition E[(yt − β′xt)xt] = 0. Second, given a pairs bootstrap
sample (z∗1 , . . . , z

∗
n), we introduce the modified Lasso estimator β̃L∗n defined as

β̃L∗n = argmin
u

n∑
t=1

(y∗t − u′x∗t )2 + λn

p∑
i=1

|ui − β̂LSn,i · I(|β̂LSn,i | ≤ an)|, (5)

where the sequence an satisfies condition (4). Note that in the penalization term in (5) we
recenter with respect to β̂LSn,i · I(|β̂LSn,i | ≤ an). The recentering has no impact on the nonzero
coefficients of β for n large. Indeed, if βi 6= 0, then |β̂LSn,i | > an for large n with high probability,
and consequently ui− β̂LSn,i · I(|β̂LSn,i | ≤ an) = ui. On the other hand, if βi = 0, then |β̂LSn,i | ≤ an for
large n with high probability, and consequently ui−β̂LSn,i ·I(|β̂LSn,i | ≤ an) = ui−β̂LSn,i . Therefore, for
large n the penalization term in (5) recenters only the zero coefficients of β. Finally, we propose
to approximate the sampling distribution of TLn with the (conditional) bootstrap distribution of
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T̃L∗n =
√
n(β̃L∗n − β̂LSn ) given the observations (z1, . . . , zn). In the next theorem, we prove the

validity of the modified pairs bootstrap.

Theorem 2.1. Let Assumption 2.1 hold. If λn√
n
→ λ0 ≥ 0, then the conditional law of

√
n(β̃L∗n −

β̂LSn ) converges weakly to TL = argminu∈Rp RL(u), where

RL(u) = −2u′W + u′Cu+ λ0

p∑
i=1

[uisgn(βi)I(βi 6= 0) + |ui|I(βi = 0)],

and W ∼ N(0,Ω).

Proof. We adopt the same arguments in the proof of our Theorem 2.1, and Theorem 3.1 in
Chatterjee and Lahiri (2011). More precisely, let

R̃L∗
n (u) =

n∑
t=1

[
(ε̂LS∗t − u′x∗t/

√
n)2 − (ε̂LS∗t )2

]
+ λn

p∑
i=1

[
|β̃LSn,i + ui/

√
n| − |β̃LSn,i |

]
,

where β̃LSn,i = β̂LSn,i · I(|β̂LSn,i | > an). Note that R̃L∗
n (u) is minimized at

√
n(β̃L∗n − β̂LSn ). Consider

the first term of R̃L∗
n (u). In particular, we have

n∑
t=1

[
(ε̂LS∗t − u′x∗t/

√
n)2 − (ε̂LS∗t )2

]
= − 2√

n

n∑
t=1

u′x∗t ε̂
LS∗
t +

1

n

n∑
t=1

u′x∗tx
′∗
t u.

By Theorem 3.1 in Freedman (1981), 1
n

∑n
t=1 x

∗
tx
′∗
t converges in conditional probability to C.

Furthermore, also by Theorem 3.1 in Freedman (1981) the conditional law of 1√
n

∑n
t=1 x

∗
t ε̂
LS∗
t

converges weakly to normal with mean 0 and variance-covariance Ω.
Next, consider the second term in R̃L∗

n (u). Note that as highlighted in the proof of Theorem
3.1 in Chatterjee and Lahiri (2011), for the nonzero coefficients βi 6= 0, we have sgn(β̃LSn,i ) =

sgn(βi) for large n. Furthermore, for the zero coefficients βi = 0, we have β̃LSn,i = 0 for large n.
Therefore, the second term of R̃L∗

n (u) converges to

λ0

p∑
i=1

[uisgn(βi)I(βi 6= 0) + |ui|I(βi = 0)].

Thus, we can conclude that R̃L∗
n (u) converges weakly to

RL(u) = −2u′W + u′Cu+ λ0

p∑
i=1

[uisgn(βi)I(βi 6= 0) + |ui|I(βi = 0)],

where W ∼ N(0,Ω). Using the results in Geyer (1994) Theorem 2.1 is established.
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Theorem 2.1 shows that the modified pairs bootstrap provides a valid approach for approxi-
mating the sampling distribution of TLn =

√
n(β̂Ln − β). Furthermore, by adapting the results in

Corollary 3.2 and Theorem 3.3 in Chatterjee and Lahiri (2011) to our setting, we can show that
the modified pairs bootstrap can also be applied for the implementation of testing hypotheses
on the regression parameter, and the variance estimation of the Lasso estimator.

