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Abstract

Perturbed utility functions—the sum of expected utility and a non-linear perturbation

function—provide a simple and tractable way to model various sorts of stochastic choice.

We show that these representations correspond to a form of ambiguity-averse preferences

for an agent who is uncertain about her true utility. We then provide easily understood

conditions that characterize forms of this representation by generalizing the acyclicity

condition used in revealed preference theory. We show how to relax Luce’s IIA condition

to model cases where the agent finds it harder to discriminate between items in larger

menus, and how to extend the perturbation-function approach to model choice overload

and nested decisions. We also show how to use perturbed utility to model menu-dependent

choice behavior such as the attraction effect and the compromise effect.
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1 Introduction

Deterministic theories of choice cannot accommodate the fact that observed choices in many

settings seem to be stochastic. This raises the question of the extent to which stochastic choice

can be seen as following a consistent principle that can be given a simple theoretical foundation.

Here we provide conditions under which stochastic choice corresponds to the maximization of

the sum of expected utility and a non-linear perturbation function

P (A) = arg max
p∈∆(A)

∑
z∈A

u(z)p(z)− C(p), (1)

where P (A) is the probability distribution of choices from the set A, u is the utility function

of the agent, and C is a strictly convex perturbation function that rewards the agent for

randomizing. Such perturbed utility functions have been previously used by e.g. Harsanyi

(1973b), Machina (1985), Rosenthal (1989), Clark (1990), Mattsson and Weibull (2002), and

Swait and Marley (2013).1

In contrast to past work on non-linear perturbed utility functions, we take a revealed pref-

erence approach: we suppose that the analyst observes the agent’s choice probabilities from

some (but not necessarily all) menus, and show that various restrictions on the probabilities

correspond to particular forms of the perturbation function. In particular, we relate restric-

tions on the perturbation function to whether the agent’s choices satisfy various sorts of internal

consistency conditions, including regularity and stochastic transitivity (Marschak, 1959; Block

and Marschak, 1960) as well as some new conditions that we develop here. We argue that

the perturbation-function approach provides a simple and tractable way to model stochastic

choice, and that it helps us organize the empirical evidence and evaluate how much it pushes

the boundaries of “rational” behavior.

One interpretation of representation (1) is that agents facing a decision problem randomize

1Non-linear perturbed utility functions are also analyzed in van Damme (1991), Fudenberg and Levine
(1995), Hart and Mas-Colell (2001), van Damme and Weibull (2002), Hofbauer and Hopkins (2005), Hofbauer
and Sandholm (2002), Benaim, Hofbauer, and Hopkins (2009), Fudenberg and Takahashi (2011), all of which
focus on repeated stochastic choice in static games. Fudenberg and Levine (1995) show that this generates a
choice rule that is Hannan consistent, meaning that its long-run average payoff is at least as good as the best
response to the time average of the moves of Nature and/or other players (Hannan, 1957).
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to maximize their non-EU preferences on lotteries, as in Machina (1985);2 recent experimental

evidence (Agranov and Ortoleva, 2014; Dwenger, Kubler, and Weizsacker, 2014) indicates that

some people may indeed have an intrinsic preference for randomization. In Section 3.1 we show

that such preference for hedging may arise due to ambiguity about the true utility function.

Specifically, we show that the perturbed-utility objective function corresponds to a game in

which the agent has a form of variational preferences and so randomizes to guard against

moves by a malevolent Nature. Another interpretation is that stochastic choice arises due to

inattention or implementation costs: It may be costly to take care to implement the desired

choice, so that the agent trades off the probability of errors against the cost of avoiding them,

as assumed by van Damme (1991) and Mattsson and Weibull (2002).3

From the agent’s choice probabilities we derive a (possibly incomplete) relation % over item-

menu pairs (x,A) where x ∈ A : We say that (x,A) � (y,B) if the probability of choosing x

from A is greater than the probability of choosing y from B, and that (x,A) ∼ (y,B) if these

probabilities are equal and strictly between 0 and 1.

We then relate various consistency restrictions on this relation to characterize the perturbed-

utility representations. Section 3 characterizes the invariant case, where the cost function has

the form

C(p) =
∑
z∈A

c(p(z))

for a cost function c that is independent of both the item z and the menu A. We show that

this cost function is characterized by the Hyper-Acyclicity axiom. This axiom rules out “item

cycles,” which are cycles in the associated relation comparing pairs of items from the same

menus, such as (x,A) � (y, A), (y,B) � (z,B), (z, C) � (x,C). Hyper-Acyclicity also rules

out “menu cycles” in the implied ranking on menus, such as (x,A) � (x,B), (y,B) � (y, C),

(z, C) � (z, A), but it is strictly stronger than the union of those two conditions as it also rules

out “hyper-cycles” such as (x,A) � (y,B), (y, C) � (z, A), and (z,B) � (x,C).

2Formally, Machina (1985) considers a form of the menu invariant cost functions that we define below.
Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2013) also study randomization generated by nonlinear
preferences over lotteries; they use a subclass of the non-EU preferences studied by Cerreia-Vioglio, Dillenberger,
and Ortoleva (2013).

3See Weibull, Mattsson, and Voorneveld (2007) for an alternative approach in which the agent pays costs to
improve signal precision. None of these three papers derives the functional forms from observed behavior.
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Hyper-Acyclicity implies (and is strictly stronger than) strong stochastic transitivity, which

requires that if x is picked more often than y in the binary menu {x, y}, and y is picked more

from the set {y, z}, then the probability that x is picked from {x, z} is at least the maximum

of those two other probabilities. Hyper-Acyclicity also implies that choice is regular : the

probability of choosing a particular item cannot increase when more alternatives are added to

the choice set.4

The most commonly used cost function in the literature is the entropy function c(q) =

ηq log q. This cost function generates logistic choice, and so implies that the choice probabilities

satisfy Luce’s IIA condition. Hyper-Acyclicity is a more general condition than IIA, as it

captures the implications of maximizing the sum of expected utility and any perturbation.

Specific conditions on the cost function can be used to organize alternative classes of choice

rules that may be useful in applications. For instance, in section 4 we explore cost functions

that weaken IIA by allowing the odds ratios to become closer to one as menus become large,

which reflects the idea that it is harder to discriminate between objects in larger menus.

We also extend invariant cost functions to model nested choice, which allows us to charac-

terize nested logit, and to model the idea of choice overload; we explore these ideas in Section 6.

We then provide a revealed-preference characterization of nested logit, along with a character-

ization using invariant cost functions that is arguably more tractable and easier to understand

than the usual random-utility representation.

Hyper-Acyclicity can be weakened to Menu Acyclicity, which rules out menu cycles. This

condition implies that menus can be ordered by weakness, with the probability of choosing any

given item being at least as high in a weaker menu. Section 5.2 shows that Menu Acyclicity

characterizes menu-invariant cost functions, where the cost term c is independent of the menu,

that is

C(p) =
∑
z∈A

cz(p(z))

Such representations always satisfy weak stochastic transitivity: if x is picked more often than

y in a binary menu, and y is picked more from the set {y, z}, then x is picked more often from

4This is a seemingly intuitive property, but there are experimental settings where it is robustly violated, for
example those associated with the “attraction effect” (Huber, Payne, and Puto, 1982; Huber and Puto, 1983).
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{x, z}. They are also regular, but they need need not satisfy strong stochastic transitivity.

Menu-invariant costs are consistent with the “compromise effect” (Simonson, 1989)

P (x|{x, y}) > P (y|{x, y}), P (y|{x, y, z}) > P (x|{x, y, z})

which has been observed in many experiments.

An alternative relaxation of Hyper-Acyclicity is Item Acyclicity, which rules out item cycles

in %. This condition is an extension to stochastic choice of the Strong Axiom of Revealed

Preference and also of Richter’s (1966) congruence axiom, and ensures that choice probabilities

at each menu are ordered by their utilities. Section 5.1 shows that this axiom is equivalent to

item-invariant cost functions that can depend on the menu but not on the item z

C(p) =
∑
z∈A

cA(p(z))

These representations need not satisfy regularity, so they can be used to model the attraction

effect and related phenomena.

The most familiar stochastic choice model in economics is random utility (RU) (Thurstone,

1927; Marschak, 1959; Harsanyi, 1973a; McFadden, 1973) which supposes that the agent’s

choice maximizes a utility function that is subject to random shocks. We note that, in contrast

to existing characterizations of RU, which impose conditions on how adding items to a menu

changes the difference between choice probabilities (Falmagne, 1978), or the ratio of choice

probabilities (Luce, 1959), we characterize perturbed utility with axioms that rely only on

pairwise ordinal comparisons of the choice probabilities5 As noted above, additive perturbed

utility leads to no choice restrictions and therefore nests RU. Invariant costs rule out some

RU models, even some with i.i.d. shocks, but also allows for choice rules that do not admit

a RU representation, so the two classes of stochastic choice rules are not nested, though their

intersection is non-empty as it includes logistic choice. Moreover, neither menu-invariant nor

5Hofbauer and Sandholm (2002) show that with known utility functions and a fixed menu of alternatives any
RU has a convex perturbation representation. In our setting, the analyst does not know the utility function, and
in addition we consider choices from menus of varying size. Manzini and Mariotti (forthcoming) study agents
who only pay attention to a random subset of each menu. Their main model is a special case of RU.
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item-invariant costs nest RU.

RU implies that the agent is never made worse off when items are added to a choice set, which

seems counterintuitive in some situations. One advantage of the perturbed utility approach that

we take here is that it can accommodate both cases where the agent prefers larger menus and

those where she does not. Of course, purely static choice data (which is what we consider

here) is not enough to reveal whether the agent prefers larger or smaller menus. Fudenberg and

Strzalecki (2014) use cost functions to address this in the special case in which choice satisfies

Luce’s IIA axiom so that choice is logistic; the results in this paper may help extend the analysis

of dynamic stochastic choice to more general choice rules.

Many papers on stochastic choice assume that choice data is complete (i.e., available for

every possible menu), or at least sufficiently “rich.” Most of our results do not require this,

and apply when choice is observed for a subset of the possible menus, as in the work of e.g.

Afriat (1967) and Richter (1966) on revealed preference or the work of Gilboa (1990), Gilboa

and Monderer (1992), and Fishburn (1992) on RU when only binary menus are observed.

2 Preliminaries

Let Z be a finite set of items (consequences, prizes). A menu is a nonempty subset of Z. Let A

be the set of menus for which the choice probabilities of an agent have been observed; without

loss of generality we assume that every z ∈ Z appears in at least one menu. We allow for

the available choice data to be limited, i.e., the collection A need not include every non-empty

subset of Z. We consider a stochastic choice rule P that maps each menu A ∈ A to a probability

distribution on its elements. Formally, a stochastic choice rule is a mapping P : A → ∆(Z)

with the property that for any A ∈ A the support of P (A) is a subset of A. For any given

A ∈ A and z ∈ A we write P (z|A) to denote the probability that item z is chosen from the

menu A.

We now associate an ordering % of item-menu pairs to each stochastic choice rule P . We

will use conditions on this ranking to characterize various representations of stochastic choice.

Definition 1. Let D := {(z, A) ∈ Z × A : z ∈ A,A ∈ A}. Define binary relations over D by
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(x,A) � (y,B) if P (x|A) > P (y|B), and (x,A) ∼ (y,B) if P (x|A) = P (y|B) ∈ (0, 1). Let %

be the union of � and ∼.

Looking ahead, in an invariant APU (x,A) � (y,B) will mean either that x is better than y

or that menu A is weaker than B, in the sense of containing less attractive items. For this reason

we do not want to interpret P (x|A) = P (y|B) = 0 or P (x|A) = P (y|B) = 1 as indifference—for

example x might be better than y and yet P (x|A) = p(Y |A) = 0. This means that % may be

incomplete unless all choice probabilities are in (0, 1). To relate the observed choice probabilities

to the form of the cost function, we will impose various sorts of consistency conditions on %.6

Thus, our axioms depend only on the ordinal information about the stochastic choice. An

example of an axiom that relies on ordinal information only is regularity.

Definition 2 (Regularity). P satisfies regularity if and only if P (x|B) ≤ P (x|A) for all

A,B ∈ A and x ∈ A ⊆ B.

In Section 5 we show that regularity is a necessary condition for a representation with an

menu-invariant cost (and hence invariant costs), but it is not an implication of item-invariant

costs. Moreover, regularity is not sufficient for any of these representations.

