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Abstract
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market microstructure models, we characterize equilibria in which dealers’ dynamic pric-

ing strategies are optimal no matter the private information each dealer may possess. In

a generalized version of the Glosten and Milgrom model, these equilibria deliver price dy-
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Introduction

In this paper, we consider a class of market microstructure models, in which some long-lived

market participants (“dealers”) repeatedly interact in a market that is open to short-lived market

participants (“traders”). We characterize equilibria that are robust to any form of asymmetry of

information among dealers.

It has been claimed in the market-microstructure empirical literature (see for instance Ellis,

Michaely, and O’Hara (2002)) that dealers have access to different sources of information and

that they need not be well aware of other dealers’ sources of private information. This means

that dealers’ actual information structure (i.e., what each dealer believes about the market fun-

damentals and about what other dealers believe, and so on) is quite complex and might vary

over time and across markets.1 However, because the information structure is largely dependent

on the dealers’ subjective beliefs, it is not directly observable in practice. As a consequence, it is

essentially impossible to assess the extent to which a given theoretical model’s assumptions on

dealers’ information structure capture or not actual informational asymmetries. In existing mar-

ket microstructure models, tractability imposes strong informational assumptions, and involves

specific functional forms assumptions regarding the distribution of fundamentals and private sig-

nals.2 Yet, because modeling dynamic interactions among asymmetrically informed dealers is a

formidable task, the current theoretical literature is silent about the robustness of predictions of

standard microstructure models to changes in the dealers’ information environment.3

The objectives of this paper are, first, to present a tractable price-formation theory delivering

predictions that are robust to the specification of this information; and second, to provide the
1See Bergemann and Morris (2013) for a definition of information structure in games of incomplete information.
2For instance, almost all models assume that trading prices are set by equally uninformed dealers to a level

reflecting these dealers’ beliefs about fundamentals.
3At each point in time each dealer anticipates how its behavior affects its current expected payoff as well as

each competing dealer’s posterior beliefs and future behavior. The problem is even more complex if a dealer is
not certain about its competitors’ prior beliefs.
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market microstructure theorist with a practical toolkit of sufficient conditions allowing to check

whether a candidate equilibrium is robust to changes in information structure, and of necessary

conditions that allows to discard equilibria that are fragile. For this purpose, we consider a class of

dynamic financial markets microstructure models in which risk-neutral liquidity providers (such

as dealers or market-makers) interact with traders. For this class of models, we characterize

equilibria that are robust to the extent that dealers’ dynamic pricing strategies remain optimal

no matter the private information and beliefs of a dealer about the economy fundamentals. In

particular a robust equilibrium is a subgame perfect equilibrium no matter the dealer’s belief.

That is, among the many price formation strategies that form sub-game perfect equilibria for

some specification of dealers’ beliefs, we focus on those strategies that form a sub-game perfect

equilibria no matter the specification of dealers’ beliefs. For this reason we will often refer to

robust equilibria as ’belief-free equilibria’ (henceforth BFE).4

We believe that robust equilibria are interesting for a number of reasons. First, in terms of

their scope: as we show, robustness implies that hardly any assumption on the dealers’ infor-

mation is called for. This is less restrictive than assuming that all dealers share the same exact

beliefs about fundamentals. Also minimal assumptions are required concerning trading protocols,

and the concept is tractable enough to allow for models that encompass many real-world trading

protocols. Second, in terms of their ability to explain seemingly unrelated empirical findings. For

a Glosten and Milgrom-type model, we show that the robust equilibria supports various stylized

facts that cannot be explained using the textbook solution concept: positive profits for liquidity

providers, stochastic price volatility, price bubbles, and bounded dealers’ inventories. While each

of these facts can be explained by existing models separately, we are aware of no single model

delivering them simultaneously. Third, in terms of tractability: we actually focus on a subclass

of robust equilibria that are arguably as tractable as the classical zero-profit models in market
4See Hörner and Lovo (2009), Fudenberg and Yamamoto (2010) and Hörner, Lovo and Tomala (2010) for the

general definition and analysis of belief-free equilibria in repeated games of incomplete information.
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microstructure.

In robust equilibria price formation strategies must be optimal no matter the dealer’s infor-

mation about the value of the fundamentals. Thus, the notion of robust equilibrium is more

demanding than standard game-theoretic refinements. As a consequence, robust equilibria need

not exist for static trading games. Nevertheless, we show that when moving to a dynamic frame-

work, most common market microstructure games possess equilibria that are robust as long as

the discount factor between two trading rounds is large enough.5 This condition is naturally met

for market microstructure economies where trading frequency is intra-day.

BFE, i.e. robust equilibria impose the following testable restrictions on the equilibrium

outcomes:

1) Dealers can gain or lose money over short periods, but their average long-run profit is

strictly positive independently of the asset’s fundamental value. This is in contrast with the

classical prediction that dealers’ expected per trading period profit is nil and demonstrates that

nil expected profits of price makers is not a robust feature of price formation.6

In a BFE, dealers make positive profits through the intermediation of traders’ order flow

rather than by taking large positions on assets. Interestingly, these predictions are consistent

with the empirical study of NYSE specialists by Colmerton-Forde, Hendershott, Jones, Moulton

and M. Seasholes (2010). They find that “Specialists in aggregate lose money on [only] about

10% of the trading days” and that “specialists usually earn positive trading revenue on short-term

(intraday) round-trip transactions.” Our finding de-emphasizes the role of information about the

asset fundamentals on dealers’ behavior. In a BFE, what matters for a dealer are the levels of

quotes that induce an abundant but balanced order flow from traders. Knowing these levels is
5In fact, multiple robust equilibria then exist, but recall that, because it is a refinement, this multiplicity is

necessarily less severe than with other solution concepts.
6The zero profit conditions is often justified through the hypothesis of free-entry of new dealers. However,

it requires the additional assumption that incumbents and entrant dealers have exactly the same information.
Without this simplifying informational assumption, it is a priori unclear what free-entry would imply for dealer’s
profits.
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necessary and sufficient for dealers in order to be able to realize many profitable round-trips.

Hence dealers can ignore all information that does not affect traders’ behavior.

2) Risk-neutral dealers tend to maintain balanced inventories. That is, dealers’ inventories

are mean reverting. This contrasts with the view that (absent risk aversion or institutional

constraints on inventory size) inventory levels should not affect dealers’ behavior.7 Thus, BFE

provides an alternative explanation of the empirical evidence of market makers mean reverting

their inventories.8

3) As in the canonical market microstructure models, movement in asset quotes are caused by

the public information provided by the trading order flow. However, unlike in models in which

quotes reflect beliefs about fundamentals, it is not the case that in the long run prices reflect

all public information. That is, an asset trading price never stabilizes around its fundamental

value. This no matter the amount of public information. In particular, equilibrium quotes need

not reflect any of the dealers’ (Bayesian) belief, and price sensitivity to trading volume does not

fade away as public information accumulates. Thus, long-term price volatility remains large even

without exogenous shocks on fundamentals. This generates patterns that are consistent with the

phenomena of excess, and stochastic price volatility, two well known and empirically established

properties of stock prices.

The intuition behind these results is as follows. First, dealers can always guarantee zero

profit by abstaining from trading. Because in equilibrium dealers’ strategies must be optimal no

matter the dealer’s belief about fundamentals, each dealer’s equilibrium long-term profit must

be positive for each possible value of fundamentals. Second, given the range of possible asset

values, a strategy leading to a sufficiently unbalanced inventory would correspond to a negative

value portfolio for some level of the asset fundamentals, and hence for some level of a dealer’s
7For instance, in Ho and Stoll (1981) balanced inventory results from dealers’ risk-aversion, whereas in Gromb

and Vayanos (2002) and Brunnermeier and Pedersen (2009) it results from the dealers’ institutional inability to
take a position beyond a certain size. Our model displays neither factor.

8Se for example Madhavan and Smidt (1993), Hansch, Naik, and Viswanathan (1999), Reiss and Werner
(1998), and Naik and Yadav (2003).
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belief about fundamentals. On the contrary, when the equilibrium strategy leads to sufficiently

balanced inventories, fundamentals has little impact on dealers’ profits. As a result, in a robust

equilibrium, dealers’ long-term profit must mainly result from intermediation of traders’ order

flow. This is achieved through (what we refer to as) “exploiting periods” during which dealers

set quotes prompting a balanced order flow and make positive profit from the bid-ask spread.

Third, because the specific strategies that dealers adopt during exploiting periods depend on the

fundamentals, dealers’ equilibrium strategies must also display “exploring periods.” During an

exploring period, dealers’ quotes prompt informative order flows from traders. Quotes react to

the order flow, which eventually provides enough information about the quoting strategy to be

followed during exploiting periods. Because dealers might lose money during exploring periods,

exploring phases cannot indefinitely, and while they point to the right exploiting strategy more

often than not, with low probability they also lead to incorrect exploiting rounds. Hence, a

Bayesian dealer could possibly believe that the current exploiting phase is incorrect. For such

a dealer not to deviate, it must be that he expects the flow of public information to correct

this view rapidly. Hence, unlike Bayesian beliefs that take arbitrarily long to budge once they

are sufficiently degenerate, belief-free equilibrium prices must be sensitive to the order flow at

all times. Hence, they cannot simply reflect Bayesian beliefs about fundamentals. As a result,

exploiting phases must always alternate with exploring phases, and quote sensitivity to order

flow cannot fade away. In exploring phases, the order flow is informative, leading to quotes

that are highly sensitive to the volume of trade. In exploiting phases, trading flow is balanced

and originates from liquidity traders; as a result, quote volatility is reduced. Transition to and

from low to high volatility phases is stochastic and depends on the evolution of trading histories.

Thus, stochastic price volatility results from the alternation of exploring and exploiting phases.