Remark 1. The proposed modified pairs bootstrap differs considerably from the residual boot-
strap procedure introduced in Chatterjee and Lahiri (2011). In particular, in (5) we propose to
recenter the bootstrap Lasso estimation criterion with respect to β̂LSn,i · I(|β̂LSn,i | ≤ an). This re-
centering provides the key correction for ensuring the consistency of the pairs bootstrap. To the
best of our knowledge, this is the first paper in the Lasso literature that proposes adjustments
of the bootstrap Lasso estimation criterion. Finally, note that the optimization problem in (5)
can be solved with conventional algorithms adopted for the (standard) Lasso estimator. Indeed,
using the substitution γi = ui − β̂LSn,i · I(|β̂LSn,i | ≤ an), we obtain the (standard) Lasso estimation
criterion.

Remark 2. In this remark, we better clarify the corrections introduced in the definition of
the modified pairs bootstrap. First, to overcome the distortion E∗[(y∗t − x′∗t β̂

L
n )x∗t ] 6= 0, we

recenter the bootstrap statistic with respect to the least squares estimator β̂LSn . Note that the
least squares estimator satisfies E∗[(y∗t − x′∗t β̂LSn )x∗t ] = 0, and corresponds to the "true" value
for the random bootstrap samples. Finally, because of this recentering we adjust the bootstrap
Lasso estimation criterion using the term β̂LSn,i · I(|β̂LSn,i | ≤ an). Indeed, with this adjustment the
bootstrap Lasso estimation criterion shrinks the zero coefficients of β to β̂LSn,i (the "true" value
for the bootstrap samples). This adjustment exactly mimics the (standard) Lasso estimation
criterion that shrinks the zero coefficients of β to 0 (the "true" value for the original sample).

Remark 3. In Theorem 2.1, we prove the validity of the modified pairs bootstrap for the Lasso
estimator in linear regression models with random covariates and heteroscedastic error terms.
Obviously, this result applies also to linear regression models with nonrandom covariates and
homoscedastic error terms. With some appropriate modifications, we could also extend our
finding to generalized linear models. However, in this paper we do not pursue this direction.

Remark 4. The accuracy of the Lasso estimator may heavily depend on the selection of λn.
Furthermore, in the definition of the modified pairs bootstrap we have also to select the sequence
an. Using the results in Theorem 2.1, we can introduce a data-driven method for the selection
of these tuning parameters in the spirit of Hall, Lee and Park (2009), and Chatterjee and Lahiri
(2011). The key rationale of our procedure is to select the optimal tuning parameters that
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minimize the estimated mean squared error of the Lasso estimator β̂Ln . We briefly describe the
data-driven approach. For λn ∈ [0,+∞) and an ∈ (0,+∞), let β̃L∗n = β̃L∗n (λn, an) denote the
bootstrap modified Lasso estimator. Using Theorem 2.1, we can estimate the mean squared
error E[‖β̂Ln − β‖2] of β̂Ln by

φ(λn, an) = E∗[‖β̃Ln (λn, an)− β̂LSn ‖2]. (6)

Finally, we select the optimal values (λ̂n, ân) that minimize the estimated mean squared error (6).
In Section 4 below, we study through Monte Carlo simulations the accuracy of the modified pairs
bootstrap combined with this data-driven method for the selection of the tuning parameters.

3 Pairs Bootstrap for the Adaptive Lasso Estimator

Consider the adaptive Lasso estimator β̂ALn defined in (3). To simplify the presentation of our
results, we consider only the weights λn,i = 1/|β̂LSn,i |γ, with γ = 1. However, with some slight
modifications the results in Theorems 3.1 and 3.1 below can also be extended to the more general
penalization introduced in (3). In this section, we analyze the validity of the pairs bootstrap in
approximating the sampling distribution of TALn =

√
n(β̂ALn − β).