Perhaps the most familiar stochastic choice rule is logit/logistic choice, which is given by

P (z|A) = exp(ηu(z))/
∑

z′∈A exp(ηu(z′)); this corresponds to additive perturbed utility with

cost c(p) = η−1p log p.7 As Luce (1959) showed, whenever all choice probabilities are positive

logit choice is characterized by the “IIA” condition that P (x|A)/P (y|A) = P (x|B)/P (y|B) for

all A,B ∈ A with x, y ∈ A ∩B.8

The above entropy function is an example of what we call an invariant cost function, as c

does not depend on z or A. Other classes of invariant cost functions in the literature include the

logarithmic form used by Harsanyi (1973b) c(q) = −η log(q) and the quadratic perturbation

c(q) = ηq2 analyzed by Rosenthal (1989).

6Our necessary and sufficient conditions resemble those used in work on multiattribute decision theory, but
differ in a few key ways: the set D does not have a product structure, and the data needs to fit the restriction∑
z∈A P (z|A) = 1, which leads to some restrictions on % which we will point out in various places below.
7As is well known, this corresponds to a random utility model where the shocks ε are i.i.d. Gumbel with

variance η; we discuss the relationship between APU and random utility in Section 5.3.
8Echenique, Saito, and Tserenjigmid (2013) generalize the Luce model by incorporating the agent’s percep-

tion priority over items; the agent perceives items sequentially by the priority order, and chooses each item
stochastically.
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3 Invariant Perturbations

This section studies and characterizes invariant cost functions, in which the function c depends

only on the probability being evaluated and not the identity of the item in question or the

other items in the menu. Using the same perturbation function makes it convenient to apply

the model and at the same time imposes cross-menu consistency restrictions on choices, which

we analyze later in this section. We say that a function c is a cost function if c : [0, 1]→ R∪{∞}

is strictly convex and C1 over (0, 1). We call it steep if limq→0 c
′(q) = −∞.

Definition 3 (Invariant APU). An invariant APU has the form

P (A) = arg max
p∈∆(A)

∑
z∈A

[
u(z)p(z)− c(p(z))

]
,

where for some utility function u : Z → R and cost function c.

As we show next, perturbed utilities of this sort can arise from the agent’s ambiguity about

the true utility of the various choices. We then provide two independent axiomatic characteri-

zations of the invariance restriction. This restriction is strong, and violated in some examples,

but it is a natural baseline for evaluating the consistency of stochastic choice, and it is satisfied

by all of the perturbation functions that have previously appeared in the literature.

3.1 Perturbed Utility as Ambiguity Aversion

In this section we show that invariant APU can be seen as resulting from ambiguity that the

agent is facing about her true utility, using the variational preferences of Maccheroni, Marinacci,

and Rustichini (2006).9 An invariant APU can be also seen as a form of robustness against

model misspecification, as in Hansen and Sargent (2008).

Suppose that when the agent chooses x she receives total utility u(x) + εx, where u(x) is

a baseline utility that she knows, and εx is an uncertain taste shock. For each probability

9The item-invariant and menu-invariant classes of APU discussed below correspond to more general varia-
tional preferences, where the function φ depends on z or A.
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distribution on items p ∈ ∆(A) that the agent might choose, her utility is

inf
ε∈RA

∑
x∈A

p(x)[u(x) + εx] + ΦA(ε), (2)

where ε ∈ RA and for each A ∈ A the function ΦA : RA → R ∪ {+∞} is convex.10

The interpretation of this objective function is analogous to that of the smooth variational

preferences of Maccheroni, Marinacci, and Rustichini (2006): Nature picks ε = (εx)x∈A to

minimize the agent’s expected payoff. However, it is costly for Nature to make each component

of the vector ε small, so it will choose to assign higher values to items that are less likely to be

chosen.11 This gives the agent an incentive to choose non-degenerate probability distributions

p.12

In our setting, the objective function can also be seen as a desire to avoid feeling regret

about items that weren’t chosen. Here the vector ε specifies the “extra utility” of each item,

and the agent worries that Nature will choose the largest bonus on items he selects with low

probability.

We now show that invariant APU corresponds to the additive form ΦA(ε) =
∑

x∈A φ(εx),

where φ : R→ R ∪ {∞} is strictly convex, continuously differentiable where it is finite-valued,

with derivative whose range includes (−1, 0).13 We will call any such function φ a cost for

Nature function. The additive form of the Φ function is convenient for putting joint restrictions

on choices from different menus. It can be interpreted as Nature not knowing u and hence

treating each item symmetrically.

Definition 4 (Invariant Additive Variational Utility). A stochastic choice rule P has an

10Note that in general the agent’s fears about Nature can depend on the menu; this is why the function ΦA
may depend on the identities of the items of the menu A, not just their choice probabilities.

11In Maccheroni, Marinacci, and Rustichini (2006) the agent is uncertain about the probability distribution
over an objective state space. In our setting, the agent is uncertain about his true utility; thus the preferences
we consider here correspond to setting the space to be the possible values of ε.

12Saito (2014) studies a random choice model of an ambiguity averse agent that allows for more general
timing of the nature’s move. We could also consider such a generalization in which the agent believes that with
probability γ Nature moves before the agent’s choice is realized. It is easy to see that the choice behavior under
this model is the same as invariant APU with a rescaled cost γc, so that the same axiomatization applies. (Note
that the domain of Saito (2014) is preference over menus of acts, which presupposes an objective state space.)

13We use these last two these conditions on φ only to ensure that arg minεx p(x)εx + φ(εx) exists and is
continuous in p(x) ∈ (0, 1).
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invariant additive variational utility (AVU) representation if and only if there exists a utility

function u : Z → R and a cost for Nature function φ such that

P (A) = arg max
p∈∆(A)

(
inf
ε∈RA

∑
x∈A

p(x)[u(x) + εx] +
∑
x∈A

φ(εx)

)
.

Proposition 1.

1. P has an invariant AVU representation if and only if P has an invariant APU represen-

tation. Moreover, if P has an AVU representation with (u, φ), then P has an APU

representation with (u, c), where c(q) = supε{qε − φ(−ε)}. Conversely, if P has an

APU representation with (u, c), then P has an AVU representation with (u, φ), where

φ(ε) = supq>0{−εq − c(q)}.

2. P has an invariant AVU representation with limε→∞ φ
′(ε) = 0 if and only if P has an

invariant APU representation with a steep cost.

The proofs of this and all other propositions are in the Appendix. Our proof of Proposition 1

uses convex duality. The first direction of the proof of part 1 constructs the cost function c from

φ by setting c to be the convex conjugate of the function φ̂(ε) := φ(−ε). The second direction

constructs φ from the cost function c, by setting φ̂ to be the convex conjugate of c and then

setting φ(ε) := φ̂(−ε). To understand the second part of the proposition, note that, by the

envelope theorem, an invariant AVU implies an invariant APU with the marginal cost c′(p(x)) =

−ε∗x , where ε∗x = φ′−1(−p(x)) is Nature’s optimal choice εx against p(x) ∈ (0, 1). Because c′ is

strictly increasing, ε∗x is strictly decreasing. A steep cost c corresponds to limε→∞ φ
′(ε) = 0 so

that limp(x)→0 ε
∗
x = ∞. This generates strictly positive choice probabilities because the payoff

to any x diverges to ∞ as its probability goes to 0. The AVU that corresponds to logit choice

has φ(ε) = γ exp(− ε
γ
). In this case, the optimal choice of Nature is ε∗x = −γ log(p(x)). The

AVU that corresponds to logarithmic APU has φ(ε) = −η log(ε) (with φ(ε) = ∞ for negative

ε). In this case, the optimal choice of Nature is ε∗x = η
p(x)

.
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3.2 The Maximization Problem and Induced Revealed Preference

Relations

To study the restrictions that invariant APU places on observed choice probabilities, we first

analyze the agent’s maximization problem.

Definition 5. A utility function u, a cost function c, and a function λ : A → R satisfy the

first order conditions (FOC) for P iff

u(x)− c′(P (x|A)) + λ(A)


≥ 0 if P (x|A) = 1

= 0 if P (x|A) ∈ (0, 1)

≤ 0 if P (x|A) = 0.

(3)

Here λ(A) is the Lagrange multiplier on the constraint that the choice probabilities from

menu A sum up to one. Since c′ is monotone, the FOC implies that the relation % associated

with P is represented by (u, λ) in the following sense:

Definition 6. u : Z → R and λ : A → R are a separable representation of % if and only if

u(x) + λ(A) > u(y) + λ(B) if (x,A) � (y,B)

u(x) + λ(A) = u(y) + λ(B) if (x,A) ∼ (y,B).
(4)

In fact, as the next lemma shows, the implication can be reversed.

Lemma 1. The following conditions are equivalent:

1. There exists a utility function u and a cost function c such that P has an invariant APU

representation with (u, c).

2. There exists a utility function u, a cost function c, and a function λ : A → R that satisfy

the FOC for P .

3. There exists a utility function u and a function λ : A → R such that (u, λ) is a separable

representation of %, the relation associated with P .
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The equivalence of (1) and (2) follows from the Kuhn-Tucker theorem. That (3) follows

from (2) is straightforward from the strict monotonicity of c′. To show that (2) follows from

(3), note that if both P and u+ λ represent the relation %, then ordinal uniqueness, modified

to account for incomplete preferences, shows there exists a strictly increasing and continuous

function g : [0, 1] → R that satisfies g(P (x|A)) = u(x) + λ(A) whenever P (x|A) ∈ (0, 1). This

defines a cost function by c(p) :=
∫ p

0
g(q)dq, which satisfies the first order conditions.

If a relation % has a separable representation (u, λ), then the utility function u measures

the relative desirability of the items: within a given menu, items with higher utility are chosen

with higher probability. This motivates us to say that item x is revealed preferred to item y,

x �i y, if (x,A) � (y, A) for some A 3 x, y. Similarly, we say that x is revealed indifferent to y,

x ∼i y, if (x,A) ∼ (y, A), for some A 3 x, y 14 and we define a binary relation by %i=�i ∪ ∼i.

Absent any restrictions on the choice probabilities it is possible that there is a pair (x, y) such

that all of x �i y, y �i x, and x ∼i y hold, but if the relation has a separable representation,

then the relation �i must be anti-symmetric and more strongly the relation %i cannot have

cycles.

Axiom 1 (Item Acyclicity). There does not exist a sequence of items x1, .., xm such that

x1 %i x2 %i . . . %i xm �i x1

As we will see in Section 5.1, Item Acyclicity is equivalent to the existence of a numerical

representation of %i. It can be seen as an extension of Richter’s (1966) congruence axiom.15

To better understand this and some of our other axioms, it is helpful to consider the classic

case of deterministic (single valued) choice functions.

Definition 7. P is deterministic if for all A ∈ A there exists x ∈ A such that P (x|A) = 1.

As we show below in Proposition 3, when P is deterministic, Item Acyclicity is equivalent to

the existence of a strict utility function (i.e. no two items have the same utility) that rationalizes

14Recall that (x,A) ∼ (y,A) only if 0 < P (x|A) = P (y|A) < 1.
15Congruence requires that if there is a cycle x1, ...xn where each xi is chosen from a menu that contains xi+1,

then if x1 and xn are both in menu A and x1 is chosen then xn is chosen as well. The derived representation
for these choices sets the utilities of x1 and xn to be equal, which in our setting corresponds to the case where
the choice probabilities of x1 and xn are equal.
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the data.

In a separable representation (u, λ), the multiplier λ measures the relative “weakness” of

each menu. Intuitively, menu A is weaker than B if its elements compete against other items z

less heavily than elements of B do. Formally, menu A is revealed weaker than menu B, A �m B,

if (x,A) � (x,B) for some x ∈ A ∩ B, and similarly, A is revealed tied with B, A ∼m B, if

(x,A) ∼ (x,B) for some x ∈ A ∩ B. We define a binary relation by %m = �m ∪ ∼m. If % has

a separable representation, then %m cannot have cycles.

Axiom 2 (Menu Acyclicity). There does not exist a sequence of menus A1, ..., Am such that

A1 %m A2 %m . . . %m Am �m A1.

In general, a relation % with a separable representation may lead to %m that ranks menus

in an arbitrary way. However, relations that are derived from a stochastic choice rule satisfy

additional conditions, as the choice probabilities from each menu sum up to one. For instance,

as we show in Section 5.2, if all choice probabilities are positive, then %m must respect set

inclusion.

As with Item Acyclicity, Menu Acyclicity is also equivalent to the existence of a strict utility

function when choice is deterministic, see Proposition 3, so in this case it is also equivalent to

congruence. Perhaps for this reason, the notion of a revealed weakness ranking of menus has

not been used in the literature on deterministic choice, but it is a natural counterpart to the

revealed attractiveness of items, and is potentially useful in other models of stochastic choice.16

3.3 Hyper-Acyclicity

This section presents the first of two alternative axioms that characterize invariant APU. To

motivate it, we first show that separability is more restrictive than the combination of the Item

Acyclicity and Menu Acyclicity menus conditions.