In the first part of the paper, we consider a broad class of market microstructure models, in

which some long-run market participants (“dealers”) repeatedly interact in a market that is open

to short-run market participants (“traders”). The class of models that we analyze is rich along
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a number of dimensions. First, it encompasses different trading protocols. Second, it comprises

both fundamental uncertainty (i.e., uncertainty about the fundamental value of the asset) and

non-fundamental uncertainty (for instance, uncertainty about the fraction of informed traders in

the economy, the precision of their signals or traders’ preferences). Third, within a given trading

protocol and type of uncertainty, all specifications of asymmetries of information among dealers

are allowed.

We show that a dynamic trading game admits robust equilibria as long as the static game

describing one trading round satisfies four simple conditions. Loosely speaking, for any given

value of the fundamentals that is statistically learnable from the traders’ behavior: first, there

exists a way for dealers to earn a positive profit; second, there also exists a way to lose money;

third, dealers have a way to “punish” a dealer in case of an observable deviation. The fourth

condition is more technical but obtains whenever inter-dealer trading is allowed.

Despite the restrictiveness of robust equilibria, there remains considerable leeway in specifying

belief-free equilibria. Rather than delineating precisely the scope of these equilibria, we take

advantage of this leeway to focus on a tractable subset that accords with additional regularities

documented in the empirical literature.

In particular, in the second part of the paper, we illustrate the functioning of such belief-free

equilibria in the simple framework of the Glosten and Milgrom (1985) model where we make

no assumption about each dealers’ private information. We compare the robust equilibria with

the zero-profit equilibrium (henceforth GME) described by Glosten and Milgrom (1985). Both

GME and BFE explain correlation between trading flow and price changes, a pattern that is

consistent with a wide body of empirical work.9 However, whereas in a GME dealers set quotes

equal to the asset’s expected value given past and current public information, so that expected

per-period profits are zero, neither property holds in a BFE. Thus, while excess volatility and
9See for instance, Chordia, Roll and Subrahmanyam (2002) and Boehmer and Wu (2008) for security markets,

Pasquariello and Vega (2005) for bond markets, Evans and Lyons (2002) for currency markets and Fleming, Kirby
and Ostdiek (2006) for weather-sensitive commodity markets.
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volatility clustering are trademarks in a BFE, they are not explained by the GME.

Another stylized fact that a BFE can explain but not the GME is that liquidity is nega-

tively correlated with dealers’ inventory, dealers’ profits, and price volatility (as documented by

Colmerton-Frode et al. (2010)).

The applications of repeated games to the market microstructure that are closest to our

work are Dutta and Madhavan (1997) Benveniste et al. (1992) and Desgranges and Foucault

(2005). These papers assume either no informational asymmetry, or short-lived informational

asymmetries. Here instead, the state of nature is chosen once and for all, so that a dealer owning

some private information might possibly take advantage of it over a long horizon.10

Few theoretical papers analyze the effect of asymmetric information among dealers. Even

fewer do so within a dynamic framework. Some static examples in which dealers, or more gen-

erally liquidity providers, are asymmetrically informed are Roël (1988), Bloomfield and O’Hara

(2000), de Frutos and Manzano (2005) and Boulatov and George (2010). Within a dynamic

framework, Moussa Saley and De Meyer (2003) and Calcagno and Lovo (2006) study the case

of one better-informed price maker. De Meyer (2010) considers the case of two-sided incomplete

information. However, their findings are sensitive to the precise assumptions about the dealers’

information. Du and Zhu (2012) results are closer in spirit to our work. Within the framework

of a double auction, they show that for a specific additive functional form of bidders’ values, the

static auction has an ex post equilibrium and that this property extends to the repeated auction,

giving rise to a belief-free like equilibrium.

The paper is organized as follows. Section 1 presents the general framework of our model.

Section 2 describes some salient properties of the single stage trading game. Section 3 defines BFE

in the repeated game. Section 4 and 5 presents necessary and sufficient conditions, respectively,

for a strategy to form a BFE of the repeated game. Section 6 presents an example based on the
10The same results hold if the frequency of trading is high compared to the frequency with which the state of

nature changes.
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model of Glosten and Milgrom and compares the BFE with the canonical equilibrium. Section

7 discusses extensions to imperfect monitoring about dealers’ actions, non-stationary states of

nature and dealers’ strategies based on private information. Section 8 concludes. All proofs are

in Appendix.

1 A Model of Price Formation

A risky asset is exchanged for money among short-lived risk averse traders and n > 1 long-

lived risk neutral dealers (n is finite). Trading takes place over infinitely many periods t = 1, 2, . . .

At time 0 and once for all, Nature choses the state ω in the set Ω. We allow the state of Nature

to affect the economy in two dimensions: the fundamental value of the asset and the composition

of the population of traders. We denote withW (ω) the fundamental value of the asset in state ω.

We assume that W (ω) = v(ω)+e(ω), where ṽ and ẽ are independently distributed and bounded.

Furthermore we assume E[ẽ] = 0. We will denote with e and e, the smallest and largest possible

value of ẽ. As in Back and Barush (2004), a public release of information takes place at a random

time τ , and conditional on it not having occurred yet, the probability that it occurs in the next

period is constant. After the public announcement, all dealers’ positions are liquidated at price

W (ω).

In every period a randomly selected trader comes to the market, trades and leaves the market.

A trader is characterized by a triple θ = (g, y, c), its type, where g : R→ R is the trader’s utility

function that we assume to be increasing and concave, y is his initial endowment of the risky

asset and c his initial endowment of cash. We assume that θ belongs to a compact set Θ. We

denote with Z(θ, ω) the probability that in any given period t the trader is of type θ ∈ Θ given

that the state of nature is ω.

Traders know the realization of ṽ but not the realization of ẽ. There is no correlation between

the distribution of traders type and ẽ. This implies that information about the composition of
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traders population is useless to learn ẽ. We remain agnostic about dealers’ information structure.

Namely, we make no assumption about the private information of any given dealer regarding the

true state ω. In a belief-free equilibrium, defined below, each dealer’s strategy must be optimal

no matter the true state ω.

2 Stage trading round

2.1 Trading mechanism

In every period t each dealer i choses an action in the finite set Ai. A dealers’ action profile a

is an element in the set A := ×iAi. We denote with ã ∈ ∆A a possibly correlated action profile

for dealers and with ã(a) the probability that the outcome of the correlated action profile be

a ∈ A when dealers play ã. The set of actions available to time t trader is S finite. To fix ideas,

we call a ∈ A a dealers’ action profile, and s ∈ S a trader’s reaction. To any given action-reaction

profile (a, s) ∈ A × S corresponds a transaction (possibly nil). Let Qi(a, s) and Pi(a, s) denote

the transfer to dealer i of the risky asset and money, respectively, resulting from the transaction.

Transfers to the trader are denoted QT (a, s) and PT (a, s). Thus, if the state of nature is ω, an

action-reaction profile (a, s) translates into a change in the wealth of agent j given by

W (ω)Qj(a, s) + Pj(a, s). (1)

We assume that transfers of cash and asset belong to finite grids G and Gq, respectively. Both

grids G and Gq include the point 0. In what follows, if − PT (a,s)
QT (a,s)

= p > 0, we say that the trader

buys at price p if QT (a, s) > 0 and that the trader sells at price p if QT (a, s) < 0. The trading

protocol defined by the functions Q(·) and P (·) is such that no agent can be forced into trade.

Namely, no matter what the other agents do, first each agent can chose not to trade. Second,

for any positive price p ∈ G, and quantity q ∈ Gq, each agent j can chose his action so that, if

9



he trades, then he trades at price p and at most q shares of the asset.

2.1.1 Applications

Here, we illustrate how some of the trading protocols analyzed in the literature fit into our

framework.

Quote driven markets (Glosten and Milgrom (1985)) The set of actions available to

each dealer is the set of bid and ask quotes to be chosen on the price grid G. Formally Ai = G×G.

The trader observes dealer’s quotes and chooses whether to buy one unit, sell one unit, or not

trading, that is Gq = {−1, 0, 1}. Thus, S = {sell, no-trade, buy} is the set of possible market

orders that can be chosen by a trader. A trader’s market order is executed against the best

dealers’ quotes.

Quote driven market (Biais, Martimort and Rochet (2000)) The set of actions available

to each dealer is a schedule T (·), which specifies his willingness to trade q ∈ Gq shares of the

asset against transfer of T (q), on the grid G. Thus Ai = [G]Mq , where Mq denote the cardinality

of Gq. The trader observes dealer’s schedules and chooses how many shares to trade with each

dealer. Thus, S = [Gq]
n and a trader reaction s specifies how many shares the trader exchanges

with each one of the n dealers.

Limit order markets There is is no unanimous way to model limit order markets (see for

example Foucault (1999), Goettler et al. (2005), Foucault at al. (2005), Rosu (2009) among

others). We present one possible specification l that captures the functioning of a limit order

market. First, at the beginning of the period, each dealer submits a limit order where prices

and quantities belong to the grids G and Gq. This generates a book of limit orders associated
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to each price on the grid G. Second, time t trader chooses whether to submit a market order

which trades against outstanding orders in the book, and/or a limit order at a specified price,

which enters the book at that price. Third, dealers submit market orders which trades against

the book. The set of actions for both dealers and traders is Ai = S = G × Gq × Gq. Namely,

{(pj, qj),mj} ∈ Aj specifies agent j limit and market order. Note that because 0 ∈ Gq, each

market participant can choose not to submit a limit and/or market order.

2.2 Traders and Dealers

Traders In each period t, a trader is drawn from a population of traders, trades to adjust the

composition of their portfolio and then leaves the market. Traders are investors who trade both

for speculative and hedging reasons. Formally, time t trader comes to the market knowing the

realization of ṽ but having no information about ẽ. He trades to maximizes the expected utility

of his post-trade wealth and then leaves the market. Namely if v(ω) = v, in time t dealers action

is a ∈ A and the trader’s type is (g, y, c) ∈ Θ, then the trader’s reaction will be

D(v, a) := argmax s∈SE [g((v + ẽ)(QT (a, s) + y) + PT (a, s) + c)]

Let denote with θ(v, a, s) ⊆ Θ the set of traders’ types such that D(v, a) = s; where s ∈ S.