Before presenting the main results, first we introduce some notation. Let A = {i : βi 6= 0},
and let Ac = {i : βi = 0}. Let βA = (βA,1, . . . , βA,q)

′ and βAc = (βAc,1, . . . , βAc,p−q)
′ denote the

sub-vectors of the nonzero and zero coefficients of β, respectively, where q ≤ p. Similarly, let
β̂LSn,A and β̂ALn,A denote the least squares and the adaptive Lasso estimators of βA, respectively.
Furthermore, let β̂LSn,Ac and β̂ALn,Ac denote the least squares and the adaptive Lasso estimators of
βAc , respectively. Finally, let VA be the asymptotic variance-covariance matrix of β̂LSn,A, and let
ÂALn = {i : β̂ALn,i 6= 0}. In the next lemma, we present the oracle properties of the adaptive Lasso
for heteroscedastic linear regression models with random covariates.

Lemma 3.1. Let Assumption 2.1 hold. If λn → +∞ and λn√
n
→ 0, then:

(a) Variable Selection: limn→∞ P (ÂALn = A) = 1.

(b) Limit Distribution: The law of
√
n
(
β̂ALn,A − βA

)
converges weakly to normal with mean 0

and variance-covariance VA.

Proof. Lemma 3.1 follows directly from Theorem 1 in Audrino and Camponovo (2013).

Zou (2006) shows that in linear regression models with nonrandom covariates and homoscedas-
tic error terms the adaptive Lasso possesses the so-called oracle properties. More precisely, the
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adaptive Lasso performs correct model selection. Moreover, the adaptive Lasso estimates the
nonzero coefficients of the regression parameter with the same efficiency (asymptotically) of the
least squares estimator. Lemma 3.1 shows that the adaptive Lasso satisfies these two properties
also in linear regression models with random covariates and heteroscedastic error terms.

After presenting the oracle properties, we consider bootstrap approximations. Let (z∗1 , . . . , z
∗
n)

be a random bootstrap sample selected from (z1, . . . , zn) with replacement. Note that also for
the adaptive Lasso estimator E∗[(y∗t −x′∗t β̂ALn )x∗t ] 6= 0. Therefore, to overcome this distortion also
in this setting we propose to recenter the adaptive Lasso bootstrap statistic with respect to β̂LSn
instead of β̂ALn . Unlike the least squares and the Lasso estimators, the adaptive Lasso captures
the correct sign of the zero coefficients with high probability. However, since we recenter the
bootstrap statistic with respect to β̂LSn instead of β̂ALn , also in this setting we have to modify
the bootstrap adaptive Lasso estimation criterion. More precisely, we introduce the modified
bootstrap adaptive Lasso estimator β̃AL∗n defined as

β̃AL∗n = argmin
u

n∑
t=1

(y∗t − u′x∗t )2 + λn

p∑
i=1

λ∗n,i|ui − β̂LSn,i · I(β̂ALn,i = 0)|, (7)

where λ∗n,i = 1/|β̂LS∗n,i |, and β̂LS∗n is the bootstrap least squares estimator. Note that in the
penalization term in (7) we recenter with respect to β̂LSn,i · I(β̂ALn,i = 0). The recentering has no
impact on the nonzero coefficients of β for n large. Indeed, if βi 6= 0, then |β̂ALn,i | > 0 for large n
with high probability, and consequently ui− β̂LSn,i · I(β̂ALn,i = 0) = ui. On the other hand, if βi = 0,
then β̂ALn,i = 0 for large n with high probability, and consequently ui−β̂LSn,i ·I(β̂ALn,i = 0) = ui−β̂LSn,i .
Therefore, the penalization term in (7) recenters only the zero coefficients of β. Finally, we
approximate the sampling distribution of TALn with the (conditional) bootstrap distribution
of T̃AL∗n =

√
n(β̃AL∗n − β̂LSn ) given the observations (z1, . . . , zn). Let β̃AL∗n,A and β̃AL∗n,Ac denote

the modified bootstrap adaptive Lasso estimators of βA and βAc , respectively. In the next
theorem, we establish the validity of the modified pairs bootstrap in approximating the sampling
distribution of the adaptive Lasso estimator.