16The literature following Kreps (1979) generates rankings of menus from data on menu choice, but we do not
use such data here, and two representations that are equivalent in our setting can have different implications
for menu choice—see Fudenberg and Strzalecki (2014).
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Example 1. There are three items Z = {x, y, z}, menus A = {y, z}, B = {x, z}, C = {x, y},

with17

(x,B) � (y, A), (y, Z) ∼ (z, B), (z, A) ∼ (x, Z).

Notice that the menu ranking is acyclic (A is weaker than B is weaker than C is weaker then

Z), and that the item ranking is acyclic as well (x is better than both y and z, y is better than

z). However, a separable representation (u, λ) would imply

u(x) + λ(B) > u(y) + λ(A),

u(y) + λ(Z) = u(z) + λ(B),

u(z) + λ(A) = u(x) + λ(Z).

Summing the above inequalities we obtain 0 > 0, which is a contradiction. N

As this example suggests, invariant APU implies a connection between the ordering of

items and the ordering of menus that is not implied by the union of Item Acyclicity and Menu

Acyclicity. This is most easily seen in (4), which implies that the utility differences between

items and the weakness differences between menus are comparable and summable. To capture

this, the next axiom generalizes Acyclicity to rule out “hyper-cycles”:

Axiom 3 (Hyper-Acyclicity). There does not exist a hyper-cycle, meaning that there is no

sequence

(x1, A1) % (y1, B1), (x2, A2) % (y2, B2), . . . , (xm, Am) � (ym, Bm),

such that (x1, . . . , xm) is a permutation of (y1, . . . , ym), and likewise (A1, . . . , Am) is a permu-

tation of (B1, . . . , Bm).

Proposition 2. Axiom 3 is satisfied if and only if P is represented by invariant APU if and

only if P is represented by invariant AVU.

17For example, this is induced by the choice probabilities P (x|Z) = 0.475,P (y|Z) = 0.425, P (y|A) = 0.525,
P (x|B) = 0.575,P (x|C) = 0.525.
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Note that this implies that invariant APU is fully characterized by relation % associated

with P ; the exact cardinal values of choice probabilities are inessential.18

The proof of this proposition relies on Lemma 1 and the following result.

Lemma 2. % satisfies Hyper-Acyclicity iff there exist a separable representation (u, λ) of %.

The proof of this lemma is based on a version of the theorem of the alternative with the

following geometric interpretation. Consider the vector space Q% whose coordinates correspond

to elements of D2, and the vector b equal to −1 on coordinates that correspond to a strict

ranking and zero otherwise. Any hyper-cycle can be represented as a point w, in Q% by setting

the number of times each comparison features in the hyper-cycle equal to the corresponding

coordinate of w. The permutation property of the hyper-cycle corresponds to the requirement

that w is orthogonal to a certain linear subspace T , and the requirement that at least one

preference relation is strict is 〈w, b〉 < 0. Hyper-Acyclicity means that no such point exists,

which by the theorem of alternative is equivalent to the existence of some t ∈ T that is pointwise

dominated by b, which in turn is equivalent to the existence of an additive representation (u, λ),

which functions are obtained as coefficients of t in a fixed basis of T .19

We also consider the case where all probabilities are positive.

Axiom 4 (Positivity). P (z|A) is strictly positive for each A ∈ A and z ∈ A.

As noted by McFadden (1973), a zero probability is empirically indistinguishable from a

positive but small probability. In dynamic settings, Positivity can also be motivated by the

fact that no deterministic rule can be Hannan (or “universally”) consistent (Hannan, 1957;

Blackwell, 1956).

Corollary 1. P is represented by invariant APU with steep cost c if and only if Hyper-Acyclicity

and Positivity are satisfied.

The proof involves only minor modifications, and is omitted; analogous results hold under

more general models in Section 5.1 and 5.2.

18As observed by de Clippel and Rozen (2014), in some models of choice it is possible for limited data to be
consistent with the characterizing axioms even when any specification of choices outside of A would lead to a
violation of those axioms. Our results imply that this problem does not arise.

19The result can be seen as an incomplete preference generalization of Theorem 4.1 of Fishburn (1970), whose
proof also uses a similar argument.
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Finally, we consider the opposite case where choice is deterministic. In this case, Hyper-

Acyclicity is equivalent to maximization of a strict utility function, and also to item- and menu-

acylicity.

Proposition 3. Assume that P is deterministic. Then the following conditions are equivalent:

1. Item Acyclicity

2. Menu Acyclicity

3. Hyper-Acyclicity

4. There exists an injective function u : Z → R s.t. x �i y iff u(x) = maxz∈A u(z) and

x, y ∈ A for some A ∈ A

5. There exists an injective function u : Z → R s.t. A �m B iff maxz∈A u(z) < maxz∈B u(z)

and A ∩B 6= ∅

6. There exists an injective function u : Z → R s.t. P (x|A) = 1 iff u(x) = maxz∈A u(z).

Heuristically, deterministic choice in our setup corresponds to a cost function that is identi-

cally equal to 0, so that we can set the Lagrange multipliers λ of the FOC identically equal to

0 as well, and the two-dimensional separable representation collapses to the single dimension of

utility as expressed by (5).20 Because violations of rational choice in the deterministic setting

correspond to cycles in �i, or equivalently, in �m, modeling such behavior is equivalent to

characterizing the sorts of cycles that are allowed. The revealed menu weakness ranking �m

offers a new and potentially fruitful way to do this.

3.4 Ordinal IIA

Our second characterization of invariant APU generalizes the IIA condition that is known to

characterize the entropy model.

20We have required cost functions to be strictly convex, which rules out cost functions that are identically
equal to 0. However, any deterministic choice data in a finite set Z that satisfied Hyper-Acyclicity can be
represented by an invariant APU with a cost function that is strictly but slightly convex.
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Axiom 5 (Ordinal IIA). P satisfies ordinal IIA if it satisfies Positivity and there is a con-

tinuous monotone transformation f : (0, 1)→ R++ such that

f(P (x|A))

f(P (y|A))
=
f(P (x|B))

f(P (y|B))

for each menu A,B ∈ A and x, y ∈ A ∩B.

Proposition 4. Assume that A includes all menus with size 2 and 3.21 Then Ordinal IIA is

satisfied if and only if P is represented by invariant APU with a steep cost if and only if P is

represented by AVU with φ′ < 0.

Axiom 5 requires that probabilities can be rescaled to satisfy IIA. Intuitively, invariant

APU has this property because % is additively separable in utility and weakness, so there is a

monotone transformation f such that f(P (z|A)) = eu(z)eλ(A). The converse direction uses the

rescaling function f to explicitly construct an invariant cost function.

Ordinal IIA reduces to IIA under f(q) = q, which implies that the cost function is ηq log(q)

for some η > 0, and thus that cost is proportional to the negative of the entropy function. If

instead f(q) = exp(q), the cost is proportional to q2. The case f(q) = exp(βq) corresponds to

the quadratic cost c(q) = βq2 implicit in Rosenthal (1989).

3.5 Uniqueness

For an arbitrary set of items and menus, the invariant APU representation may not be unique,

but uniqueness obtains when the range of observed behavior is rich enough.22 Intuitively, under

invariant APU, the incentive of an agent depends only on the payoff differences u(x) − u(y)

between items in the menu; to identify the cost function we need to be able to vary this utility

difference freely.23 The following richness condition implies that the range of u equals R.

Axiom 6 (Richness). Assume that (i) for any x ∈ Z, p ∈ (0, 1) there exist y ∈ Z such that

21The proposition also holds if this assumption is replaced by the assumption that Z ∈ A
22This is also the case for other models of stochastic choice, such as random utility, see, e.g., Fishburn (1998).

Stronger uniqueness results can be obtained when items are lotteries, see, e.g., Gul and Pesendorfer (2006).
23A similar situation arises for variational preferences of Maccheroni, Marinacci, and Rustichini (2006); to

obtain uniqueness, they impose an additional axiom that guarantees that the range of u is rich enough.
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{x, y} ∈ A and P (x|{x, y}) = p, (ii) there exists p̄ such that for any p ∈ (0, 1
2
], there exist

A ∈ A and z, z′ ∈ A such that P (z|A) = p̄ and P (z′|A) = p.

Richness implies that Z is infinite. The axiomatization of invariant APU in Proposition 4

holds also for infinite Z. On the other hand, the axiomatization in Proposition 2 requires Z to

be finite. Note also that Richness implies that the collection A contains many binary menus

and also many menus with at least three elements.

Proposition 5. Under Richness if (u, c) and (û, ĉ) represent the same invariant APU P , then

there exist constants α > 0, β, γ, δ ∈ R such that û = αu+ β and ĉ(p) = αc(p) + γp+ δ for all

p ∈ (0, 1).

The utility function u is unique up to positive affine transformations. Note that u and c are

expressed in the same units; that is why multiplying u by a constant α requires multiplying c

by the same α. Since the absolute level of the cost function does not matter, we are free to

shift it by a constant δ without changing behavior. Finally, since probabilities need to sum up

to 1, for any menu the term γp becomes a constant and similarly does not affect choice.

4 Limited Discrimination

We now use invariant APU to model the idea that the agent has limited discrimination. Recall

that the IIA axiom (corresponding to logit choice and the entropy cost function) implies that

the choice ratio of x and y in the pairwise choice problem {x, y} is the same as it is in the

grand set Z. If the agent has limited cognitive resources to implement her choices, we might

expect that discrimination between x and y will be harder in larger menus.24 In other words,

we expect the following axiom

Axiom 7 (Limited Discrimination). Assume Positivity. For all x, y ∈ A ∩ B if A %m B

and P (x|A) > P (y|A), then
P (x|A)

P (y|A)
≥ P (x|B)

P (y|B)
.

24In a deterministic choice setting Frick (2013) extends Luce’s (1956) model of utility discrimination to capture
the idea that items of similar utility are harder to distinguish in larger menus.
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This axiom means that choices from stronger menus are more uniform than choices from

weaker menus. As we show in Section 5.2, A ⊆ B implies A %m B under invariant APU with

Positivity, so that the axiom suggests that choice probabilities become flatter as we expand a

menu. Note that given the FOCs of an invariant APU with a steep cost, we can express the

choice probability ratios as
P (x|A)

P (y|A)
=
c′−1(u(x) + λ(A))

c′−1(u(y) + λ(A))
. (5)

If log c′−1 is convex then the right hand side of (5) is increasing in λ. As the λ of the weaker

menu A is higher than that of B, Axiom 7 holds, leading to the following result.

Proposition 6. Suppose that P is an invariant APU with a utility function u and steep cost

function c. Let h = log(c′−1). If h is convex, then P satisfies Limited Discrimination.

We now strengthen limited discrimination to analyze the relative choice probabilities of

two very undesirable items. Consider a collection of menus {An} such that x, y ∈ An for

each n and let pn := P (x|An) + P (y|An). Proposition 6 implies that for a convex h the ratio

P (x|An)
/
P (y|An) is monotone in pn; that is, the worse the items x and y are compared to the

remainder of An, the flatter their choice ratio. We now investigate what happens in the limit. In

order to do so, we assume that Z is infinite, and note that our characterization in Proposition 4

holds for infinite Z. On the one hand, it follows from regularity (and thus holds for an arbitrary

h) that whenever pn → 1 , we have that P (x|An)/P (y|An) → P (x|{x, y})/P (y|{x, y}).25 On

the other hand, it is not always true (even for h convex) that whenever pn → 0, we have

P (x|An)/P (y|An)→ 1; for example this fails under IIA. The following result characterizes the

class of h for which this ratio does converge to 1.

Axiom 8 (Asymptotic Non-Discrimination). Assume Positivity. For any sequence An

such that x, y ∈ An if P (x|An)→ 0, P (y|An)→ 0, then P (x|An)/P (y|An)→ 1.

From formula (5), asymptotic non-discrimination can be expressed as

c′−1(u(x) + λ(An))

c′−1(u(y) + λ(An))
→ 1.

25Regularity implies that P (x|An) ≤ P (x|{x, y}) and likewise for y, thus when pn → 1 we have P (x|An) →
P (x|{x, y}) and likewise for y.
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For this to hold, the function h must flatten out asymptotically as its argument u(x)− λ(An)

becomes extremely low. This is formalized by the next proposition.

Proposition 7. Suppose that P is an invariant APU with a utility function u and a steep cost

function c. Let h = log(c′−1).

1. If for all t the function h satisfies lims→∞[h(t−s)−h(−s)] = 0, then P satisfies Asymptotic

Non-Discrimination.