Then,

F (ω, a, s) := Z (θ(v(ω), a, s), ω)

denotes the probability that time t trader choses reaction s, given that dealers actions are a and

that the state of Nature is ω.

Dealers There are n finite dealers they are long lived and are risk neutral. We make no

assumption about the private information of any given dealer regarding the true state ω. However

for each realization of ω we can compute dealers’ payoffs in one trading round resulting from any
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given action profile a ∈ A set by the dealers. Let ui(ω, a) denote dealer i’s expected payoff, or

reward, in a single period t given the state ω and dealers’ action profile a. Here, expectations are

taken with respect to the possible trader’s actions s given the state ω. Namely,

ui(ω, a) =
∑
s∈S

F (ω, a, s) (W (ω)Qi(a, s) + Pi(a, s)) (2)

When considering a distribution over dealers’ action profiles ã ∈ ∆A, dealer i expected payoff in

state ω is

ui(ω, ã) :=
∑
a∈A

ã(a)ui(ω, a),

We also define the expected change in inventory for dealer i resulting from ã ∈ ∆A in state ω as

Qi(ω, ã) :=
∑
a∈A

ã(a)
∑
s∈S

F (ω, a, s)Qi(a, s)

2.3 The repeated game

We can now move to the repeated game. The stage game payoffs (or rewards) of the dealers

are discounted at the common factor δ < 1 and the (overall) game payoff is the average discounted

sum of rewards. The discount factor δ accounts both for the dealers’ time preference and for

the possibility that the public information gets released in the current period.11 In each period,

dealers’ actions and traders’ reactions are observed by all dealers. Let H t denote the set of public

histories ht = {aτ , sτ}t−1
τ=0. Given some sequence of action profiles {at}∞t=1 by the dealers, dealer

i’s expected payoff in state ω is12

∞∑
t=1

(1− δ)δtui(ω, at). (3)

11Allowing for a stochastic discount factor complicates exposition but does not affect results as long as the
discount factor remains close enough to one.

12Here, expectation is taken with respect to the possible realizations of traders’ orders {st}∞t=1, taking the state
ω as given.
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A public strategy profile (strategy henceforth) is a mapping σ : ∪tH t → ×i∆Ai that associate

to each public history ht the action profile that dealers play at time t. For any given state ω,

and any finite history ht, a strategy σ induces a probability distribution over future histories

in the standard fashion and hence an occupation measure over action profiles that we denote

ã(ω,σ,ht) ∈ ∆A.13 Let Vi(ω, σ|ht) denote dealer i’s expected continuation payoff after observing

the public history ht given state ω and strategy profile σ. Then we have

Vi(ω, σ|ht) =
∑
a∈A

ã(ω,σ,ht)(a)ui(ω, a) = W (ω)Qi(ω, σ|ht) + Pi(ω, σ|ht),

where

Qi(ω, σ|ht) :=
∑
a∈A

ã(ω,σ,ht)(a)
∑
s∈S

Qi(a, s)F (ω, a, s)

is the expected change in dealer i’ asset inventory, and

Pi(ω, σ|ht) :=
∑
a∈A

ã(ω,σ,ht)(a)
∑
s∈S

Pi(a, s)F (ω, a, s)

is the expected change in dealer i’s cash holding.

We are interested in belief-free equilibria of the repeated game (hereafter, BFE) that, loosely

speaking, are sub-game perfect equilibria that are robust to any specification of each dealer

information about the true ω. Because dealers’ beliefs might differ arbitrarily, in a BFE, dealer’s

strategy must be optimal no matter what the true realization of ω is. In other words, we look

for a dealer’s strategy profiles σ such that at any point in time t, after any history ht, for any

dealer i, it is optimal to chose action according to σi(ht) no matter what he believes about the
13Formally, an occupation measure of a ∈ A is the discounted expected frequency with which action profile a

will be played:

ã(ω,σ,ht)(a) := Eσ

∑
t≥t

(1− δ)δt1
{
at = a

}∣∣∣∣∣∣ω, ht
 .
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true state of nature ω. Formally,

Definition 1 A belief-free equilibrium is a strategy profile σ∗ such that, for every state ω, σ∗ is a

subgame-perfect Nash equilibrium of the repeated game with rewards u(ω, ·), that is, of the repeated

game with complete information in which the state ω is common knowledge among dealers:

σ∗i ∈ argmax σi
Vi(ω, σi, σ

∗
−i|ht), (4)

for all players i, all ω ∈ Ω, all t and all ht ∈ H t.

Some remarks are in order. First, a BFE is a subgame-perfect equilibrium given any initial

prior distribution of dealers’ belief about ω and any additional private information a dealer

might possess.14 Thus, a BFE is a subgame-perfect equilibrium no matter the specific dealers’

information structure. Second, a BFE is an equilibrium no matter whether dealers are Bayesian

or not. Beside, a BFE is an equilibrium even if dealers are ambiguity averse, as long as ambiguity

pertains to the distribution of the possible states of nature ω ∈ Ω.15

3 Learnable and non-learnable states

We start by defining what any dealer can learn about the true state ω no matter what his

private information is. This corresponds to what can be learned about ω from observing how

traders react to dealers’ actions. Formally, the way the function F is affected by the state of

Nature determines the information about the true ω that can be gathered from traders’ behavior.
14To see this, note that in a perfect Bayesian equilibrium, dealers’ strategies satisfy

σ∗i ∈ argmax σi
E
[
Vi(ω, σi, σ

∗
−i|ht)|Ii

]
,

where expectations are taken with respect to both the possible states ω and the possible realizations of traders’
orders {st}∞t=1, and Ii is dealer i’s private information. Hence, a BFE is also a perfect Bayesian equilibrium, but
a perfect Bayesian equilibrium need not be belief-free.

15Unlike in Easley and O’Hara (2010), where some of the traders are ambiguity averse, here ambiguity aversion
applies to dealers.
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For example, if traders’ behavior is identical in state ω and in state ω′, then it is impossible to

tell apart these two states even after observing an infinite history of trades. Namely, F defines a

partition, that we assume to be finite, Ω̂ := {ω̂1, ω̂2, . . . , ω̂k} of the space Ω. Formally, partition

Ω̂ satisfies the following two conditions:

1. Two states ω, ω′ ∈ Ω belong to the same element ω̂ ∈ Ω̂ if and only if, for any given

(a, s) ∈ A× S, it results

F (ω, a, s) = F (ω′, a, s)

In words, traders behavior is identical in state ω an on state ω′. In this case we say that ω

and ω′ are not statistically distinguishable trough traders’ behavior.

2. Conversely, suppose that two states ω, ω′ ∈ Ω satisfy ω ∈ ω̂, ω′ ∈ ω̂′, where ω̂, ω̂′ ∈ Ω̂ and

ω̂, 6= ω̂′. Then there exists a non-empty set A(ω̂, ω̂′) ⊆ A such that if a ∈ A(ω̂, ω̂′), then

F (ω, a, s) 6= F (ω′, a, s)

for some s ∈ S.

In words, there are suitable choices of dealers’ actions (i.e., for a ∈ A(ω̂, ω̂′)), for which the

distribution of traders’ reactions s differs for ω ∈ ω̂ and ω ∈ ω̂′. In this case we say that ω

and ω′ are statistically distinguishable through traders’ behavior.

In other words, a sufficiently long observation of how traders react to dealers’ action allows to

identify the element ω̂ ∈ Ω̂ that contains the true state ω. However nothing in traders behavior

will ever allow to say which element ω ∈ ω̂ is the true state. In particular, because traders

have no information about the ẽ of the asset value, and the distribution of their types does not

depends on ẽ, their behavior does not depend on the actual value of ẽ. Hence, F satisfies the

following property:
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Non-learnable States (NLS): Traders behavior does not allow to learn the e(ω) component of

W (ω).

Beyond property NLS, the precise shape of F depends on the particular choice of the dis-

tribution Z over traders utility function and starting portfolios. However, because traders know

the component v(ω) of the asset value W (ω), in general their order flow can be affected by the

true value of v(ω). More precisely, we assume that there are suitable choices of dealers’ actions,

that induce a distribution of traders’ reactions s that is measurable with respect to v(ω):

Learnable States (LS): if v(ω) 6= v(ω′) then ω and ω′ are statistically distinguishable.

Property LS implies that it is possible to choose the sequence of dealers’ actions such that

a sufficiently long history of the traders’ reactions allows to statistically learn the value of v(ω).

Thus property LS implies that, contrary to what happens for e(ω), the v(ω) component ofW (ω)

is statistically learnable from traders’ behavior.

4 Achievable payoffs for dealers

We now consider the payoffs that dealer can achieve in a single trading round when their

actions are only based on what can be learned from traders’ behavior. To this purpose we

introduce a third property of the function F that follows form the fact that traders seek to

maximize their post-trade utility function, they are risk averse, come to the market with some

inventory of the risky asset and knowing v(ω). This implies that traders never buy the asset at a

price that is too high nor sell at a price that is too low when compared to v(ω). However traders

who initially have large enough short or long position in the risky asset will be willing to buy at

price strictly larger than v(ω) and to sell at price strictly smaller than v(ω), respectively.16 In
16This guarantees that there is room for trade between dealers and traders. Otherwise the Milgrom and Stokey

(1982) no-trade theorem applies.
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other words, there always is a positive probability that time t trader is willing to buy or to sell

the asset at price p, as long as p is not too far from v(ω). Formally,

Elastic Trader Demand (ETD): There are ρ ≥ ρ > 0 such that for all ω ∈ Ω,

1. If (a, s) are such that trader buys at price p < v(ω) + ρ, then F (ω, a, s) > 0.

2. If (a, s) are such that trader sells at price p > v(ω)− ρ, then F (ω, a, s) > 0.

3. If (a, s) are such that trader buys at price p > v(ω) + ρ, then F (ω, a, s) = 0.

4. If (a, s) are such that trader sells at price p < v(ω)− ρ, then F (ω, a, s) = 0.

We are interested in distributions over dealers’ quotes allowing them to achieve different

profiles of payoffs in a single trading round. Namely, situations where all dealers make positive

profits, situations where all dealers make negative profits, situation where a dealer cannot make

positive profit once the other dealers know his beliefs on ω, and situations where dealers’ profits

differ. Properties LS, NLS and ETD guarantees that such distributions exist but might depend

on the true value of the v(ω) component or more generally from the ω̂ ∈ Ω̂ containing the true

state ω.