Theorem 3.1. Let Assumption 2.1 hold. If λn → +∞ and λn√
n
→ 0, then:

(a) Zero Coefficients: The conditional law of
√
n
(
β̃AL∗n,Ac − β̂LSn,Ac

)
converges in probability to 0.

(b) Nonzero Coefficients: The conditional law of
√
n
(
β̃AL∗n,A − β̂LSn,A

)
converges weakly to normal

with mean 0 and variance-covariance VA.

Proof. We adopt the same arguments in the proof of our Theorem 2.1, and Theorem 2 in Zou
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(2006). More precisely, let

R̃AL∗
n (u) =

n∑
t=1

[
(ε̂LS∗t − u′x∗t/

√
n)2 − (ε̂LS∗t )2

]
+ λn

p∑
i=1

λ∗n,i

[
|β̂LSn,i − β̂LSn,i · I(β̂ALn,i = 0) + ui/

√
n| − |β̂LSn,i − β̂LSn,i · I(β̂ALn,i = 0)|

]
.

Note that R̃AL∗
n (u) is minimized at

√
n(β̃AL∗n − β̂LSn ). Consider the first term of R̃AL∗

n (u). In
particular, we have

n∑
t=1

[
(ε̂LS∗t − u′x∗t/

√
n)2 − (ε̂LS∗t )2

]
= − 2√

n

n∑
t=1

u′x∗t ε̂
LS∗
t +

1

n

n∑
t=1

u′x∗tx
′∗
t u.

By Theorem 3.1 in Freedman (1981), 1
n

∑n
t=1 x

∗
tx
′∗
t converges in conditional probability to C.

Furthermore, also by Theorem 3.1 in Freedman (1981) the conditional law of 1√
n

∑n
t=1 x

∗
t ε̂
∗
t

converges weakly to normal with mean 0 and variance-covariance Ω.
Consider the second term of R̃AL∗

n (u). Note that by Theorem 3.1 in Freedman (1981), the con-
ditional law of β̂LS∗n −β̂LSn converges in probability to 0. If βi 6= 0, then β̂ALn,i 6= 0 for n large. There-
fore, since λ∗n,i = Op(1) and λn/

√
n = oP (1), it turns out that λnλ∗n,i

[
|β̂LSn,i + ui/

√
n| − |β̂LSn,i )|

]
=

oP (1). On the the other hand, if βi = 0, then β̂ALn,i = 0 for n large. Furthermore, in this case
λ∗n,i = Op(

√
n). Therefore, the limit RAL(u) of R̃AL∗

n (u) is given by

RAL(u) =

{
−2u′AW

A + u′AC
AuA if ui = 0, for i /∈ A,

∞ otherwise,

where WA ∼ N(0,ΩA), and ΩA is the sub-matrix of Ω for the nonzero coefficients. Note that
the unique minimum of RAL(u) is ((CA)−1WA, 0)′. Therefore, using the results in Geyer (1994)
Theorem 3.1 is established.

Theorem 3.1 shows that the modified pairs bootstrap provides a valid approach for approx-
imating the sampling distribution of TALn . Furthermore, by extending the results in Corollary
4.2 and 4.3 in Chatterjee and Lahiri (2011) to our setting, we can show that the modified pairs
bootstrap can also be applied for the implementation of testing hypotheses on the regression
parameter, and the variance estimation of the adaptive Lasso estimator.

Also in this setting, the implementation of the modified pairs bootstrap differs consider-
ably from the residual bootstrap method proposed in Chatterjee and Lahiri (2011), and the
wild bootstrap procedure introduced in Minnier, Tian and Cai (2011). This result shows that
when properly defined also the pairs bootstrap may provide a valid approach for estimating the
distribution of the adaptive Lasso estimator.
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Remark 5. In this remark, we better clarify the failure of the naive pairs bootstrap for the
adaptive Lasso estimator, and the validity of the modified pairs bootstrap. First, note that also
in this setting E∗[(y∗t − x′∗t β̂ALn )x∗t ] 6= 0. Therefore, to overcome this distortion it is necessary
to recenter the bootstrap statistic with respect to the least squares estimator β̂LSn . Indeed, the
least squares estimator satisfies E∗[(y∗t −x′∗t β̂LSn )x∗t ] = 0, and corresponds to the "true" value for
the random bootstrap samples. Finally, because of this recentering it is also necessary to adjust
the bootstrap adaptive Lasso estimation criterion using the term β̂LSn,i · I(β̂ALn,i = 0). Indeed, with
this adjustment the bootstrap adaptive Lasso estimation criterion shrinks the zero coefficients
of β to β̂LSn,i (the "true" value for the bootstrap samples). This adjustment exactly mimics the
(standard) adaptive Lasso estimation criterion that shrinks the zero coefficients of β to 0 (the
"true" value for the original sample).