2. The converse is true if there exists δ ∈ (0, 1
2
) such that for any q ∈ [1

2
, 1

2
+ δ) there exist

x, y ∈ Z that satisfy the following conditions: (i) P (x|{x, y}) = q (ii) for all sufficiently

small p > 0 there exists A ⊇ {x, y} such that P (x|A) = p.26

Example 2. A particular class of cost functions leading to limited discrimination and asymp-

totic non-discrimination is the logarithmic form c(q) = −η log(q). The function h is h(w) =

log(− η
w

), defined on (−∞,−η), which is strictly convex. This also satisfies the condition for

Proposition 7, because h(r − t) − h(−t) = log( −t
r−t) → 0 as t → ∞. As an illustration, con-

sider menus of the form An = {x, y1, ..., yn} where u(x) = 1 and u(yi) = 0 for each i. Choice

probabilities under η = 1 are

P (x|An) =
1

2

(
−n+

√
4 + n2

)
, P (yi|An) =

1− P (x|An)

n
.

The choice probability ratio P (x|An)
P (y1|An)

is decreasing in n and approaches to 1 as n→∞. N

To relate asymptotic non-discrimination to the ambiguity representation where Nature mini-

mizes
∑

x∈A p(x)[u(x)+εx]+
∑

x∈A φ(εx), note that as p(x)→ 0 Nature will send the correspond-

ing εx to infinity. Because c′(q) = −φ′−1(−q), c′−1(s) = −φ′(−s), so invariant AVU implies

invariant APU with h(s) = log(−φ′(−s)). Thus the condition lims→∞[h(t− s)− h(−s)] = 0 in

Proposition 7 is equivalent to lims→∞
φ′(s−t)
φ′(s)

→ 1, so Nature’s marginal cost for rarely chosen

items becomes flat. In this limit Nature’s choice depends on p but is insensitive to the differ-

ences in utilities, so it is optimal for the agent to assign about the same probability to all of

the rarely chosen items.

26This condition implies that the utility function convex-ranged, but not necessarily unbounded. It is not
implied by and does not imply the richness condition in Fudenberg and Strzalecki (2014).
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5 Other Forms of Perturbations

Under the most general additive perturbations, a cost function can depend on each item and

menu:

Definition 8 (Additive Perturbed Utility). A stochastic choice rule P has an additive

perturbed utility (APU) representation if and only if there exists a utility function u : Z → R

and a collection of cost functions cz,A for each z, A, such that for all A ∈ A,

P (A) = arg max
p∈∆(A)

∑
z∈A

u(z)p(z)− cz,A(p(z)). (6)

APU does not restrict choice behavior.27 For this reason, allowing for menu dependent

utility would provide no additional generality, nor would dropping the restriction to convex

cost functions; this is analogous to the Kalai, Rubinstein, and Spiegler (2002) “anything goes”

result on menu-dependent deterministic choice.

Next we consider two non-nested, intermediate generalizations of invariant APU: item-

invariant APU (Section 5.1) and menu-invariant APU (Section 5.2). They also turn out to be

consistent with some empirical findings that are excluded by invariant APU. In Section 5.3, we

compare our models to random utility models.

5.1 Item-Invariant Perturbations

As we have seen, invariant APU is characterized by the ordinal relation % with a separable

representation: the probability of choosing an item from a menu depends on the sum of the

utility u of the item and a function λ of the menu. In this section we consider a model where

the cost function is allowed to depend on the menu, but is invariant with respect to the items;

this will generate a relation % that ranks items but does not rank menus.

27To understand why, set all of the utilities identically equal to 0, and choose convex cost functions such that
c′z,A(P (z|A)) = 0. (The cost functions can be taken to be convex because for each z and A the choice data
only restricts cz,A at the single point P (z|A).) Then the optimality conditions in Lemma 1 are all satisfied with
Lagrange multipliers λ(A) of 0.
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Definition 9. An item-invariant APU has the form

P (A) = arg max
p∈∆(A)

∑
z∈A

(u(z)p(z)− cA(p(z)))

for each menu A ∈ A where u : Z → R is a utility function and cA is a cost function for each

menu A ∈ A.

Proposition 8. The following conditions are equivalent.

1. P is represented by item-invariant APU.

2. There exists a utility function u such that u(x) > u(y) if x �i y, and u(x) = u(y) if

x ∼i y.

3. Item Acyclicity.

The direction (1) ⇒ (2) is straightforward from the first-order conditions and the strict

convexity of each cA. To show the converse (2)⇒ (1), for each menu A we construct a strictly

increasing function gA : [0, 1] → R that satisfies gA(P (x|A)) = u(x) whenever P (x|A) ∈ (0, 1).

This defines a cost function by cA(p) :=
∫ p

0
gA(q)dq, which satisfies the first order conditions for

the observed probabilities under λ(A) = 0. To show the equivalence of (2) and (3), we apply

the following lemma to the item order %i over Z.

Lemma 3. Let X be a finite set, and take binary relations �∗,∼∗⊂ X × X where ∼∗ is

symmetric. Then the following conditions are equivalent.

1. There is no cycle meaning that there is no sequence (χ1, χ2), (χ2, χ3), ..., (χm−1, χm), (χm, χ1)

in �∗ ∪ ∼∗ where at least one of them belongs to �∗.

2. There exists a function v : X → R such that (i) v(χ) > v(χ′) if χ �∗ χ′, and (ii)

v(χ) = v(χ′) if χ ∼∗ χ′.

This lemma is similar to Lemma 2, and the proof is likewise based on a version of Farkas

lemma.28

28As pointed out to us by Peter Wakker, this lemma can also be proved by using Richter (1966)’s theorem.
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Item-invariant APU can accommodate violations of regularity (as seen in Huber, Payne, and

Puto, 1982; Huber and Puto, 1983). For example it might be that P (x|A) > P (x|B), B ⊆ A,

when c′′A(p) is increasing in A in the set-inclusion sense.29 This would occur when c′′A(p) >

c′′B(p), so that choice probabilities at larger menu A are less sensitive to utility differences, as

then the agent’s choice at A will select inferior items x more often than at B. Such item-

invariant APUs, with c′′A(p) > c′′B(p) ∀p, correspond to item-invariant AVUs with the property

φ′′A(ε∗A(p)) < φ′′B(ε∗B(p)) ∀p, where ε∗A(p) = φ′−1
A (−p) and ε∗B(p) = φ′−1

B (−p) are Nature’s choices.

This inequality means that Nature’s choice ε∗A(p) is more sensitive to the agent’s choice p in

menu A than in B, which can be interpreted as the agent facing more ambiguity at larger

menu A. Item-invariant APU also allows adding items to violate regularity in a different way,

with the probability of best item increasing when the menu is enlarged. This arises under the

opposite condition c′′A(p) < c′′B(p), as then choice is more precise on the larger menu, perhaps

because the added item makes it easier for the agent to compare the items.

Item-invariant APU satisfy weak stochastic transitivity.30 But it does not imply strong

stochastic transitivity (or the equivalent independence condition of Tversky and Russo (1969)),

and for example if c′′{x,y}, c
′′
{y,z} < c′′{x,z} it is possible that P (x|{x, y}), P (y|{y, z}) > 1

2
, but

P (x|{x, z}) ≤ max{P (x|{x, y}), P (y|{y, z})}. This corresponds to an AVU where the agent

faces more ambiguity at {x, z} than {x, y} and {y, z}.31

To relate item-invariant APU to ambiguity aversion, we can relax invariant AVU to item-

invariant AVU by allowing the function φ to depend on the menu. It is then an immediate

corollary that Positivity and Item Acyclicity are satisfied if and only if P is represented by an

item-invariant AVU.

29This might arise if it is harder to spot the best items in a large list. A special case of this is where the cost
function is cA(p) = η|A|p log p, which reduces to the usual entropy representation of logistic choice when η = 1.

30The converse is true when A consists of all the binary menus and no others, as in Gilboa (1990), Gilboa
and Monderer (1992), and Fishburn (1992). To see this, suppose that weak stochastic transitivity holds.
There are no cycles in the item order %i with length 2 because any pair of items has only a single menu that
contains them. Weak stochastic transitivity excludes cycles with length 3. Any longer cycle is excluded, as
(z1 %i z2, z2 %i z3, ..., zm �i z1) implies a shorter cycle (z1 %i z2, z2 %i z3, ..., zm−1 �i z1) as weak stochastic
transitivity ensures zm−1 %i z1 under this binary domain.

31As noted by Mellers and Biagini (1994) and Rieskamp, Busemeyer, and Mellers (2006), violations typically
occur when attributes of x and z are harder to compare than other pairs, which might be interpreted as a source
of ambiguity.
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5.2 Menu-Invariant Perturbations

An alternative way to generalize invariant APU is to require that the cost of controlling the

probability of each item depends on the item, but is invariant with respect to the menu. This

will generate a consistent “weakness ranking” %m of menus without generating a fixed utility

function on items.

Definition 10 (Menu-invariant APU). A menu-invariant APU has the form

P (A) = arg max
p∈∆(A)

∑
z∈A

(
u(z)p(z)− cz(p(z))

)
,

such that u : Z → R is an utility function and cz is a cost function for each item z ∈ Z.

Proposition 9. The following conditions are equivalent.

1. P is represented by menu-invariant APU.

2. There exists a function λ : A → R such that λ(A) > λ(B) if A �m B, and λ(A) = λ(B)

if A ∼m B.

3. Menu Acyclicity.

The proof is analogous to that of Proposition 8 for item-invariant APU.32 As with the equiv-

alence of item-invariant APU and item-invariant AVU, it is immediate that Menu Acyclicity is

satisfied if and only if P is represented by a menu-invariant AVU, which allows the function φ

to depend on each item.

Note that Menu Acyclicity implies regularity, so menu-invariant APU satisfies regularity.33

Menu-invariant APU satisfies weak stochastic transitivity, but can violate strong stochastic

transitivity.

32Clark (1990) proposed an axiomatization of this representation but his Theorem 3 is not correct: The
choice data A = {{x, y}, {y, z}, {x, z}}, P (x|{x, y}) = P (y|{y, z}) = P (z|{x, z}) = 1 satisfies the theorem’s
assumptions but does not have a menu-invariant representation. However, his Theorem 3 is correct under the
additional assumption of positivity, as then its conditions are equivalent to Menu Acyclicity.

33To see this, assume toward contradiction that there exists z ∈ A ⊆ B such that P (z|A) < P (z|B). Then
we must have P (z′|A) < P (z′|B) for all z′ ∈ A with P (z′|A) > 0 as otherwise there would be the menu cycle
(z′, A) % (z′, B) and (z,B) � (z,A). This implies 1 =

∑
z′∈A P (z′|A) <

∑
z′∈A P (z′|B) ≤

∑
z′∈B P (z′|B) =

1,which is a contradiction. Note that, under Positivity, this ensures A ⊆ B ⇒ A %m B.
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Note also that menu-invariant APU can violate Item Acyclicity. In particular it is consistent

with

P (x|{x, y}) > P (y|{x, y}), P (y|{x, y, z}) > P (x|{x, y, z}),

which can arise from the “compromise effect ” (Simonson, 1989). This and other such proba-

bility reversals have been observed in many experiments (e.g. Tversky and Simonson (1993),

and Section 4 of Rieskamp, Busemeyer, and Mellers (2006)). These reversals can occur when

c′′y(p) > c′′x(p), so that the choice probability of y is less sensitive,which corresponds to menu-

invariant AVU with φ′y(ε
∗(p)) < φ′x(ε

∗
x(p)), so that the agent faces more ambiguity at y than x.

Finally, consider a condition due to Tversky (1972) that connects the relation % over items

and the one over menus.

Axiom 9 (Order Independence). For all A,B ∈ A, x, y ∈ A\B and z ∈ B, P (z|B∪{x}) ≤

P (z|B ∪ {y}) iff P (x|A) ≥ P (y|A).

This condition is implied by the combination of Hyper-Acyclicity and Positivity, but it is

weaker than Hyper-Acyclicity, as it is also satisfied by Example 1. Tversky (1972) shows that

when A includes every menu this axiom characterizes “simple scalability;” it also implies Item

Acyclicity. On the other hand, the axiom is not implied by the combination of Item Acyclicity

and Menu Acyclicity.34 We now characterize the additional restriction on menu-invariant APU

with steep costs imposed by Order Independence. A menu-invariant APU is weakly item-

dependent if u(x) − c′x(q) ≥ u(y) − c′y(q) holds for all x, y ∈ Z such that u(x) ≥ u(y) and

q ∈ (0, 1], where the inequality is strict if u(x) > u(y).35 The condition guarantees that the

perturbation terms c′x(q), c
′
y(p) do not offset the difference between u(x) and u(y).