Proposition 1 If F satisfies properties LS, NLS and ETD, then for any given ω̂ ∈ Ω̂,

1. Positive maximum payoffs: There exists a non-empty set A?(ω̂) ⊆ ∆A, if and only if

ui(ω, a) > 0 for all ã ∈ A?(ω̂), ω ∈ ω̂ and dealer i.

2. Negative minimum payoffs: There exists an action profile a(ω̂) ∈ ∆A such that ui(ω, a(ω̂)) <

0 for all ω ∈ ω̂ and dealer i.
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3. Non-positive expected payoffs: For any given dealer i and probability measure µω̂ ∈ ∆ω̂,

there exists ai−i (µω̂) ∈ ×j 6=i∆Aj such that,

max
ai

∑
ω∈ω̂

µω̂(ω)ui
(
ω, ai, a

i
−i (µω̂)

)
≤ 0.

4. Non-equivalent payoffs: There exist n action profiles {a1(ω̂), . . . , an(ω̂)} ∈ [∆A]n such that

ui(ω, a
i(ω̂)) < ui(ω, a

j(ω̂)) for all i 6= j and ω ∈ ω̂.

In words, the set A?(ω̂) is the set of dealers action profile (possibly mixed) guaranteeing that

each dealer i makes strictly positive profits in all states ω ∈ ω̂. Let u? > 0 denote a lower bound

on payoffs from actions in A? (ω̂). Roughly speaking, Positive maximum payoffs and Negative

minimum payoffs guarantee that for each statistically distinguishable state ω̂, there are action

profiles providing each dealer with at least u? > 0 and action profiles leading to strictly negative

payoffs, respectively. Non-positive expected payoffs guarantee that when fixing a dealer i and his

beliefs about the true ω, the other dealers can guarantee that this dealer’s expected payoff is

non-positive. This is achieved for example if the other dealers provide the maximum liquidity at

a price equal to the expected value of the asset for dealer i. Non-equivalent payoffs states that

for each ω̂ one can find as many action profiles as there are dealers such that dealer i prefers all

the other n− 1 action profiles to the i-th action profile.

As we will show below, the fact that the stage trading game satisfy these four properties is

key in constructing belief-free equilibria of the repeated game.

We conclude this section with an example of the Glosten and Milgrom (1985) economy to

illustrate properties NLS, LS and ETD and Proposition 1

Example 1 Consider the Glosten and Milgrom trading mechanism described above, i.e., A =

G×G and S = {sell, no-trade, buy}. Let αi, βi be the bid and ask quotes set by dealer i and let α

and β be the best ask and best bid across dealers, respectively. Let v(ω) ∈ {v1, v2}, with v1 < v2,
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and e(ω) ∈ {e, e}.

Traders All traders have the same utility function g that is strictly increasing and strictly

concave, however they differ for the composition of their initial portfolio. The distribution Z of

traders initial portfolio is state independent.

Then, it is possible to chose the distribution Z of traders initial portfolio so that traders

behavior is described by the following function F :

F (ω, a, sell) = max

{
0,min

{
1

2
,
β − v(ω) + ρ

4ρ

}}
, (5)

F (ω, a, buy) = max

{
0,min

{
1

2
,
v(ω) + ρ− α

4ρ

}}
, (6)

F (ω, a, no-trade) = 1− F (ω, β, sell)− F (ω, α, buy). (7)

where ρ >
√

2(v2 − v1).17 Note that, whereas there are four possible states ω in Ω, one for each

of the possible values of the asset, the partition Ω̂ has only two elements: ω̂1 containing the two

states where v(ω) = v1 and ω̂2 containing the two states where v(ω) = v2.

Dealers Given a dealers quotes profile a, and a state ω, dealer i’s payoff is

ui(ω, a) = (W (ω)− βi)F (ω, a, sell)1{βi=β}ηβ(a) + (αi −W (ω))F (ω, a, buy)1{αi=α}ηα(a)

where ηβ > 0 and ηα > 0 are tie-breaking rules applied in case more than one dealer sets the best

bid or ask, respectively.

For an example of action profile in a ∈ A?(ω̂), consider the case where all dealers set αi =

v(ω̂1) + d and βi = v(ω̂1)− d where 0 < d < ρ. Then from equations (5) and (6) it follows that

for any ω ∈ ω̂ dealer i expected payoff is ui(ω, a) = ηβ(a)d(ρ− d)/4ρ+ ηα(a)d(ρ− d)/4ρ > 0 no
17In words, the probability of a trader selling is increasing in the bid price β and decreasing in the v(ω) of the

asset value. It is at most 1/2 and and is nil if the bid price is smaller than v(ω)− ρ. The probability of a trader
buying is symmetric.
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matter the value of e(ω).

For an example of action ai−i(µω̂), consider that if dealer i has beliefs µω̂ then he values the

asset exactly Wµω̂ := v(ω̂) +
∑

ω∈ω̂ µω̂(ω)e(ω). Thus if the other dealers bid and ask quotes are

such that the best bid and the best ask are equal to Wµω̂ , then dealer i expected profit cannot be

strictly positive.

5 Necessary conditions for BFE price formation

The purpose of this section is to identify the features that are necessary for a strategy to form

a BFE. This can be useful for sorting out the predictions of market-microstructure theory that

are robust from those that rely on specific assumption about dealers information structure. Put

it different, a strategy that forms a subgame perfect equilibrium for a specification of dealer’s

beliefs but that does not satisfy at least one of the properties described below is not robust to a

changes in dealer’s information structure.

First, note that a BFE must remain a sub-game perfect equilibrium even when dealers have

no private information about ω, a situation we cannot exclude from our analysis. In this case,

the only information about ω that can emerge is the one coming from traders’ behavior. That

is, dealers will be able to distinguish two states only if they are statistically distinguishable, i.e.,

if they belong to two different elements of the partition Ω̂. As a consequence, the equilibrium

play cannot differ in two states ω and ω′ belonging to the same element ω̂ of Ω̂. In particular,

because traders’ behavior provides no information about e(ω), the equilibrium distribution of

trades cannot differ for two states ω and ω′ that only differ for the value of ẽ. Formally,

Lemma 1 (Measurability with respect to traders’ behavior) Let σ∗ be a BFE, ω̂ an

element of Ω̂ and ht a finite history, then

ã(ω,σ∗,ht) = ã(ω̂,σ∗,ht),
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for all states ω ∈ ω̂.

Second, note that each dealer can guarantee zero profit by abstaining from trading. This

implies that in a BFE, for each state ω ∈ Ω, each dealer’s payoff cannot be strictly negative.

Otherwise, for some beliefs, a dealer would prefer to deviate to the no-trade action.

Lemma 2 (Strictly positive dealers’ payoffs) Let σ∗ be a BFE, ω̂ an element of Ω̂ and ht

a finite history, then for all states ω ∈ ω̂,

Vi(ω, σ
∗|ht) ≥ 0,

Moreover, if Qi(ω̂, σ
∗|ht) 6= 0, then the weak inequality holds for at most one ω ∈ ω̂.

In other words, in a BFE dealers make non-negative profits state by state. In addition, when

the equilibrium leads to changes in a dealer’s inventory, he will make strictly positive profits in

most states.

Third, Lemma 1 and 2 put a bound on the size of the inventories that dealers accumulate in

a BFE. Namely, the same σ∗ strategy can lead to positive payoffs in different states only if the

equilibrium trading volume is relatively balanced and maintains dealers’ inventories bounded.

The intuition is simple. If on average dealers buy and sell the same quantity of the risky asset,

then, because they are neither net buyers nor net sellers, their payoffs would not depend on

W (ω) and would be positive as long as on average they sell the shares for more than what they

paid them. By contrast, if for instance dealers take large positions in the asset, because of ETD,

they would have to pay at least v(ω) − ρ per share. But in a state where e(ω) < 0 and small

enough, dealers would loose money. Formally, let consider Q(ω, σ∗|ht) :=
∑

iQi(ω, σ
∗|ht), i.e.,

the expected change in dealers aggregate inventory in state ω after history ht in a BFE. This

can be seen as the sum of two components: a negative component denoted Q−(ω, σ∗|ht) ≤ 0
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that are transactions in which traders buy from dealers, and a positive component denoted

Q+(ω, σ∗|ht) ≥ 0 that are transaction in which traders sell to dealers. The volume of trade

between traders and dealers is Q+(ω, σ∗|ht)−Q−(ω, σ∗|ht) ≥ 0. Then we have

Lemma 3 (Bounded dealers’ inventories) Let σ∗ be a BFE and ht a finite history, then for

all states ω ∈ Ω,
|Q(ω, σ∗|ht)|

Q+(ω, σ∗|ht)−Q−(ω, σ∗|ht)
≤ min

{
ρ

e
,−ρ

e

}
(8)

Fourth, the fact that dealers’ payoffs must be positive (Lemma 2) implies that if ω ∈ ω̂, then

a BFE must lead at ∈ A?(ω̂) sufficiently often. When at ∈ A?(ω̂), we say that the dealers are in

a ω̂-exploiting period. However, if for two elements ω̂, ω̂′ ∈ Ω̂ one has A?(ω̂) ∩ A?(ω̂′) = ∅, then

action profile leading to positive payoffs when ω ∈ ω̂ would lead to negative payoffs if ω ∈ ω̂′

and vice versa. In case dealers have no information about ω (a possibility we cannot rule out

in our environment), it is the traders behavior that must allow the play to tell apart the two

states and hence allow to use the appropriate exploiting actions. This is possible only if dealers

actions belong to to A(ω̂, ω̂′) sufficiently often. When at ∈ A(ω̂, ω̂′), we say that dealers are in

an exploring period. Thus, both exploiting and exploring periods are necessary ingredients of a

BFE and need to be played sufficiently often.