Remark 6. Also in this setting, the accuracy of the adaptive Lasso estimator may heavily
depend on the selection of the tuning parameter λn. Using the results in Theorem 3.1, we can
extend the data-driven method proposed in Remark 4 also to adaptive Lasso estimators. More
precisely, for λn ∈ [0,+∞) let β̃AL∗n = β̃AL∗n (λn) denote the bootstrap modified adaptive Lasso
estimator. Using Theorem 3.1, we can estimate the mean squared error E[‖β̂ALn − β‖2] of β̂ALn
by

φ(λn) = E∗[‖β̃ALn (λn)− β̂LSn ‖2]. (8)

Finally, we select the optimal value λ̂n that minimizes the estimated mean squared error (8). In
the next section, we study through Monte Carlo simulations the accuracy of the modified pairs
bootstrap combined with this data-driven method.

Remark 7. For the sake of brevity, in this paper we focus only on the Lasso (Section 2) and
the adaptive Lasso (Section 3) estimators. However, in principle the modified pairs bootstrap
could also be applied to a wider class of penalized regression estimators. More precisely, in order
to define the modified pairs bootstrap we need two corrections: (i) the bootstrap statistic has
to be recentered with respect to the least squares estimator, and (ii) the bootstrap penalization
term has to be properly adjusted.

Remark 8. In our analysis, we consider settings where the regression parameter β is fixed, and
the sample size n is large. As pointed out in Chatterjee and Lahiri (2011), models with fixed
regression parameter are of interest in many applications, and the estimation of the distribution
of Lasso estimators is a very important issue. The results in this paper show that the modified
pairs bootstrap overcomes indeed this problem.

As highlighted in Remarks 2 and 5, the modified pairs bootstrap recenters the bootstrap
statistic with respect to the least squares estimator, and consequently relies on the consistency
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of β̂LSn . Therefore, using the results in Huber and Ronchetti (2009) and by imposing appropriate
assumptions on the linear regression model (1), it may be possible to extend the findings in this
paper also to settings where the dimension p < n of the regression parameter β is allowed to
depend on the sample size n (see, e.g., Chapter 7 in Huber and Ronchetti (2009) and references
therein for the consistency and asymptotic normality of the least squares estimator in linear
regression models where p is permitted to grow). On the other hand, the (possible) extension
and definition of modified pairs bootstrap procedures to more general high-dimensional settings
where the dimension of the regression parameter may be larger than n remains unclear and is
currently under investigation by the author.

4 Monte Carlo Simulations

We now illustrate the theoretical findings obtained in the previous sections by simulation. We
consider the linear regression model (1) with p = 10, β = (2, 2, 1, 1, 0.5, 0.5, 0, 0, 0, 0), and n =

200, 400. Furthermore, for the covariates and the error terms we consider three different settings:
(i) xt,i ∼ N(0, 1) and εt ∼ N(0, 1), (ii) xt,i ∼ N(0, 1) and εt ∼ N(0, σ2

t ), where σt = 1
p

∑p
i=1 |xt,i|

and (iii) xt,i ∼ χ2
1 and εt ∼ N(0, σ2

t ), where σt = 1
p

∑p
i=1 xt,i. As in Chatterjee and Lahiri (2011),

we study the finite sample performance of bootstrap confidence sets for the regression parameter
β. In the first exercise, we consider the Lasso estimator. For each setting, we generate N = 3, 000

random samples, and for each sample we construct confidence sets for the parameter β of the
form