Proposition 10. Assume that A includes all the subsets of Z. Then Positivity, Menu Acyclic-

ity, and Order Independence are satisfied if and only if P is represented by menu-invariant

APU with steep costs that is weakly item-dependent.

34To see this, consider Z = {x, y, z} and the following data P (x|{x, y}) = 0.5, P (x|{x, z}) = 0.6, P (y|{y, z}) =
0.7, P (x|{x, y, z}) = P (y|{x, y, z}) = 0.4. This satisfies both Item Acyclicity and Menu Acyclicity, and generates
well-defined orders x ∼∗ y �∗ z and {x, z} �∗ {y, z} �∗ {x, y} �∗ {x, y, z}. But Order Independence is violated
at P (z|{x, z}) > P (z|{y, z}) and P (x|{x, y, z}) = P (y|{x, y, z}).

35The condition can be written as u(x) + ε∗x(q) ≥ u(y) + ε∗y(q) in terms of the corresponding menu-invariant
AVU.
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5.3 Comparison to Random Utility

We now compare various sorts of APU to random utility models.

Definition 11 (Random Utility). A stochastic choice rule P has a random utility (RU)

representation if and only if there exists a utility function u : Z → R and a random variable

ε ∈ RZ such that

P (z|A) = Prob{u(z) + εz ≥ max
y∈A

u(y) + εy} (7)

for each A ∈ A and z ∈ A.

We say that a RU is symmetric if the distribution of {εz} is exchangeable, i.e., vectors

(ε1, ..., εn) and (επ(1), ..., επ(n)) have the same distribution for any permutation π. Any symmetric

RU satisfies Axiom 1 and 8 , so item-invariant APU nests symmetric RU. This applies in

particular to any RU with i.i.d. shocks, as in the standard specification of the probit model.

However, as the example below shows, some invariant APU models violate the Block-

Marshak conditions (Block and Marschak, 1960) that are necessary for RU.

Example 3. When Z = {w, x, y, z}, RU implies36

P (w|{w, x}) + P (w|{w, x, y, z}) ≥ P (w|{w, x, y}) + P (w|{w, x, z}).

We now construct an invariant APU that violates this condition. Let u(w) = −1, u(x) = 3

and u(y) = u(z) = 0, and c(p) = − log(p). Then P (w|{w, x}) ≈ 0.191, P (w|{w, x, y}) =

P (w|{w, x, z}) ≈ 0.177, and P (w|{w, x, y, z}) ≈ 0.161; thus,

P (w|{w, x}) + P (w|{w, x, y, z}) < P (w|{w, x, y}) + P (w|{w, x, z}). N

Weak stochastic transitivity can be violated by RU (Marschak, 1959), while it is satisfied by

item-invariant APU, so item-invariant APU does not nest RU. The next example shows that

some RU with i.i.d. shocks do not correspond to menu-invariant APU.

36If |Z| = 3, then any choice rule that satisfies regularity has a RU representation (Block and Marschak,
1960), so any menu-invariant APU has a RU representation.
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Example 4. Let Z = {x1, x2, y1, y2, y3}. Let the utility function be u(x1) = u(x2) = w and

u(y1) = u(y2) = u(y3) = 0. Let A = {x1, x2, y1} and B = {x1, y1, y2, y3, y4, y5, y6}. Consider

the probit model in which εz follows i.i.d. normal distribution N(0, 1) for each z ∈ Z. Under

probit the choice probabilities are

P (z|A) =

∫ ∏
z′∈A\z

Φ(u(z) + εz − u(z′))φ(εz)dεz

where Φ and φ are the cumulative distribution and the density under N(0, 1). Then we have

P (x1|B) ≈ 0.4574 > P (x1|A) ≈ 0.4526 and P (y1|A) ≈ 0.0949 > P (y1|B) ≈ 0.0904 when

w is near 1.13. That is, there exists a menu cycle, as B is weaker than A for x1 but A is

weaker than B for y1. This implies that this choice behavior cannot be rationalized by any

menu-invariant APU. N

6 Nested Choice and Menu-Size Penalties

Now we develop a model of sequential or “nested” choice, in which the agent first picks a “nest”

and then picks an item from the nest. We use these nests to allow the agent to have different

levels of ambiguity about different sets of items, while still maintaining much of the structure of

the APU/AVU representations. This model of nested choice includes nested logit as a special

case; it also lets us model the idea of “choice overload.”37 We develop these representations

in the text; Appendix A.15.2 provides an axiomatic characterization that generalizes the IIA

characterization of logit choice.

Let {Bk}Kk=1 be a partition of Z; we will refer to each Bk as a nest. Like before, a

stochastic choice rule P is a choice distribution over items in each menu A ⊆ Z, so that∑
z∈A P (z|A) = 1. Given a full-support distribution P , let P1 denote the induced choice rule

over nests, P1(Bk|A) :=
∑

z∈Bk∩A P (z|A), and let P2(·|Bk, A) be the observed conditional dis-

tribution of choices from Bk when the menu is A, P2(z|Bk, A) := P (z|A)/P1(Bk|A).

37Gul, Natenzon, and Pesendorfer (forthcoming) introduce “attribute rules” which are related to nested choice.
The important differences are that attributes are endogenous, whereas nests are exogenous and at the same
time the probability of choosing an attribute does not depend on how many items with that attribute there are
in a menu, whereas the probability of choosing a nest is menu-dependent.
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Our nested representations allow the agent to feel differently about menus of different sizes;

this is parameterized by the menu size penalty α ≥ 0. Define Cα : int∆(A) → R the entropy

cost with menu-size penalty α by

Cα(p) =
∑
z∈A

p(z) log p(z) + α log |A|.

Note that this reduces to entropy when α = 0 and relative entropy with respect to the

uniform distribution when α = 1. As is well known, entropy costs (i.e. logit choice) implies

the agent always prefers to add an item to a menu. In contrast, the value function for menus

induced by relative entropy with respect to the uniform distribution decreases when a sufficiently

undesirable item is added.38

Definition 12. P is called an α-nested entropy model if there exist utility function u : Z → R,

constant α ≥ 0, and positive coefficients {ηk}Kk=1, such that for each Bk, z ∈ Bk and A ⊆ Z

P (z|A) = P1(Bk|A)P2(z|Bk, A)

where

(P1(B1|A), ..., P1(BK |A)) = arg max
p∈∆({B1,...,BK})

∑
k

p(Bk)U(Bk ∩ A)− C0(p),

P2(Bk, A) = arg max
p∈∆(Bk∩A)

∑
z∈Bk∩A

p(z)u(z)− ηkCα(p)

U(Bk ∩ A) = max
p∈∆(Bk∩A)

∑
z∈Bk∩A

p(z)u(z)− ηkCα(p)

and we set U(Bk ∩ A) = −∞ if Bk ∩ A = ∅. In particular, P is called a nested entropy model

if α = 0.

In this model, the agent first chooses a probability distribution on nests with associated

entropy cost C0, and then an item from the chosen nest Bk with the cost function Cα multiplied

by ηk; U(Bk ∩ A) is the indirect payoff from items Bk ∩ A. Of course this nested procedure

corresponds to a one-stage choice with an APU where cost may depend on both item and menu;

38Fudenberg and Strzalecki (2014) provide an axiomatic foundation for menu-size penalties in a setting of
recursive stochastic choice.
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the nested form is a convenient way to capture the idea that some goods are substitutes for

others. Note also that we could in principle generalize α -nested entropy by replacing entropy

with some other invariant APU; the main stumbling block in pursuing that route is the lack of

a closed-form solution for the value function U.

As we show in Appendix A.15.1, the case α = 0 reduces to the nested-logit model used in

empirical work; the axiomatization in Appendix A.15.2 provides a characterization in terms of

observed behavior, and the corresponding AVU provides its ambiguity interpretation.

6.1 Choice overload

Next we consider a special kind of nested model with only two nests, a ”default option” B1 =

{x∗} and ”everything else” B2. As above, we suppose that choice within the ”everything else”

nest satisfies IIA, but we will consider more general definitions of the indirect utility that

allow for the possibility that the agent is more likely to choose the default when faced with a

larger choice set. (Note that the nested entropy model of the previous section always prefers

larger choice sets: if any item is added to the ”everything else” set the probability of the

default decreases.) Once we consider nested choice processes, the value function on the nest

has implications for observed choice, as changing the value of a nest changes its attractiveness

without changing the conditional probabilities within the nest. For example, suppose that we

specify cost function Cα(p) where α > 1. Then the value of items D ⊆ B2 is

η2

(
log
∑
z∈D

exp[u(z)/η2]− α log |D|

)
= η2 log

∑
z∈D exp[u(z)/η2]

|D|α
.39

Hence unlike in the nested logit/entropy case, the agent is more likely to pick the default

x∗ when faced with n alternatives from B2, each of which has the same utility, than when

faced with m < n of them. This is consistent with evidence that consumers are less likely to

purchase when confronted with a large number of choices (e.g., Iyengar and Lepper, 2000). Here

the parameter α captures the effect of choice overload: if an agent with utility function u and

parameters (η2, α) prefers the default to a menu D, and α′ > α, then so does an agent with the

39Note that the value of η1 is irrelevant when nest 1 has a single item.
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same utility function and parameters (η2, α
′). Moreover, for any other menu D′ with |D′| > |D|

the α′ agent also prefers the default option whenever the α agent does. The literature already

provides several explanations for choice overload: it can come from search or introspection

costs (Kuksov and Villas-Boas, 2010; Ortoleva, 2013), or the contextual signals provided by

the menu (Kamenica, 2008). Our approach provides an alternative explanation based on the

agent’s ambiguity aversion about her true utility. The variational preferences that correspond

to Cα have φA(x) = |A|−αe1−x, which means that the agent is more uncertain about the utility

from larger menus, while his uncertainty about the default option is held constant, so that it

becomes relatively more appealing as the menu grows.

7 Conclusion

As we have shown, perturbed utility functions are relatively tractable and have an easily un-

derstood axiomatic characterization that applies even when choice data is only observed for a

subset of the possible menus. Moreover, these utility functions can be understood as describing

choices of an agent who faces ambiguity about his true utility, modeled as smooth variational

preferences. These features made it easy to develop further refinements, such as limited discrim-

ination, which relaxes the IIA assumption implicit in the entropy cost function, and extensions

to nested models such as nested logit and cognitive overload, which may prove useful both in

dynamic choice theory and in applications to game theory and industrial organization. There is

already some empirical evidence for cognitive overload, but as noted by Chernev (2012), there

has been relatively little research on the related issue of the impact of menu size on the option

chosen. We hope that the analytic foundations provided here will stimulate further empirical

work.
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Appendix

A.1 Preliminary Lemma

The following result, called the theorem of the alternative, or Farkas’ lemma, is usually applied

to vector spaces over the field of real numbers R, but also applies to vector spaces over the field

of rational numbers Q.40 Let S be a finite set and treat QS as a vector space over the field

of rational numbers Q. Let 〈·, ·〉 denote the inner product in QS. For any vector w ∈ QS and

subset T ⊆ QS we write w ⊥ T if 〈w, t〉 = 0 for all t ∈ T . For any t, b ∈ QS we write t ≤ b

whenever this inequality holds pointwise.

Lemma A.1.1. Let b ∈ QS and T be a linear subspace of QS. Exactly one of the following

conditions holds.

1. there exists t ∈ T such that t ≤ b

2. there exists w ∈ QS
+ such that w ⊥ T and 〈w, b〉 < 0.

To understand the geometric interpretation of this Lemma consider first the case when T is

a hyperplane, i.e., is of dimension |S| − 1, and let B be the set of all points weakly dominated

by b. The set B ∩ T is nonempty, whenever Condition (1) holds. The set B ∩ T is empty

whenever there exists a hyperplane that separates B from T , namely T itself; because of the

shape of B, this hyperplane is generated by a vector w ∈ QS
+. This is equivalent to Condition

(2). To obtain the separating hyperplane in the case when T is lower dimensional a superspace

of T is used.

A.2 Proof of Proposition 1

Proof of (1): For any φ : R→ R ∪ {∞} that is C1 over φ−1(R), strictly convex, and satisfies

(−1, 0) ⊆ range(φ′) and any cost function c, define the functions Vφ : ∆(A) → R ∪ {∞} and

40See, e.g., Dax (1997).
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Vc : ∆(A)→ R ∪ {∞} as follows:

Vφ(p) = inf
ε∈R|A|

∑
x∈A

p(x)[u(x) + εx] +
∑
x∈A

φ(εx)

Vc(p) =
∑
z∈A

(
u(z)p(z)− c(p(z))

)
.