Lemma 4 (Frequent exploring) Suppose that A?(ω̂) ∩ A?(ω̂′) = ∅, and let σ∗ be a BFE and

ht a finite history. Then for any ω ∈ Ω action profile in A(ω̂, ω̂′) are played with strictly positive

occupation measure:

ã(ω,σ∗,ht)(A(ω̂, ω̂′)) > 0.

This lemma states that exploring periods must be relatively frequent, no matter the past

history. As we illustrate below, because exploring period are associated with higher sensitivity

of prices to trading volume, their recurrence makes prices more volatile than Bayesian beliefs on

Ω̂.
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6 Sufficient Conditions for BFE Pricing

In this section we show existence of BFE by constructing one. We first introduce the building

blocks of our a candidate strategy. We then show how to combines these ingredients to obtains

a BFE.

Equilibrium strategies ingredients: We start by defining a market measure π. Let Π ⊆ ∆Ω̂

be a closed set of probability distributions over Ω̂ and π denote an element in Π. Let π(ω̂) denote

the probability that π attaches to ω̂. Fix ε > 0, and let us say that that the market measure π

points to a state ω̂ if it attaches a probability π(ω̂) ≥ 1− ε to state ω̂.

Let φ : Π×A× S → Π be a probability updating rule, i.e., πt+1 = φ(πt, at, st). Thus, πt can

be recursively computed from the map φ, given the sequence {aτ , sτ}t−1
τ=0 of actions and signals,

and the initial value π0. We are interested in simple strategies such that, on the equilibrium path

and in each period t, dealers’ actions depend on πt (and possibly on st−1) only. That is, given

φ, we define a partial strategy to be a map σ : Π × S → ∆A. Instead, a public strategy profile

(strategy henceforth) is a mapping σ̂ : ∪tH t → ×i∆Ai.

Fix an arbitrary starting market measure π0 ∈ Π, an updating rule φ and a partial strategy

σ, and consider a situation where dealers use the partial strategy σ and the market measure

evolves according to φ. We will say that the couple (φ, σ) is ε-learning if, over many periods, the

market measure point at the ω̂ that contains the true state ω with a frequency that is at least

1− ε. In other words, the market measure is rarely far away from the truth, in terms of long-run

frequency. Formally:

Definition 2 The pair (φ, σ) is ε-learning, for ε > 0, if for any ω̂ ∈ Ω̂, any ω ∈ ω̂ and any

π0 ∈ Π,

Pr
ω,σ

[
lim inf
T→∞

1

T

T∑
t=0

1{πt(ω̂)>1−ε} < 1− ε

]
< ε, (9)
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We say that a couple (φ, σ) is ε-exploiting if whenever the market measure points at some ω̂,

play is such that a dealers’ payoffs are strictly positive in all states ω included in ω̂. Formally:

Definition 3 The pair (φ, σ) is ε-exploiting, for ε > 0, if for all ω̂ ∈ Ω̂ and all ht such that

πt(ω̂) ≥ 1− ε, we have Prσ [at ∈ A?(ω̂) | ht] > 1− ε.

The following theorem shows that a pair (φ, σ) that is both ε-exploring and ε-exploiting forms

a BFE if dealers are patient enough.

Theorem 1 There exists ε̄ > 0 such that for any ε < ε̄, if (φ, σ) is ε-learning and ε-

exploiting, then there exists δ < 1 such that the outcome induced by σ is a belief-free equilibrium

outcome, for all δ ∈ (δ, 1).

That is, there exists a belief-free equilibrium σ∗ that specifies the same action profile as the

partial strategy σ, after any history after which no player has deviated.

Observe that a pair (φ, σ) that is both ε-exploring and ε-exploiting forms a strategy profile

satisfying the necessary conditions for a BFE described in Section 5. Namely, first, the way

dealers set their actions is clearly measurable with respect to traders’ behavior (Lemma 1) because

dealers’ action at t only depend on πt that is itself a function of the public history. Second, this

strategy leads to positive payoffs (Lemma 2) because the market measure points frequently to the

right ω̂ (ε-exploring) and when this happens the dealers’ payoff is positive (ε-exploiting). Third

the strategy generate exploring (Lemma 4). In fact, for (φ, σ) to be ε-exploring, it is necessary

that, no matter the past history, the actions that allow to distinguish the true ω̂ from the others

ω̂′ ∈ Ω̂ are played with strictly positive frequency.18 Thus, when dealers behave according to a

pair (φ, σ) that is both ε-exploring and ε-exploiting, they all achieve long term positive profits

independently of the state ω. In the proof of Theorem 1 we show that dealers have no incentive

to deviate. In fact, because of the properties detailed in Proposition 1, there are strategies that
18The fact that dealers’ inventories are bounded (Lemma 3) is consequence of the fact that dealer’s payoff

remain positive for all values of W (ω).
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will be played after a deviation and that punish the deviating dealer while rewarding the other

dealers. For this threat of punishment to be an effective deterrent, dealers should care enough

about their future payoffs, i.e. be patient enough.

7 BFEMarket Making vs. zero expected profit equilibrium:

An Example and some empirical implications

In this section we analyze a particular class of BFE for the specific quote driven market of

Example 1. We compare this equilibrium with the canonical zero-profit equilibrium (i.e., the

GME) that can be obtained if we make the additional assumptions that all dealers are equally

uninformed.

Let us first consider the canonical equilibrium. This equilibrium relies on the assumptions

that all dealers start with a common prior belief that Pr[v(ω) = v2] = p0 and E[ẽ] = 0. Then

there is a perfect Bayesian equilibrium in which, in any period t: (i) each dealer’s expected profit

is nil and (ii), best bid and ask quotes in the quote-driven market satisfy

αt = α(pt) := E
[
v(ω)|ht, st = buy

]
= E[v|ht] +

ρ

2
− 1

2

√
ρ2 − 4Var[v|ht], (10)

βt = β(pt) := E
[
v(ω)|ht, st = sell

]
= E[v|ht]− ρ

2
+

1

2

√
ρ2 − 4Var[v|ht], (11)

pt+1 = φB(pt, at, st), (12)

where φB(pt, (αt, βt), st) denotes the posterior probability that v(ω) = v2 resulting from the prior

probability pt and from the trader’s reaction st to dealers’ quotes at.19 The r.h.s. of equation

(10) and (11) are obtained considering that the probability of a trader buying, selling or not

trading are given by equation (6), (5), and (7), respectively. Expressions E[v|ht] and Var[v|ht]
19In order to simplify the exposition and notation we neglect the rounding required from the fact that quotes

belong to a grid.
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are the expectation and the variance of v(ω), respectively, computed using the belief pt that

evolves according to (12). This equilibrium has the advantage of being “Markovian:” first, in

every period t, best bid and ask quotes only depend on dealers’ common belief pt; second, next

period dealers’ common posterior beliefs pt+1 only depend on the common time-t prior pt and on

(at, st), dealers’ and trader’s actions at time t. Note, however that this quoting strategy cannot

be a BFE because the zero expected profit conditions implies that there is at least one value of

W (ω) for which dealers’ profits are strictly negative. Also, this strategy is not an equilibrium as

soon as there is at least one dealer whose belief that v(ω) = v2 is not pt.20

We now illustrate how a BFE can be achieved with strategies that have a Markov structure

that is as simple as the one of the canonical equilibrium. To this purpose we build a market

measure on the partition Ω̂, a probability updating rule φ and a strategy σ mapping the market

measure into dealers quotes. The pair (φ, σ) will be ε-learning and ε-exploiting. Thus by Theorem

1, dealers quoting behavior resulting from (φ, σ) is BFE. We first provide a verbal description of

the equilibrium.

Recall that for Example 1 we have Ω̂ = {ω̂1, ω̂2}, where ω̂k is the set of states ω ∈ Ω such

that v(ω) = vk, k = 1, 2. Let us first define a market measure π on Ω̂ and a probability updating

rule φ. Fix some small ε > 0 and let Π := [ε/4, 1− ε/4]. Let πt ∈ Π denote the probability

that the market measure assigns to ω̂2 at time t. Fix an arbitrary π0 ∈ [ε, 1− ε] as the initial

market measure. Afterwards, the market measure evolves according to the following updating

rule φ : Π× A× S → Π:

πt+1 = φ(πt, at, st) := arg min
π∈Π

∥∥π − φB(πt, at, st)
∥∥ , (13)

where φB(πt, at, st) is the Bayesian posterior computed from prior πt. In words, φ(πt, at, st)

20To see this, note that if at some time t, dealer i’s belief that v(ω) = v2 is pti 6= pt, then dealer i has a profitable
deviation that consists in setting either βti > β(pt) or αti < α(pt).
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associates to a probability πt ∈ Π and an action-reaction profile (at, st) a probability πt+1 that is

the point in Π that is closest to the Bayesian posterior computed using prior equal to πt and the

information provided by traders’ reaction st to dealers action at. Note that because in a BFE

we drop all assumptions about each dealer’s information and belief, the market measure needs

not reflect any of the dealer’s belief. In particular, π0 can be chosen arbitrarily in the interval

[ε, 1− ε] and afterwards, πt does not always evolve according to the Bayes’ rule. Nevertheless,

it will be the level of the market measure that determines the equilibrium quotes set by rational

Bayesan dealers.