IL,Kn,α = {t ∈ Rp : ‖t− β̂Ln‖ ≤ tL,Kn (α)}, (9)

where K = NB,MB, tL,NBn (α) is the α-quantile of the naive pairs bootstrap distribution of
‖β̂L∗n − β̂Ln‖, tL,MB

n (α) is the α-quantile of the modified pairs bootstrap distribution of ‖β̃L∗n −
β̂LSn ‖, and α = 0.9, 0.95, 0.99 is the nominal coverage probability. We construct the bootstrap
distributions based on B = 299 bootstrap replications. For the modified pairs bootstrap, we
select the tuning parameters λn ∈ [0, 10

√
n] and an ∈ (0, 0.5) according to the data-drive method

introduced in Remark 4. Similarly, for the naive pairs bootstrap we select the tuning parameter
λn ∈ [0, 10

√
n] by minimizing the estimated mean squared error of β̂Ln based on the naive pairs

bootstrap approximation.
In Table 1, we report the empirical coverages. We can observe that the modified pairs

bootstrap always provides empirical coverages very close to the nominal coverage probability.
For instance, in the top panel of Table 1 for n = 200, the empirical coverages for the modified
pairs bootstrap are 0.8907, 0.9427, and 0.9817, for α = 0.9, α = 0.95 and α = 0.99, respectively.
Furthermore, also in the second panel of Table 1 for n = 400, the difference between modified
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pairs bootstrap empirical coverages and nominal coverage probability is always smaller than 0.01.
In contrast, the empirical coverages using the naive pairs bootstrap tend to be dramatically far
from the nominal coverage probability. For instance, in the top panel of Table 1 for n = 400, the
naive pairs bootstrap empirical coverages are 0.0210, 0.0440 and 0.1447, for α = 0.9, α = 0.95

and α = 0.99, respectively. To better evaluate the inaccuracy of the naive pairs bootstrap
approximation, note that the Lasso estimation criterion shrinks to 0 both the Lasso estimator β̂Ln
and the bootstrap Lasso estimator β̂L∗n . Therefore, the naive pairs bootstrap statistic ‖β̂L∗n − β̂Ln‖
is not able to reproduce the target variability of the original statistic ‖β̂Ln − β‖. This explain
the strong undercoverage of the naive pairs bootstrap confidence sets. On the other hand, the
modified pairs bootstrap distribution of ‖β̃L∗n −β̂LSn ‖ provides a valid and accurate approximation
of the sampling distribution of ‖β̂Ln − β‖.

In the second exercise, we study the finite sample performance of bootstrap confidence sets
for the regression parameter β using the adaptive Lasso estimator. We consider the same three
settings analyzed in the previous exercise. For K = NB,MB we construct confidence sets for
the parameter β of the form

IAL,Kn,α = {t ∈ Rp : ‖t− β̂ALn ‖ ≤ tAL,Kn (α)}, (10)

where tAL,NBn (α) is the α-quantile of the naive pairs bootstrap distribution of ‖β̂AL∗n − β̂ALn ‖,
tAL,MB
n (α) is the α-quantile of the modified pairs bootstrap distribution of ‖β̃AL∗n − β̂LSn ‖, and
α = 0.9, 0.95, 0.99 is the nominal coverage probability. We construct the bootstrap distributions
based on B = 299 bootstrap replications. For the modified pairs bootstrap, we select the tuning
parameter λn ∈ [0, 2

√
n] according to the data-drive method introduced in Remark 6. Similarly,

for the naive pairs bootstrap we select the tuning parameter λn ∈ [0, 2
√
n] by minimizing the

estimated mean squared error of β̂ALn based on the naive pairs bootstrap approximation.
In Table 2, we report the empirical coverages. Also in this case, it is interesting to note

that the modified pairs bootstrap always provides empirical coverages very close to the nominal
coverage probability. For instance, in the bottom panel of Table 2 for n = 400, the empirical
coverages for the modified pairs bootstrap are 0.8903, 0.9453, and 0.9877 for α = 0.9, α = 0.95

and α = 0.99, respectively. On the other hand, the empirical coverages using the naive pairs
bootstrap tend again to be slightly smaller than the nominal coverage probability. For instance,
in the second panel of Table 2 for n = 400, the naive pairs bootstrap empirical coverages are
0.7887, 0.8737 and 0.9610 for α = 0.9, α = 0.95 and α = 0.99, respectively. In conclusion, also
these empirical findings confirm the accuracy of the modified pairs bootstrap.
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5 Concluding Remarks