Note that Vφ(p) − Vc(p) =
∑

z∈A

{
c(p(z)) + infεz∈R

[
p(z)εz + φ(εz)

]}
. For any function φ

define the function φ̂ by φ̂(ε) = φ(−ε). Then c(p(z)) + infεz∈R
[
p(z)εz + φ(εz)

]
= c(p(z)) +

infεz∈R−
[
p(z)εz − φ̂(εz)

]
= c(p(z))− supεz∈R

[
p(z)εz − φ̂(εz)

]
To prove the first claim, fix φ and define c to be the convex conjugate of φ̂, i.e., c(q) =

supε{qε − φ̂(ε)}. Then c′(q) = φ̂′(−q) = −φ′−1(−q) for each q ∈ (0, 1) from the assumption

(−1, 0) ⊆ range(φ′). Thus, c is a cost function and Vφ(p)− Vc(p) = 0 for all p.

To prove the second claim, note that if we choose φ so that φ̂ is the convex conjugate of

c, i.e., φ(−ε) = φ̂(ε) =: supq>0{εq − c(q)}, then φ̂′(w) = c′−1(−w), so it is strictly convex

and satisfies (−1, 0) ⊆ range(φ′). By the Fenchel biconjugation theorem (Theorem 12.2 of

Rockafellar, 1970) c is the convex conjugate of φ̂, so likewise Vφ(p)− Vc(p) = 0 for all p.

Proof of (2) : Suppose that P is represented by invariant AVU with limε→∞ φ
′(ε) = 0.

Part 1 implies that P is represented by invariant APU with c(q) = supε{qε−φ(−ε)}, and since

c′(q) = −φ′−1(−q) for each q ∈ (0, 1), limq→0 c
′(q) = −∞.

Suppose that P is represented by APU with steep cost c. Part (1) implies that P is

represented by AVU with φ(ε) = supq∈(0,1]{−εq−c(q)}, so φ′(ε) = −c′−1(w) , and limq→0 c
′(q) =

−∞ implies limε→∞ φ
′(ε) = 0. Q.E.D.

A.3 Proof of Lemma 1

equivalence of (1) and (2): By the strict convexity of the objective function, a necessary

and sufficient condition for P (A) = arg maxp∈∆(A) V
u
c (p) is that P (A) solves

max
p∈R|A|

∑
z∈A

[
u(z)p(z)− c(p(z))

]
+ λ(A)(

∑
z

p(z)− 1) +
∑
z

[
λz0(A)p(z) + λz1(A)(p(z)− 1)

]
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such that λz0(A), λz1(A) ≥ 0 and λz0(A)p(z) = λz0(A)(p(z) − 1) = 0 for each z ∈ A, where

multipliers λ(A), λz0(A), and λz1(A) are associated with
∑

z p(z) = 1, p(z) ≥ 0, and p(z) ≤ 1,

respectively. This is equivalent to the conditions

∀z ∈ A, u(z)− c′z1 (A) + λz0(A) = 0,

where λz1(A) ≥ 0 = λz0(A) if P (x|A) = 1, λz0(A) = λz1(A) = 0 if P (x|A) ∈ (0, 1), and λz0(A) ≥

0 = λz1(A) if P (x|A) = 0.

(2) implies (3): Condition (4) holds because c′−1 is strictly increasing.

(3) implies (2): Suppose that there exist u and λ such that condition (4) holds. It is

without loss to assume that both take values in (0, 1). Then, define

w̄ :=


2 if P (z|A) < 1 ∀(z, A) ∈ D

min{u(x) + λ(A)|(x,A) ∈ D, P (x|A) = 1} otherwise.

w :=


0 if P (z|A) > 0 ∀(z, A) ∈ D

max{u(x) + λ(A)|(x,A) ∈ D, P (x|A) = 0} otherwise.

Let g : [0, 1]→ R be a strictly increasing and continuous function such that (i) g(0) = w, (ii)

g(P (x|A)) = u(x) + λ(A) if P (x|A) ∈ (0, 1), and (iii) g(1) = w̄. Such function exists because

condition (4) and the definition of % ensure that u(x)+λ(A) > u(y)+λ(B) if P (x|A) > P (y|B),

and u(x) + λ(A) = u(y) + λ(B) if P (x,A) = P (y|B) ∈ (0, 1).

Define a cost function c : [0, 1]→ R by c(p) =
∫ p

0
g(q)dq. Then the optimality condition in

Lemma 1 is satisfied at each menu, so that P is represented by invariant APU. Q.E.D.

A.4 Proof of Lemma 2

Suppose that there exists a separable representation (u, λ). There cannot exist a hyper-cycle,

as if there is one, then u(xi) + λ(Ai) ≥ u(yi) + λ(Bi) for all i with at least one strict. Summing

over i yields a contradiction because of the permutation property.
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For the converse note that since % is a binary relation over D, it is a subset of D2. We will

denote elements of D by α, β, etc.; each α ∈ D is of the form (xα, Aα) for some Aα ∈ A and

xα ∈ Aα. Consider the vector space Q% over the field of rational numbers.

Step 1: Any collection of preference statements (allowing for potential repetitions of some

statements) can be represented by a point in w ∈ N% (each coordinate of this point counts the

number of repetitions). According to the definition, the collection is a hyper-cycle if it (a) at

least one comparison is strict and (b) each item and each menu features equal number of times

on each side. We will now represent these two properties geometrically.

Define b ∈ Q% as follows:

b(α, β) =


−1 if (α, β) ∈�

0 if (α, β) ∈∼ .

Note that for any w ∈ N%, 〈w, b〉 < 0 iff at least one comparison in a collection of preference

statements represented by w is strict.

For each z ∈ Z define tz ∈ Q% by

tz(α, β) =


−1 if xα = z and xβ 6= z

1 if xα 6= z and xβ = z

0 otherwise.

Note that for any w ∈ N%, 〈w, tz〉 = 0 iff z features equal number of times on each side of the

hyper-cycle represented by w.

For each C ∈ A define tC ∈ Q% by

tC(α, β) =


−1 if Aα = C and Aβ 6= C

1 if Aα 6= C and Aβ = C

0 otherwise.
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Note that for any w ∈ N%, 〈w, tC〉 = 0 iff C features equal number of times on each side of the

cycle represented by w.

Let T be the linear subspace generated by the collection {tz}z∈Z ∪ {tC}C∈A. Thus, w ∈ N%

represents a hyper-cycle if and only if w ⊥ T and 〈w, b〉 < 0.

Step 2: Since Hyper-Acyclicity implies that there does not exist w that meets the conditions

of Step 1, there cannot exist w ∈ Q% such that w ⊥ T and 〈w, b〉 < 0. Lemma A.1.1 implies

that there exists t ∈ T such that t ≤ b.

Step 3: The existence of such t implies that there exist a separable representation (u, λ) of

%. To see that, note that if t ∈ T , then there exist rational functions u : Z → Q and λ : A → Q

such that t =
∑

z∈Z u(z)tz +
∑

C∈A λ(C)tC . Thus, the functions u and λ are the coordinates

of t in T . Next, observe that t ≤ b implies that (u, λ) represent %: if (x,A) � (y,B), then

t((x,A), (y,B)) < 0, so u(x)+λ(A) > u(y)+λ(B). If (x,A) ∼ (y,B), then t((x,A), (y,B)) ≤ 0;

by the symmetry of ∼, t((x,A), (y,B)) ≥ 0; thus, u(x) + λ(A) = u(y) + λ(B).Q.E.D.

A.5 Proof of Proposition 2

Follows from Proposition 1 and Lemmas 1 and 2. Q.E.D.

A.6 Proof of Lemma 3

The direction (2)⇒(1) is straightforward, so we only show (1)⇒(2). Note first that (ξ′, ξ′′) ∈�∗

implies (ξ′, ξ′′) 6∈∼∗, because otherwise the symmetry of ∼∗ leads to a cycle ξ′∗ �∗ ξ′′ ∼∗ ξ′. Let

%∗:=�∗ ∪ ∼∗, which is a subset of X 2.

Step 1: Any sequence of preference statements (allowing for potential repetitions of some

statements) can be represented by a point in w ∈ N%∗ (each coordinate of this point counts the

number of repetitions).
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Define b ∈ Q%∗ as follows:

b(ξ′, ξ′′) =


−1 if (ξ′, ξ′′) ∈�∗

0 if (ξ′, ξ′′) ∈∼∗ .

Note that for any w ∈ N%∗ , 〈w, b〉 < 0 iff at least one comparison in the sequence represented

by w is strict.

For each ξ ∈ X define tξ ∈ Q%∗ by

tξ(ξ′, ξ′′) =


−1 if ξ′ = ξ and ξ′′ 6= ξ

1 if ξ′ 6= ξ and ξ′′ = ξ

0 otherwise.

Note that for any w ∈ N%∗ , 〈w, tξ〉 = 0 iff ξ features equal number of times on each side of the

sequence represented by w.

Let T be the linear subspace generated by the collection {tξ}ξ∈X . Thus, w ∈ N%∗ represents

a cycle if and only if w ⊥ T and 〈w, b〉 < 0.

Step 2: Since the condition (1) implies that there does not exist w that meets the conditions

of Step 1, there cannot exist w ∈ Q%∗ such that w ⊥ T and 〈w, b〉 < 0. Lemma A.1.1 implies

that there exists t ∈ T such that t ≤ b.

Step 3: The existence of such t implies that there exist a representation v of %∗. To see that,

note that if t ∈ T , then there exists a rational function v : X → Q such that t =
∑

ξ∈X v(ξ)tξ.

Thus, the function v is the coordinates of t in T . Next, observe that t ≤ b implies that v

represents %∗: if ξ′ �∗ ξ′′, then t(ξ′, ξ′′) < 0, so v(ξ′) > v(ξ′′). If ξ′ ∼∗ ξ′′ then t(ξ′, ξ′′) ≤ 0; by

the symmetry of ∼∗, t(ξ′, ξ′′) ≥ 0; thus, v(ξ′) = v(ξ′′). Q.E.D.

A.7 Proof of Proposition 3

Note that when P is deterministic, (x,A) % (y,B) iff (x,A) � (y,B) iff P (x|A) = 1 and

P (y|B) = 0.
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equivalence of (2) and (6): When P is deterministic, it induces a deterministic and single-

valued choice function. Then Axiom 1 is satisfied if and only if the deterministic choice function

satisfies the Congruence axiom (Richter, 1966). Because Z is finite, this is equivalent to the

existence of a strict utility function u that rationalizes the choice function.

equivalence of (1) and (3): (3) implies (1) by definition. To see the converse direction, sup-

pose Item Acyclicity is satisfied and there is a hyper-cycle, i.e., (x1, A1) � (y1, B1), (x2, A2) �

(y2, B2), . . . , (xm, Am) � (ym, Bm). Suppose that (x,A) is on the left hand side; since x must

be featured on the right hand side, this means that there exists a menu B such that P (x|B) = 0.

Since B must be featured on the left hand side associated with some item x′, i.e., P (x′|B) = 1,

we have x′ �i x. We can continue the same argument to show that, since the set Z is finite,

the relation �i over Z has a cycle, a contradiction.

equivalence of (2) and (3): (3) implies (2) by definition. To see the converse direction, sup-

pose Menu Acylicity is satisfied and there is a hyper-cycle, i.e., (x1, A1) � (y1, B1), (x2, A2) �

(y2, B2), . . . , (xm, Am) � (ym, Bm). Suppose that (x,A) is on the left hand side; since A

must be featured on the right hand side, this means that there exists an item y ∈ A such that

P (y|A) = 0. Since y must be featured on the left hand side associated with some menu A′, i.e.,

P (y|A′) = 1, we have A′ �m A. We can continue the same argument to show that, since the

set A is finite, the relation �m over A has a cycle, a contradiction.

equivalence of (4) and (6): This is straightforward from the definitions.

(6) implies (5): Suppose there is an injective function u such that P (x|A) = 1 iff u(x) =

maxz∈A u(z). Take any A,B ∈ A. Then A �m B iff there is x ∈ A ∩ B such that P (x|A) =

1 > 0 = P (x|B), which is equivalent to {x} = arg maxz∈A u(z) and x 6∈ arg maxz∈B u(z).

(5) implies (3): Suppose there is an injective function u s.t. A �m B iff maxz∈A u(z) <

maxz∈A u(z) and A ∩ B 6= ∅. If Menu Acyclicity is violated, there exists a sequence A1 �m

A2 �m ... �m Am �m A1. This implies maxz∈A1 u(z) < maxz∈A2 u(z) < ... < maxz∈Am u(z) <

maxz∈A1 u(z), a contradiction. Q.E.D.
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A.8 Proof of Proposition 4

Because of Proposition 1, we only need to show that Positivity and Ordinal IIA are satisfied if

and only if P is represented by invariant APU with a steep cost.