Namely, we say that for πt > 1 − ε (resp. for πt < ε), the game is in a ω̂1-exploiting phase

(resp. ω̂2-exploiting phase). For πt ∈ [ε, 1− ε], the game is in the exploring phase. We can now

describe the mapping σ associating to the value of the market measure dealers’ quotes. Fix d

such that 0 < d < ρ. During a ω̂-exploiting phase, the best ask and bid equilibrium quotes

satisfy

αt = v(ω̂) + d, (14)

βt = v(ω̂)− d, (15)

respectively. During an exploring phase the best ask and bid quotes satisfy

αt = α(πt) + d, (16)

βt = β(πt)− d, (17)

where α(·) and β(·) are the functions defined in equations (10) and (11), respectively. Strictly

positive payoff at the dealer’s individual level can be achieved by introducing any sharing rule

allowing each dealer to set the best bid and ask quotes a strictly positive fraction of the time.

The (on-path) equilibrium play can then be seen as the alternation of two type of phases:
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exploring phases and exploiting phases. Whenever πt ∈ [ε, 1 − ε], the game is in an exploring

phase: dealers’ quotes induce an informative flow of trades. Thus, as time passes the market

measure attaches more and more weight to the true ω̂. An exploiting phase is defined to start

as soon as the market measure attaches enough weight to a particular state. Namely, whenever

πt < ε (resp., πt > 1− ε), the game is in the ω̂1-exploiting phase (resp. ω̂2-exploiting phase). In

this phase, at ∈ A?(ω̂1) (resp. at ∈ A?(ω̂2)). This guarantees that dealers gain the spread while

keeping their inventory small in absolute value.

In response to the order flow during an exploiting phase, however, play can revert to the

exploring phase, and so on. The reason why an exploiting phase cannot last forever is that a

dealer whose beliefs differ from the market measure must be given incentives to play along and

wait for play to shift towards the exploiting phase corresponding to the asset value that he might

believe in. At the same time, no matter the current level of the market measure and a dealer

belief about ω, the dealer must expect that the play will shift toward the correct exploiting phase

within a bounded period of time. Otherwise, even a patient dealer would prefer to deviate and

generate extra profits in the current trading round (even if held down to zero profits afterwards),

rather than to make losses during the long transition period required for the market measure

to adjust to what it thinks the right exploiting phase is. This is possible only if the market

measure evolve such that two conditions are met. First, during an exploiting phase the market

measure “transition rule” attaches decreasing probability to states that are unlikely in view of

the flow of information provided by traders’ orders. This is satisfied by our choice of φ: in the

ω̂k-exploiting phase quotes straddle v(ω̂k) and induce a balanced flow of trade only if the true

state ω ∈ ω̂k. Thus, an unbalanced order flow changes the market measure and eventually leads

to a new exploring phase. Second, during an exploiting phase the market measure is not too

persistent, but instead is sensitive to the new public information provided by traders’ orders.

Bayesian updating, for instance, would not satisfy these two properties: while it allows to pin

down the true v(ω̂) almost surely eventually, it is too persistent for our purpose: once the market
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measure is sufficiently concentrated on a state, it takes arbitrarily long for a Bayesian belief to

budge. To have sensitive market measure no matter the past history, we impose that πt remains

in the interval Π = [ε/4, 1 − ε/4]: it evolves as a Bayesian beliefs as long as posterior remains

in Π. Because the resulting market measure is never too concentrated on a state, the time it

requires to point to the correct ω̂ is bounded, no matter the past history.

Note that if dealers follow these strategies, at any time t dealers expect their future profits

to be strictly positive independently of the true ω and independently of the past trading history.

Thus, even if a dealer’s beliefs differ from the market measure, it will not deviate because

(using standard repeated-game logic) the “Non-positive expected payoffs” result of Proposition 1

guarantees that other dealers can ensure that the deviating dealer makes zero profits for a long

enough but finite period. Thus a deviation cannot be profitable if the discount rate is sufficiently

low.

7.1 Simulation and explanatory power of BFE and GME

To illustrate some salient differences between such a BFE and the GME, we simulate price

behavior resulting from the GME and the BFE equilibria in our leading example.21

Excess price volatility: In a BFE quotes are intrinsically more volatile than in the GME.

This is due to the fact that in the GME, dealers’ quotes reflect dealers common Bayesian belief

that will eventually attach probability arbitrarily close to 1 to the true value of v. This leads

to a vanishing volatility and bid ask spread with quotes that remain arbitrary close to v. This

cannot happen for the BFE market measure, which can never be too concentrated on a given

state and hence remains unstable. Thus, independently of the previous history of trade, and on

dealers’ actual beliefs about v(ω), the market measure and quotes will remain sensitive to the

trading volume. This is illustrated in Figure 1, which reports a simulation of the two equilibria
21The parameters used for this simulation are: v1 = $15, v2 = $18, ρ = 15, d = $0.05, ε = 0.05, p0 = π0 = 0.5,

e = −e = 3 and c(invt) = −0.02invt. The Figure reports time series of 3000 trades.
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for v(ω) = v1. The sequence of potential buying and selling traders is the same for the two

equilibria. The right panel of Figure 1 reports the evolution of quotes in the BFE. The left panel

reports the evolution quotes in GME.

Figure 1: Evolution of bid (red dots) and ask (blue dots) quotes in the GME (left panel) and in the
BFE (right panel). Ask quotes and bid quotes are in blue, and magenta, respectively.

Volatility clustering: The recurrence of exploring and exploiting phases gives rise to price

volatility clusters. In an exploring phase, dealers attract informative unbalanced traders’ or-

der flow, whereas in exploiting phase dealers make profits from the intermediation of relatively

balanced order flow. In exploring phases quotes react more sharply to the trading volume thus

quotes volatility is higher in exploring than in exploiting phases. The volatility clustering effect is

apparent in the right panel of Figure 1. The alternation of these phases endogenously generates

price volatility regime shifts, a pattern that has been extensively documented in the asset pricing

literature. Price sensitivity to the order flow in exploiting and exploring phase is illustrated

in Figure 5 which shows how the market measure reacts to the trading volume in a exploiting

phase (left panel) and in an exploring phase (right panel). Interestingly, volatility regime shifts

are anticipated by precise patterns in the order flow and evolution of dealers’ inventory. A shift

from low to high price volatility tend to be preceded by consistent traders’ orders imbalance and

significant changes in dealers’ inventory. The transition from high to low volatility phases follows
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the fading of traders’ orders imbalance and a stabilization of dealers’ inventory. Note that in

the BFE, the volatility regime shift is completely endogenous and occurs in the absence of news.

Not so in the GME which predicts that, in the absence of news, price volatility is bound to fade.

Quote volatility vs. trading flow, bid-ask spread and profits: This Markov BFE

has some interesting implications regarding the correlation between price volatility, liquidity (as

measured by bid-ask spread), dealers’ aggregate inventory and profits. In an exploring phase,

orders are more informative, in comparison to exploiting phases, exploring phases are associated

with larger bid-ask spread, price volatility and aggregate inventory and with lower profits. This

is consistent with the empirical regularities observed in Comerton-Forde et al. (2010): liquidity

is negatively correlated with dealers’ profits and inventories and with price volatility.

News and volatility: Whereas this benchmark model does not allow for exogenous shocks

in information, it is straightforward to extend the model to allow for exogenous arrival of public

news about the asset fundamental. Our Markov BFE can easily account for this extension by

having the market measure depending on all public information, i.e., public news as well as

order flow. Unexpected news arriving when the market is an exploiting phase, move the market

measure and may trigger an exploring phase. As a result, just following the news, price volatility

increases and this may generate price overshooting and/or undershooting with respect to the

level of quotes that will be reached once a new exploiting phase starts.

Dealers’ profits: One of the necessary conditions for an equilibrium to be belief-free is that

dealers’ long term profits are strictly positive state by state. In the BFE this is achieved by

maintaining a spread that is larger than the one predicted in the GME. Note for example that in

the BFE the spread remains bounded away from 0 even when the market measure is relatively

concentrated. As a result, while in the GME the average dealers’ aggregate per-period profit

quickly converges to 0, in the BFE it is of the same magnitude as d (see Figure 2). Note that a

dealer’s ex post profit also depends on the value of e(ω) ∈ {e, e}. Figure 3 represents the ex post

cumulative profit for e(ω) = e and e(ω) = e. In the GME (left panel of Figure 3), the dealers’
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cumulative profit remains negative for at least one realization of e(ω). In the BFE, the dealers’

cumulative profit eventually becomes positive no matter the realized e(ω) (right panel of Figure

3).

Figure 2: Evolution of the average per-period profit taking e(ω) = 0 in GM (red dashed line) and in
the BFE (blue solid line).

Dealers’ inventories: A strictly positive profit in all states can only be achieved when

aggregate inventory does not explode. For this reason, in a BFE, dealers’ inventory must remain

bounded. Not so in the GME. For example, in the simulation, v(ω) = v1, hence, traders tend

to sell more than buy the asset. The right panel of Figure 4 reports the evolution of aggregate

inventory in GME (red line) and in BFE (blue line). In the GME dealers’ aggregate inventory

tends to explode. Quite to the opposite, in the BFE dealers’ aggregate inventory remain more

balanced thanks to the bias in quotes ct. Equation (8) provides the upper and lower bound

for the ratio between the average change in dealers’ inventory and the average trading volume.

The larger e − e and the smaller ρ, the smaller should be this ratio, on average. The variable

e − e can be interpreted as the asset intrinsic uncertainty, i.e., the remaining uncertainty after
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Figure 3: Cumulative dealers’ profits for e(ω) = 0 (dashed line), e(ω) = e (blue line) and e(ω) = e (red
line).

incorporating traders’ information.22 The parameter ρ is a measure of traders’ willingness to

trade for hedging rather than speculative reasons. In standard market microstructure parlance,

ρ increase with liquidity traders’ activity. Thus, the BFE predicts that dealers’ inventories are

more balanced in the presence of intrinsic uncertainty and for companies that are seldom traded

by institutional investors.

8 Extensions

Our environment is restrictive in several dimensions. In particular, dealers’ actions are ob-

served by all other dealers. Furthermore, the state of the world that determines the fundamentals

is fixed once and for all at time 0. Also, long-term market participants do not take advantage

of their private information. Here, we sketch how the model can be extended and the analysis

adapted to deal with such features.