In this paper, we study the validity of the pairs bootstrap for Lasso estimators in linear regression
models with random covariates and heteroscedastic error terms. In particular, we provide three
main contributions to the existing literature. First, we show that the naive pairs bootstrap may
have some issues in approximating the distribution of the Lasso estimator. Second, to overcome
this problem we introduce a modified pairs bootstrap procedure that consistently estimates the
distribution of the Lasso estimator. Third, we show that the modified pairs bootstrap can also
be implemented to consistently estimate the distribution of the adaptive Lasso estimator. In
conclusion, these results show that when properly defined the pairs bootstrap may provide a
valid approach for estimating the distribution of Lasso estimators.

Besides the consistency of the modified pairs bootstrap, it could be interesting to verify
whether this bootstrap approach may also imply some asymptotic refinements. By extending
the recent study in Chatterjee and Lahiri (2013) to our setting, we believe that the modified
pairs bootstrap (applied to an appropriate asymptotically pivotal statistic) should improve ap-
proximations based on the limit distribution. This analysis is left for future research.
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n = 200 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.1417 0.8907

0.95 0.2287 0.9427

0.99 0.4833 0.9817

n = 400 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.0210 0.8890

0.95 0.0440 0.9463

0.99 0.1447 0.9877

n = 200 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.1663 0.8710

0.95 0.2443 0.9360

0.99 0.4943 0.9880

n = 400 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.0343 0.8903

0.95 0.0573 0.9413

0.99 0.1647 0.9873

n = 200 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.7940 0.8610

0.95 0.8960 0.9273

0.99 0.9777 0.9837

n = 400 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.7370 0.8710

0.95 0.8547 0.9363

0.99 0.9663 0.9893

Table 1: Lasso Estimator: Bootstrap Empirical Coverages. We report the naive pairs bootstrap
and the modified pairs bootstrap empirical coverages for the linear regression model (1) with p = 10,
β = (2, 2, 1, 1, 0.5, 0.5, 0, 0, 0, 0), and n = 200, 400. From the top to the bottom panels, we consider three different
settings: (i) xt,i ∼ N(0, 1) and εt ∼ N(0, 1), (ii) xt,i ∼ N(0, 1) and εt ∼ N(0, σ2

t ), where σt =
1
p

∑p
i=1 |xt,i| and

(iii) xt,i ∼ χ2
1 and εt ∼ N(0, σ2

t ), where σt =
1
p

∑p
i=1 xt,i. The nominal coverage probability is α = 0.90, 0.95, 0.99.
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n = 200 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.8360 0.9120

0.95 0.9187 0.9623

0.99 0.9723 0.9923

n = 400 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.8140 0.9110

0.95 0.8970 0.9580

0.99 0.9710 0.9917

n = 200 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.8003 0.8990

0.95 0.8793 0.9520

0.99 0.9640 0.9933

n = 400 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.7887 0.9063

0.95 0.8737 0.9510

0.99 0.9610 0.9923

n = 200 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.8700 0.8807

0.95 0.9320 0.9473

0.99 0.9853 0.9927

n = 400 α Naive Pairs Bootstrap Modified Pairs Bootstrap

0.90 0.8657 0.8903

0.95 0.9220 0.9453

0.99 0.9793 0.9877

Table 2: Adaptive Lasso Estimator: Bootstrap Empirical Coverages. We report the naive pairs
bootstrap and the modified pairs bootstrap empirical coverages for the linear regression model (1) with p = 10,
β = (2, 2, 1, 1, 0.5, 0.5, 0, 0, 0, 0), and n = 200, 400. From the top to the bottom panels, we consider three different
settings: (i) xt,i ∼ N(0, 1) and εt ∼ N(0, 1), (ii) xt,i ∼ N(0, 1) and εt ∼ N(0, σ2

t ), where σt =
1
p

∑p
i=1 |xt,i| and

(iii) xt,i ∼ χ2
1 and εt ∼ N(0, σ2

t ), where σt =
1
p

∑p
i=1 xt,i. The nominal coverage probability is α = 0.90, 0.95, 0.99.
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