“If”: Positivity is clearly satisfied by the assumption limq→0 c
′(q) = −∞. Note that with a

steep cost c the solution to the FOC is always interior:

u(x) + λ(A)− c′(P (x|A)) = 0

where λ(A) ∈ R is the Lagrange multiplier associated with the constraint
∑

x∈A p(x) = 1 in the

optimization problem. This implies

c′(P (x|A))− c′(P (y|A)) = c′(P (x|B))− c′(P (y|B))

for each A,B and x, y ∈ A ∩ B. Setting the strictly increasing function f : (0, 1) → R++ by

f(q) = exp[c′(q)], we obtain
f(P (x|A))

f(P (y|A))
=
f(P (x|B))

f(P (y|B))

for each A,B and x, y ∈ A ∩B, so that Ordinal IIA is satisfied.

“Only if”: Construct a cost function by setting c′(q) := log(f(q) − limr→0 f(r)) where f

is taken from the Ordinal IIA property. Because f is strictly increasing and c′ is Riemann

integrable, c(q) =
∫ q

0
c′(t)dt is well defined. Note that c is C1 and strictly convex, and that

limq→0 c
′(q) = −∞. Fix any item x and set u(x) := 0. For any other item z 6= x, set

u(z) := c′(P (z|{x, z}))− c′(P (x|{x, z})).

Take an arbitrary menu A and pick up two items y, z from it. There are two exclusive cases.
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Case (i): x ∈ {y, z}. Set y = x without loss. Then

u(z)− u(x) = c′(P (z|{x, z}))− c′(P (x|{x, z}))

= log

(
f(P (z|{x, z}))
f(P (x|{x, z}))

)
= log

(
f(P (z|A))

f(P (x|A))

)
(∵ Ordinal IIA)

= c′(P (z|A))− c′(P (x|A))

Case (ii): x 6∈ {y, z}.

u(z)− u(y) = c′(P (z|{x, z}))− c′(P (x|{x, z}))− c′(P (y|{x, y})) + c′(P (x|{x, y}))

= log

(
f(P (z|{x, z}))
f(P (x|{x, z}))

f(P (x|{x, y}))
f(P (y|{x, y}))

)
= log

(
f(P (z|{x, y, z}))
f(P (x|{x, y, z}))

f(P (x|{x, y, z}))
f(P (y|{x, y, z}))

)
(∵ Ordinal IIA)

= log

(
f(P (z|{x, y, z}))
f(P (y|{x, y, z}))

)
= log

(
f(P (z|A))

f(P (y|A))

)
(∵ Ordinal IIA)

= c′(P (z|A))− c′(P (y|A))

Therefore the equalities in the above two cases imply that FOC at A is satisfied. Since this

holds for any menu A, this proves that P is represented by an invariant APU with steep cost

c. Q.E.D.

A.9 Proof of Proposition 5

Step 1: Fix an arbitrary x ∈ Z and p ∈ (1
2
, 1) and construct the sequence (. . . , xp−2, x

p
−1, x

p
0, x

p
1, x

p
2, . . .)

recursively as follows. Let xp0 := x. For any xpn by Richness (i) there exists an element y such

that P (y|{xpn, y}) = p; let xp−n−1 := y. Likewise, for any xp−n by Richness (i) there exists an

element y such that P (xp−n|{x
p
−n, y}) = p; let xpn+1 := y.

Suppose that (u, c) and (û, ĉ) are invariant APU representations of P . Then by FOC, it
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follows that u(xpk+1) − u(xpk) = c′(p) − c′(1 − p) for all k ∈ Z and likewise û(xpk+1) − û(xpk) =

ĉ′(p)− ĉ′(1−p) for all k ∈ Z. It follows that there exist α > 0, β ∈ R such that û(z) = αu(z)+β

for all z of the form z = xpk, k ∈ Z.

Note that since c′ is a continuous function, we can find q < p such that u(xq2) − u(xq0) =

u(xp1)−u(xp0), thus we can make the grid twice as fine. Clearly, the constants α, β that relate û

and u do not depend on q. Construct a sequence of grids indexed by qm, where q0 = p, q1 = q,

etc., where the grid corresponding to qm+1 is twice as fine as the grid corresponding to qm, i.e.,

u(x
qm+1

2 )− u(x
qm+1

0 ) = u(xqm1 )− u(xqm0 ).

Fix an arbitrary z ∈ Z. For each m let km be such that u(xqmkm) ≤ u(z) ≤ u(xqmkm+1). Such km

exists because for each q the set {u(xqk)}k∈Z is unbounded. Note that û(xqmkm) ≤ û(z) ≤ û(xqmkm+1)

because û and u represent the same order over items.

Note that, since every point in the grid qm belongs to the grid qm+1, it follows that u(xqmkm)

is increasing in m and u(xqmkm+1) is decreasing in m. Moreover |u(xqmkm+1) − u(xqmkm)| → 0, so

limm→∞ u(xqmkm) = u(z) = limm→∞ u(xqmkm+1). Likewise limm→∞ û(xqmkm) = û(z) = limm→∞ û(xqmkm+1).

Thus, û(z) = αu(z) + δ for all z ∈ Z.

Step 2: Take p̄ from condition (ii) of Richness and let p ∈ (0, 1
2
]. Richness implies that there

exist A ∈ A and z, z′ ∈ A such that P (z|A) = p̄ and P (z′|A) = p. By FOC it follows that

u(z) − u(z′) = c′(p̄) − c′(p) and û(z) − û(z′) = ĉ′(p̄) − ĉ′(p). Thus, by Step 1, it follows that

ĉ′(p)− αc′(p) = ĉ′(p̄)− αc′(p̄).

Step 3: Let p ∈ (1
2
, 1). Condition (i) of Richness implies that there exist z, z′ such that

P (z|{z, z′}) = p. By FOC it follows that u(z) − u(z′) = c′(p) − c′(1 − p) and û(z) − û(z′) =

ĉ′(p)− ĉ′(1− p). Thus, by Step 1, it follows that ĉ′(p)− αc′(p) = ĉ′(1− p)− αc′(1− p). Since

1− p ∈ (0, 1
2
], Step 2 implies that ĉ′(1− p)−αc′(1− p) = ĉ′(p̄)−αc′(p̄). Thus, ĉ′(p)−αc′(p) =

ĉ′(p̄)− αc′(p̄).

Step 4: Let γ := ĉ′(p̄)− αc′(p̄). By Steps 2 and 3, ĉ′(p) = αc′(p) + γ for all p ∈ (0, 1). Since ĉ

and c are convex functions, they are absolutely continuous; hence, c(t) = c(p̄) +
∫ t
p̄
c′(p)dp and

ĉ(t) = ĉ(p̄) +
∫ t
p̄
ĉ′(p)dp. Substituting ĉ′(p) = αc′(p) + γ this implies that ĉ(t) = αc(t) + γt+ δ,

where δ = γp̄+ ĉ(p̄)− αc(p̄). Q.E.D.
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A.10 Proof of Proposition 6

Take any A,B with A %m B such that x, y ∈ A ∩ B and P (x|A) > P (y|A). Because A %m B,

we have both P (x|A) ≥ P (x|B) and P (y|A) ≥ P (y|B), since otherwise there would be a menu-

cycle. Thus from the FOCs u(x) + λ(A) = c′(P (x|A)) of an invariant APU with steep cost, it

follows that λ(A) ≥ λ(B) and u(x) > u(z). Using these FOCs, we can express the log-ratio of

choice probabilities as

log

(
P (x|A)

P (y|A)

)
= log

(
c′−1(u(x) + λ(A))

c′−1(u(y) + λ(A))

)
= h(u(x) + λ(A))− h(u(y) + λ(A))

≥ h(u(x) + λ(B))− h(u(y) + λ(B))

= log

(
c′−1(u(x) + λ(B))

c′−1(u(y) + λ(B))

)
= log

(
P (x|B)

P (y|B)

)
,

where the inequality follows by the convexity of h, u(x)−u(y) > 0, and λ(A) ≥ λ(B). Therefore

P (x|A)/P (y|A) ≥ P (x|B)/P (y|B), completing the proof. Q.E.D.

A.11 Proof of Proposition 7

1):

In order to show Axiom 8, take any sequence of menus An such that x, y ∈ An for each

n and limn P (x|An) = limn P (y|An) = 0. From the FOC u(x) + λ(An) = c′(P (x|An)) and

limq→0 c
′(q) = −∞, P (x|An)→ 0 implies λ(An)→ −∞. Therefore

log

(
P (x|An)

P (y|An)

)
= log

(
c′−1(u(x) + λ(An))

c′−1(u(y) + λ(An))

)
= h(u(x) + λ(An))− h(u(y) + λ(An))

→ 0

as n→∞. Therefore P (x|An)
P (y|An)

→ 1.
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2):

Suppose to the contrary that there exists r > 0 such that h(r− t)−h(−t) does not converge

to 0 as t → ∞. Let b ∈ (0,∞] denote the limit superior of the sequence. Then there exists a

sequence {λn}∞n=1 such that λn → −∞ and h(r + λn)− h(λn)→ b.

Choose a natural number k and construct a sequence ((h( jr
k

+ λn)− h( (j−1)r
k

+ λn))kj=1)∞n=1.

More explicitly, this sequence takes the form

h(
r

k
+λ1)−h(λ1), h(

2r

k
+λ1)−h(

r

k
+λ1), ..., h(r+λ1)−h(

(k − 1)r

k
+λ1), h(

r

k
+λ2)−h(λ2), ...

If this sequence converges to 0, then it follows that

h(r + λn)− h(λn) =
k∑
j=1

h(
jr

k
+ λn)− h(

(j − 1)r

k
+ λn)→ 0,

a contradiction. Therefore the sequence does not converge to 0. Let b̃ > 0 denote its limit

superior, and consider a sequence (λ̃n)∞n=1 such that λ̃n →∞ and h( r
k

+ λ̃n)− h(λ̃n)→ b̃.

Because k was an arbitrary natural number, take it large enough such that q ∈ [1
2
, 1

2
+ δ),

where q is uniquely defined by equation r
k

= c′(q)− c′(1− q). By the Richness condition there

exists x, y such that P (x|{x, y}) = q. Then r
k

= c′(q) − c′(1 − q) and FOCs at {x, y} suggest

that u(x)− u(y) = r
k
. We assume u(y) = 0 without loss of generality.

Because of λ̃n → −∞, we have c′−1( r
k

+ λ̃n)→ 0. Therefore by the Richness condition, for

all sufficiently large n, there exists An such that x, y ∈ An and c′−1( r
k

+ λ̃n) = P (x|An) hold.

FOC u(x) + λ(An) = c′(P (x|An)) and u(x) = r
k

imply that λ̃n = λ(An). This leads to

log

(
P (x|An)

P (y|An)

)
= log

(
c′−1( r

k
+ λ̃n)

c′−1(λ̃n)

)
=

[
h

(
r

k
+ λ̃n

)
− h(λ̃n)

]
→ b̃

as n→∞. Because of b̃ > 0, lim P (x|An)
P (y|An)

> 1 follows, which contradicts Limited Discrimination.

Q.E.D..
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A.12 Proof of Proposition 8

As Lemma 1 shows, the optimality condition of the maximization problem maxp∈∆(A)

∑
z∈A(u(z)p(z)−

cA(p(z))) is that there exists λ(A) such that

u(x)− c′A(P (x|A)) + λ(A)


≥ 0 if P (x|A) = 1

= 0 if P (x|A) ∈ (0, 1)

≤ 0 if P (x|A) = 0

holds for each x ∈ A.

(1) implies (2): Suppose that P is represented by item-invariant APU, and take any menu

A ∈ A with x, y ∈ A. Then, by the above FOC and strict convexity of cA, u(x) > u(y) if

P (x|A) > P (y|A), and u(x) = u(y) if P (x|A) = P (y|A) ∈ (0, 1).

(2) implies (1): Suppose that there is a function u : Z → R such that, for any A and x, y ∈ A,

u(x) > u(y) if P (x|A) > P (y|A), and u(x) = u(y) if P (x|A) = P (y|A) ∈ (0, 1). Take any A ∈ A

and let

w(A) :=


0 if P (z|A) > 0 ∀z ∈ A

max{u(x) + λ(A)|x ∈ A,P (x|A) = 0} otherwise.

Then we can construct a strictly increasing and continuous function gA : [0, 1] → R such

that (i) gA(0) = w(A), and (ii) gA(P (z|A)) = u(z) if P (z|A) ∈ (0, 1). This defines a strictly

convex and C1 function cA : [0, 1]→ R by cA(p) =
∫ p

0
gA(q)dq. Then

u(x)− c′A(P (x|A))


≥ 0 if P (x|A) = 1

= 0 if P (x|A) ∈ (0, 1)

≤ 0 if P (x|A) = 0

Therefore the optimality condition holds at each menu A with λ(A) = 0, so that P is represented

by item-invariant APU.

equivalence of (2) and (3): This follows by applying Lemma 3 to the item order %i over
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Z = X . Q.E.D.