A restriction of our model is that dealers’ actions are observable. This might not be real-
22Some possible proxies for the presence of intrinsic uncertainty are growth companies vs. utility companies,

youth of the firm the firm’s sector, product market innovations, R&D investments, business sensitivity to exoge-
nous risks such as weather or other natural risks, and foreign country risk.
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Figure 4: Red dashed lines represent the GME and blue solid lines the BFE. The left panel displays
the evolution of the BFE market measure and of the GME Bayesian belief. The right panel reports the
evolution of dealers’ aggregate inventory in the GME and in the BFE.

istic for some opaque markets, as for instance when dealers’ quotes are anonymous. Imperfect

monitoring of actions makes it more difficult to detect a dealer’s deviating from the mutually

profitable collusive-type strategy. This reduces the threat of punishment and complicates imple-

menting collusive-like behaviors. However, this does not eliminate the dealers’ ability to sustain

a BFE, as long as equilibrium strategies are built in a way that make deviations detectable.

For example, Christie and Shultz (1994) and Christie, Harris and Schultz (1994) document how

Nasdaq dealers used to quote only on even-eight quotes. Deviations from such a collusive scheme

can easily be detected even when quotes are anonymous. More generally, imperfect monitoring

of players actions is not an issue for the existence of a BFE (as demonstrated in Fudenberg

and Yamamoto (2011)). However, imperfect monitoring of dealers’ actions might impose further

restrictions on the type of equilibrium strategies that can be sustained in a BFE.

Allowing for fluctuations in the value of the asset raises no difficulty as long as these fluctu-

ations take place at a much slower rate than does the learning process. That is, in the definition

that (φ, σ) be ε-learning, we must now account for the fact that ω̂(ωt) depends on time t. Hence,

the learning requirement is considerably stronger. We must think of learning the fundamental
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Figure 5: Market measure and dealers’ inventory in an exploiting phase (left panel) and an exploring
phases (right panel).
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value as occurring at another time scale as the fluctuations of the value itself –perhaps learning

occurs within a day of trading, an interval of time over which the fluctuations in the fundamental

value are sufficiently small to be considered negligible. If trading periods are at high frequency

(say, milliseconds), fundamentals hardly change from one such period to the next. Of course, we

have in mind that the flow of trade itself does not affect fundamentals. The verification that σ

is a belief-free equilibrium follows exactly the same steps as in the main proof.

A third restriction is that long-term market participants do not take advantage of their

private information, if any. This is an implication of our definition of belief-free equilibrium,

which requires robustness to any possible information structure. What really matters for dealers

is identifying the set of quotes that balance supply and demand coming from the mass of investors.

As these quotes can be ultimately learned from the observation of the trading flow, dealers’ private

information is not crucial. The fact that, in our equilibrium, dealers do not take advantage of their

private information might be counter-intuitive, but there is no difficulty in re-defining our model

to accommodate for such behavior without abandoning the belief-free assumption altogether.

Rather than taking the asset value as a primitive that determines a distribution over the players’

private signals, one can think of the players’ private signals as a primitive that determines the

asset’s value. In that case, we can re-define a strategy profile to be belief-free if it is the case that,

for every player, given his private signal, his strategy (that can depend on his private signal) is

optimal independently of the other players’ possible strategies. That is, given a player’s signal,

there is a set of signal profiles of his opponents that are consistent with his; for each such signal

profile, his opponents play some strategy profile. Belief-freeness requires the player’s strategy to

be optimal against all these profiles. In fact, it is clear that we do not need to impose that the

players’ combined signals pin down the value of the asset. Rather, it pins down a set of possible

values, with respect to all of which the best-reply property must hold.

This provides a natural extension of the definition of belief-free equilibrium that allows dealers

to take advantage of their private information. Whereas these type of belief-free equilibria can be
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characterized, they would be less robust to changes in the information structure and hence they

can help explaining price formation only for those actual cases where only few specific forms of

information asymmetries are likely. We believe that such an extension raises interesting questions

and technical challenges that motivate further study.

9 Conclusion

This paper considers market microstructure models in which long-lived dealers interact with

short-lived traders. We characterize equilibrium price formation strategies that are robust to

changes in dealers’ beliefs about fundamentals. Belief-free equilibria feature two key ingredients.

First, dealers collectively learn the value of those fundamentals that affect traders’ demand.

Second, for any given value of these fundamentals, dealers generate positive profits from the

intermediation of traders’ demand. This has has three robust implications that contrast with

those delivered by canonical microstructure models relying on the assumption of equally unin-

formed competitive dealers. First, dealers’ long-term profit is strictly positive independently of

the asset’s fundamental value. This profit is obtained through intermediation of traders’ demand.

Second, trading price need not reflect any of the dealers’ belief, and is generally more volatile

than prices that reflect the evolution of Bayesian beliefs. Third, dealers’ inventories tend to be

balanced even in the absence of risk aversion or institutional constraint. Given that belief-free

equilibrium is more stringent than traditional solution concepts, it might be surprising that so

much flexibility remains –in particular, the equilibrium is not unique. Hence, we have focused

on a belief-free equilibrium with a simple Markovian structure. When applied to a version of the

Glosten and Milgrom model, it explains well-documented stylized empirical facts. For specific

microstructure games, it might then be reasonable to focus on belief-free equilibria that satisfy

further criteria. For example, depending on the specific trading model considered, one could

analyze equilibria that maximize the dealers’ aggregate payoff, or that minimize the expected
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time required for the market measure to point at the true state, or even equilibria that minimize

the aggregate cost of learning, or more generally strategies that form a belief-free equilibrium for

the lowest possible level of dealers’ patience.
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Appendix

Proof of Proposition 1

1. Positive maximum payoffs : Take any ω̂, it is sufficient to show that the set A?(ω) is not
empty. Fix dealer i and consider the following two action profiles a(i) and a′(i) in which
all dealers different form i set the no-trade action. In a(i) dealer i sets his action so that
if a trader trades he can only buy at price strictly larger than v(ω̂) + ρ and he cannot
sell. Conversely, in a(i)′ dealer i sets his action so that a trade can only consists in the
trader selling at price strictly smaller than v(ω̂) + ρ. Because of ETD and NLS we have
that for all ω ∈ ω̂, the expected asset transfer to dealer i are equals to Q(ω̂, a(i)) > 0 and
Q(ω̂, a′(i)) < 0 for action a(i) and a′(i) respectively. Now let q = Q(ω̂, a′(i))/(Q(ω̂, a′(i))−
Q(ω̂, a(i))) ∈ [0, 1] and consider ã(i) obtained by playing a(i) with probability q and a′(i)
with probability 1−q, this translates in dealer i expected profit of at least Q(ω̂, a(i))2ρ > 0

no matter the value of e(ω). In facts in expectation he buys qQ(ω̂, a(i)) shares for a price
less than v(ω̂) − ρ and he sells the same quantity for at least v(ω̂) + ρ per share. Now
consider the random strategy ã obtained by first selecting a dealer i with probability 1/n

and then playing ã(i). This guarantees that ui(ω, ã) = Q(ω̂, a(i))2ρ/n > 0 for every i and
every ω ∈ ω̂, no matter the value of the e(ω) component.

2. Negative minimum payoffs : Fix dealer i and consider the the action a(i) in which all
dealers different form i set the no-trade action. In a(i) dealer i sets his action so that if a
trader trades he can only buy at price strictly smaller than v(ω̂) − e and he cannot sell.
Because of ETD,there will be trader willing to sell at such price, implying that dealer’ i
payoff is negative, no matter the true value of ω and hence for all ω ∈ ω̂. Consider the
random strategy a(ω) obtained by first selecting a dealer i with probability 1/n and then
playing a(i) satisfies the requirement. Clearly ui(ω, a(ω̂)) < 0 for all ω ∈ ω̂ and dealer i.

3. Non-positive expected payoffs : Fix dealer i and a probability measure µω̂ ∈ ∆ω̂. Let
Wµω̂ := v(ω̂) +

∑
ω∈ω̂ µω̂(ω)e(ω) be the expected fundamental value of the asset computed

using probability measure µω̂. Let p1 and p2 be the two points on the price grid G that
are closets to Wµω̂ , with p1 ≤ Wµω̂ ≤ p2. Let define ai−i(µω̂) as follows. Each dealer j 6=i
set an action such that any other market participant can buy and sell up to the maximum
tradable quantity at price p : Wµω̂ . Let consider dealer i expected payoff when his belief
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that the state is ω is equal to µω̂(ω). His expected payoff fro playing ai when the other
dealers play ai−i(µω̂) is

∑
ω∈ω̂

µω̂(ω)ui
(
ω, ai, a

i
−i (µω̂)

)
=

∑
ω∈ω̂

µω̂(ω)(v(ω) + e(ω))Qi(ω, ai, a
i
−i) + Pi(ω, ai, a

i
−i)

= Wµω̂Qi(ω̂, ai, a
i
−i) + Pi(ω̂, ai, a

i
−i) (18)

where the second equality follows from the fact that for any ω ∈ ω̂ and a ∈ A, property
NLS implies that v(ω) = v(ω̂), Qi(ω, a) = Qi(ω̂, a) and Pi(ω, a) = Pi(ω̂, a). The last
expression can be interpreted as the payoff of a dealer who values the asset exactly Wµω̂

buys a quantity Qi(ω̂, ai, a
i
−i) of the asset in exchange for Pi(ω̂, ai, ai−i). To see that this

expression cannot be strictly positive note first that if ai is such that dealer i trades with
some other dealer, the other dealer actions are such that he can only trade at price p = Wµω̂ ,
implying that dealer i profit is nil. Suppose that ai is such that dealer i trades with the
trader. Because the trader can trade any quantity at price p = Wµω̂ from the other dealers
he will trade with dealer i only if he propose equal or better trading condition, that is only
if he can buy from dealer i for less than Wµω̂ or sell for more than Wµω̂ . In both case dealer
i payoff of expression (18) cannot be strictly positive. Note that if because of the price grid
trade cannot occur at price exactly equal to Wµω̂ then it is possible for dealer i to make
some strictly positive payoff. However this payoff can be made arbitrarily small for a dense
enough price grid.

4. Non-equivalent payoffs : Consider the strategy ã(i) defined in point 1. above. When dealer
play ã(i), dealer i payoff is positive whereas all other dealers payoff is nil. Let ai(ω̂) obtained
by first selecting a dealer j 6= i with probability 1/(n− 1) and then playing ã(j). Because
in this strategy dealer i payoff is nil whereas all other dealers payoff is strictly positive, we
have ui(ω, ai(ω̂)) < ui(ω, a

j(ω̂)) for all i 6= j and ω ∈ ω̂.

�

Proof of Lemma 1

A BFE must be an equilibrium even when dealers have no private information about ω. In
this case the distribution over history can be different in two states ω and ω′ only if traders’
behavior differ in those two states. �

Proof of Lemma 2
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To see that the equilibrium payoff cannot be negative , suppose that for some state ω and
dealer i and history ht, we have Vi(ω, σ∗|ht) < 0, then if dealer i believes that the true state is
ω he would be better off by deviating and playing the no-trade action guaranteeing him a nil
payoff, thus σ∗ cannot be a BFE. To see that the equilibrium payoff is strictly positive in most
states, take any ω̂ ∈ Ω̂. Note that for all ω ∈ ω̂ v(ω) is the same because of NLS and the
equilibrium play is the same because of Lemma 1. Thus we have

Vi(ω, σ
∗|ht) = (v(ω̂) + e(ω))Qi(ω̂, σ

∗|ht) + Pi(ω̂, σ
∗|ht)

Suppose Qi(ω̂, σ
∗|ht) 6= 0, and take two different states ω, ω′ ∈ ω̂, because e(ω) 6= e(ω′), then it

must be Vi(ω, σ∗|ht) 6= Vi(ω, σ
∗|ht), so Vi(ω, σ∗|ht) = 0 for at most one state ω ∈ ω̂. �

Proof of Lemma 3

Fix ω̂ ∈ Ω̂. Property LS implies that v(ω) = v(ω̂) for all ω ∈ ω̂ whereas property NLS

implies that knowing v(ω) does not allow to infer anything about e(ω) whose maximum and
minimum possible vales are e > 0,respectively. Because of Lemma 1 for any state ω ∈ ω̂ we have
that the change in dealers aggregate inventory is the same Q(ω̂, σ∗|ht). This change in inventory
is mirrored by the change in traders aggregate inventory, i.e., Q(ω̂, σ∗|ht) = −QT (ω̂, σ∗|ht). Let
consider dealers’ aggregate payoff. Because of property ETD, traders will never buy for more
than v(ω̂) + ρ neither sell for less v(ω̂) − ρ, hence dealers’ aggregate payoff cannot be greater
than:

(v(ω̂) + e(ω)− (v(ω̂)− ρ))Q+(ω, σ∗|ht) + (v(ω̂) + e(ω)− (v(ω̂) + ρ))Q−(ω, σ∗|ht)

that is non-negative only if

ρ >
Q(ω̂, σ∗|ht)e(ω)

Q+(ω̂, σ∗|ht)−Q−(ω̂, σ∗|ht)

Lemma 2 requires each dealer’s payoff to be non-negative and hence a fortiori their aggregate
payoff. Hence the above expression needs be positive for all realization of e(ω). Then the result
follows form the fact Q, Q+ and Q− do not depend on e(ω) and that e(ω) ∈ [e, e]. �

Proof of Lemma 4

Suppose that, after some history ht dealers actions never belong to A(ω̂, ω̂′), that is, in all
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period t′ > t the dealers action profile at′ /∈ A(ω̂, ω̂′), implying F (ω̂, at
′
, s) = F (ω̂′, at

′
, s) for

all s ∈ S. In other words, observation of traders behavior will not tell apart ω̂ from ω̂′. Now,
measurability of the equilibrium play with respect to traders behavior (Lemma 1) implies that
the equilibrium occupation measure after ht is the same no matter wether the true state ω is
in ω̂ or ω̂′. Let denote ã(ht) this occupation measure. Because A?(ω̂) ∩ A?(ω̂′) = ∅, one must
have either ã /∈ A?(ω̂) or ã /∈ A?(ω̂′) or both. But this implies that after history ht dealers
continuation payoffs are strictly negative for some ω. Thus, the continuation strategy cannot be
a BFE because it would contradicting Lemma 2.

�

Proof of Theorem 1

Fix a game and a profile (φ, σ) satisfying the assumptions of the theorem and let ω be the
true state. Consider the play on the equilibrium path. Let qt be the probability that at time t
the market measure satisfies πt(ω̂(ω)) > 1 − ε. Thus, following point 2 in Definition 2 and the
definitions of u? and u, with probability qt, dealer i stage t payoff is at least (1−ε)u?−εu. Then,
at time τ ≥ 0, dealer i’s payoff satisfies

V δ
i (ω, σ|hτ ) > (1− δ)

∞∑
t=τ

δt−τ
(
qt((1− ε)u? − εu)− (1− qt)u

)
= (1− ε)(u? + u)(1− δ)

∞∑
t=τ

δtqt−τ − u. (19)

Now condition 1 of Definition 2, implies that

Pr
ω,σ

[
lim
δ→1

(1− δ)
∞∑
t=τ

δtqt−τ > 1− ε

]
> 1− ε. (20)

Hence we have that
lim
δ→1

V δ
i (ω, σ|hτ ) > (1− ε)3(u? + u)− (1 + ε)u. (21)

As the r.h.s. is strictly positive for ε = 0, it is also positive for all ε smaller than some ε > 0.
Continuity of V δ

i in δ implies there exists δ < 1 such that for ε < ε, dealer i’ s continuation
payoff V δ

i (ω, σ|hτ ) is strictly positive.
The next step is to show that dealers have no profitable deviations. To this purpose we first

establish a simple lemma.
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Lemma 5 For any given ω̂ ∈ Ω̂, all ω ∈ ω̂ and any player i, and any a ∈ A?(ω̂), there exist n
action profiles {ã1(ω̂), . . . , ãn(ω̂)} ∈ [∆A]n such that

0 < ui(ω, ã
i(ω̂)) < ui(ω, ã

j(ω̂)) < u(ω, a). (22)

for all i 6= j.

Proof. Consider the convex combination

ãi(ω̂) := β1(ω̂)β2(ω̂)a(ω̂) + β1(ω̂) (1− β2(ω̂)) ai(ω̂) + (1− β1(ω̂)) a, (23)

for some β1(ω̂), β2(ω̂) ∈ [0, 1], where a(ω̂) satisfies AssumptionB-2, and ai(ω̂) is as in Assumption
B-4. Note that {ãi(ω̂)}i=1,...,n also satisfies Assumption B-4, as long as β1(ω̂) > 0, β2(ω̂) < 1.
Furthermore, because u (ω, a(ω̂)) < 0, we can pick β2(ω̂) close enough to one, and β1(ω̂) close
enough to zero to guarantee that all payoffs are between 0 and u(ω, a).

We may now define n partial strategy profiles σi,ε as follows. Let AL denote a set of learning
action profiles satisfying A(ω̂, ω̂′)∩AL 6= ∅ for each couple ω̂ 6= ω̂′. Let L denote the cardinality of
AL and Dω̂ denote the Dirac measure attaching probability 1 to ω̂. If ht is such that ‖πt −Dω̂‖ <
ε, then let σi,ε (ht) = (1− ε) ãi(ω̂) + (ε/L) Σa∈ALa For all other ht, let σi,ε (ht) = (1/L) Σa∈ALa.

In addition, define n partial “punishment” strategies σi,ε as follows. Fix any ω̂ ∈ Ω̂. Con-
dition B-3 guarantees that we can extend the Blackwell (1956) approachability argument to
the discounted case: for any η > 0 there is δη<0, mη < ∞ and mη-period strategy a−i(ω̂)

for player −i such that if δ > δη, for any sequence {a1
i , . . . , a

mη

i } player i discounted payoff
during these mη periods is smaller than η in each ω ∈ ω̂. This Blackwell strategy is then an
ingredient for the punishment partial strategy σi,ε. If ht is such that, for some ω̂i, πt assigns
probability no more than ε to states outside of ω̂i, but probability at least ε to all ω ∈ ω̂i, then
σi,ε (ht) = (1− ε) ai(ω̂i)(ht) + (ε/L) Σa∈ALa, where ai−i(ω̂i)(ht) as defined above and aii (ω̂i) is
some fixed action. Note that, for ε > 0, each of these strategies is exploratory. Furthermore,
given any σi, any ω, and any history ht, the continuation payoff V δ

i

(
ω, σi, σ

i,ε
−i|ht

)
is such that

lim
δ→1,ε→0

V δ
i

(
ω, σi, σ

i,ε
−i|ht

)
≤ 0. (24)

From here, the proof is standard, see Fudenberg and Maskin (1986). Given the partial strategy
σ, define a strategy σ̂ as follows. As long as no player unilaterally deviates, actions are specified
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by σ. As soon as a player (say i) unilaterally deviates, play proceeds according to σi,ε for T
periods (for some ε > 0, T ∈ N to be specified). If during this i-punishment phase, some player
(say j) unilaterally deviates from σi,ε, play switches to the j-punishment phase, in which σj,ε is
played for T periods. If T periods elapse without unilateral deviations during the i-punishment
phase, play is then given by σi,ε. If there is a unilateral deviation from σi,ε by j, play switches to
the j-punishment phase, etc. It is now standard to show that, for T large enough, and ε small
enough, there exists δ ≤ δ < 1 such that for all δ ∈

(
δ, 1
)
, players do not gain from deviating.

Note that this construction yields a belief-free equilibrium: The strategy are optimal irre-
spective of dealers’ beliefs about ω on and off the equilibrium path.

�
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