A.13 Proof of Proposition 9

(1) implies (2): Suppose that P is represented by menu-invariant APU, and take any menus

A,B ∈ A with x ∈ A ∩ B. Let λ : A → R be the Lagrangean multipliers associated with each

menu. Then, by the FOC and strict convexity of cx, λ(A) > λ(B) if P (x|A) > P (x|B), and

λ(A) = λ(B) if P (x|A) = P (x|B) ∈ (0, 1).

(2) implies (1): Suppose that there is a function λ : A → R such that for any menus A,B

and item z ∈ A∩B, λ(A) > λ(B) if P (z|A) > P (z|B), and λ(A) = λ(B) if P (z|A) = P (z|B) ∈

(0, 1). It is without loss to assume that λ takes values in (0, 1).

Take any item z and let

w̄(z) :=


1 if P (z|A) < 1 ∀A 3 z

min{λ(A)|A ∈ A, P (x|A) = 1} otherwise.

w(z) :=


0 if P (z|A) > 0 ∀A 3 z

max{λ(A)|A ∈ A, P (x|A) = 0} otherwise.

Construct for each z a strictly increasing and continuous function gz : [0, 1]→ R such that

(i) gz(0) = w(z), (ii) gz(P (x|A)) = λ(A) if P (x|A) ∈ (0, 1), and (iii) gz(1) = w̄(z). For each

z, define a strictly convex C1 cost function cz : [0, 1] → R by cz(q) =
∫ q

0
gz(p)dp and utility

u(z) = 0. Then the optimality condition

u(x)− c′x(P (x|A)) + λ(A)


≥ 0 if P (x|A) = 1

= 0 if P (x|A) ∈ (0, 1)

≤ 0 if P (x|A) = 0

holds at each menu A and item x ∈ A, so that P is represented by menu-invariant APU.

equivalence of (2) and (3): This follows by applying Lemma 3 to the menu order %m over
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A = X . Q.E.D.

A.14 Proof of Proposition 10

In the following we only consider menus with at least two elements, without loss of generality.

“If”: Positivity and Menu Acyclicity are satisfied if P is represented by menu-invariant APU

with steep costs. To show Order Independence we proceed as follows.

First we show that for any menu A and items x, y ∈ A, u(x) ≥ u(y) iff P (x|A) ≥ P (y|A).

Note that the FOC takes the form

u(x)− c′x(P (x|A)) = u(y)− c′y(P (y|A)). (8)

If u(x) ≥ u(y) then, by weak menu-dependence c′x(P (x|A))−c′y(P (x|A)) ≤ u(x)−u(y), and from

the strict convexity of cy, P (x|A) ≥ P (y|A). Conversely, suppose that P (x|A) ≥ P (y|A). If

u(y) > u(x), then the weak menu-dependence condition c′y(P (x|A))−c′x(P (x|A)) < u(y)−u(x)

and the strict convexity of cy lead to a contradiction to (8). Therefore u(x) ≥ u(y).

Now take any menus A,B and x, y ∈ A \B. Observe that

c′x(P (x|B ∪ {x}))− u(x) ≤ c′y(P (y|B ∪ {y}))− u(y)

⇔ λ(B ∪ {x}) ≤ λ(B ∪ {y})

⇔ ∃z ∈ B, P (z|B ∪ {x}) ≤ P (z|B ∪ {y})

⇔ ∀z ∈ B, P (z|B ∪ {x}) ≤ P (z|B ∪ {y})

⇒ P (x|B ∪ {x}) ≥ P (y|B ∪ {y}).

Suppose that P (z|B ∪ {x}) ≤ P (z|B ∪ {y}) holds for all z ∈ B. If u(x) < u(y), then the

weak menu-dependence condition c′y(P (x|B∪{x}))−c′x(P (x|B∪{x})) < u(y)−u(x), the strict

convexity of cy, and P (x|B∪{x}) ≥ P (y|B∪{y}) imply c′y(P (y|B∪{y}))−c′x(P (x|B∪{x})) <

u(y)− u(x), a contradiction. Therefore u(x) ≥ u(y). Conversely, suppose that u(x) ≥ u(y). If

λ(B∪{x}) > λ(B∪{y}), then we have both c′x(P (x|B∪{x}))−u(x) > c′y(P (y|B∪{y}))−u(y)

45



and P (x|B ∪ {x}) ≤ P (y|B ∪ {y}). The weak menu-dependence condition u(x)− c′x(P (x|B ∪

{x})) ≥ u(y)−c′y(P (x|B∪{x})) and the strict convexity of cy imply u(x)−c′x(P (x|B∪{x})) ≥

u(y) − c′y(P (y|B ∪ {y})), a contradiction. So λ(B ∪ {x}) ≤ λ(B ∪ {y}). Therefore we have

shown that P (z|B ∪ {x}) ≤ P (z|B ∪ {y}) holds for all z ∈ B if and only if u(x) ≥ u(y), which

is equivalent to P (x|A) ≥ P (y|A).

“Only if”: Positivity and Order Independence imply Item Acyclicity, which ensures the ex-

istence of u : Z → R such that P (x|A) ≥ P (y|A) iff u(x) ≥ u(y) for any x, y ∈ A. Menu

Acyclicity implies the existence of λ : A → R such that P (x|A) ≥ P (x|B) iff λ(A) ≥ λ(B) for

any x ∈ A ∩ B. Without loss, we take u and λ to be strictly positive valued. By Positivity,

there exists ε > 0 such that ε < P (x|A) for all A ∈ A and x ∈ A. Take a continuous and

strictly increasing function ḡ : (0, ε]→ R such that limq→0 ḡ(q) = −∞ and ḡ(ε) = 0.

Fix δ > 0. For each x ∈ Z, we construct a function gx : (0, 1]→ R in the following manner.

First, we set gx(q) = ḡ(q) for all q ∈ (0, ε]. Second, we set gx(P (x|A)) = u(x)+λ(A) for all menu

A 3 x. Third, values of gx(q) for each q ∈ (ε,maxA3x P (x|A)] are defined by linear interpolations

among the previously defined points. Finally, we set gx(q) = δ(q − maxA3x P (x|A)) + u(x) +

maxA3x λ(A) for each q ∈ (maxA3x P (x|A), 1].

This function gx is well-defined, and continuous by construction. Because of the property

u(x)+λ(A) ≥ u(x)+λ(B) iff P (x|A) ≥ P (x|B), gx is strictly increasing in q ∈ [minA3x P (x|A), 1].

Furthermore, gx(minA3x P (x|A)) = u(x)+minA3x λ(A) > 0 ensures that gx is strictly increasing

globally.

Take any x, y such that u(x) > u(y), and we show that gx(q)− gy(q) < u(x)− u(y) for all q

if δ is sufficient large. Because gx(q)− gy(q) is equal to zero in q ∈ [0, ε], and piece-wise linear

in q ∈ [ε, 1], it is sufficient to only consider q on the kink-points in (ε, 1]. There are three cases.

1. q = P (y|A) for some A 3 y.

First, consider the case x ∈ A. Note that P (y|A) < P (x|A). Then

gx(q)− gy(q) < gx(P (x|A))− gy(P (y|A)) = u(x)− u(y).
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Second, consider the case x 6∈ A. Then Order Independence implies P (z|A) > P (z|A ∪

{x} \ {y}) for all z ∈ A \ {y}, so that λ(A) > λ(A ∪ {x} \ {y}) and P (y|A) < P (x|A ∪

{x} \ {y}). Then

gx(q)− gy(q) < gx(P (x|A))− gy(P (y|A ∪ {y} \ {x}))

= u(x) + λ(A)− u(y)− λ(A ∪ {y} \ {x})

< u(x)− u(y).

2. q = P (x|A) for some A 3 x.

This case is analogous to the first case so that omitted.

3. q = 1.

Let qx = maxA3x P (x|A) and qy = maxA3y P (y|A). As in the first case, for any A 3 y,

there exists A′ 3 x such that P (y|A) < P (x|A′). Therefore qx > qy. Then

gx(q)− gy(q) = δ(1− qx) + gx(qx)− δ(1− qy)− gy(qy)

= δ(qy − qx) + gx(qx)− gy(qy)

< u(x)− u(y)

when δ is sufficiently large.

By finiteness of Z, we can take δ uniformly in x, y.

Next, take any x, y such that u(x) = u(y). We show that gx(q) = gy(q) for all q. To

see this, take any q such that q = P (x|A) for some menu A 3 x. First consider the case

y ∈ A. Then P (y|A) = P (x|A), so that gy(q) = u(y) + λ(A) = u(x) + λ(A) = gx(q). Second,

consider the case y 6∈ A. Then by Order Independence, P (z|A) = P (z|A ∪ {y} \ {x}) for all

z ∈ A\{x}, so that λ(A) = λ(A∪{y}\{x}) and P (x|A) = P (y|A∪{y}\{x}). This implies that

gy(q) = u(y) + λ(A ∪ {y} \ {x}) = u(x) + λ(A) = gx(q). Then, by construction, gx(q) = gy(q)

for all q ∈ (0, 1].
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We construct a strictly convex and C1 cost function cx : (0, 1] → R for each x ∈ Z by

c′x(q) = gx(q). This cost is steep by construction: limq→0 c
′
x(q) = limq→0 ḡ(q) = −∞. Then

u(x)−c′x(q) ≥ u(y)−c′y(q) for each q ∈ (0, 1] and x, y such that u(x) ≥ u(y), where the inequality

is strict if u(x) > u(y). For any menu A and item x ∈ A, FOC c′x(P (x|A)) = u(x)+λ(A) holds,

so that P is represented by menu-invariant APU with steep costs that is weakly item-dependent.

Q.E.D.

A.15 The α-nested Entropy Model

A.15.1 Nested Logit

With nested logit the choice probability of item x in nest Bk takes the form41

P (x|A) =
exp[u(x)/ηk]∑

z∈Bk∩A exp[u(z)/ηk]

(∑
z∈Bk∩A exp[u(z)/ηk]

)ηk∑K
l=1

(∑
z∈Bl∩A exp[u(z)/ηl]

)ηl
where ηk > 0 is an exogenous parameter defined for each nest Bk. From Lemma 4 in Appendix

A.15.3, this model can be represented as the nested entropy model by setting

P1(Bk|A) =

(∑
z∈Bk∩A exp[u(z)/ηk]

)ηk∑K
l=1

(∑
z∈Bl∩A exp[u(z)/ηl]

)ηl , P2(x|Bk, A) =
exp[u(x)/ηl]∑

z∈Bk∩A exp[u(z)/ηk]
,

U(Bk ∩ A) = ηk

(
log

∑
z∈Bk∩A

exp[u(z)/ηk]

)
.

The nested-logit model is a RU where the cumulative distribution of {εz}z∈A is given by

exp

−∑
k

( ∑
z∈Bk∩A

exp[−εz/λk]

)λk


and λk ∈ (0, 1] measures the degree of independence among {εz}z∈Bk .42

41See p.80 in Train (2009).
42A higher value of λk means greater independence and less correlation. When λk = 1 for all k then there is

no correlation within each nest, and the model is reduced to the standard logit model. Train (2009) allows λk
to be greater than 1. In such a case, the model can be expressed as RU for some range of the variables but not
all values.
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A.15.2 Axiomatization of α-nested entropy

Here we provide the necessary and sufficient conditions for the nested α−entropy representation.

Axiom 10 (IIN). For any nests Bk, Bl and menus A,A′ such that Bk ∩A = Bk ∩A′ 6= ∅ and

Bl ∩ A = Bl ∩ A′ 6= ∅,
P1(Bk|A)

P1(Bl|A)
=
P1(Bk|A′)
P1(Bl|A′)

.

This axiom, combined with Positivity, ensures that the choice probabilities over nests are

as in the logit model.

Axiom 11 (Within-nest IIA). For any nest Bk, items x, y ∈ Bk and menus A,A′ such that

x, y ∈ A ∩ A′
P (x|A)

P (y|A)
=
P (x|A′)
P (y|A′)

.

This axiom weakens IIA by imposing it only between items from the same nest; it is in the

spirit of nested logit and responds to the same red bus/blue bus critique.

Axiom 12 (Consistency). For each items D,D′ ⊆ Bk and z ∈ Bl 6= Bk,

P (z|D ∪ {z}) ≤ P (z|D′ ∪ {z}) iff P (D|D ∪D′) ≥ P (D′|D ∪D′).

This axiom connects the choice probabilities of menus D,D′ belonging to the same nest and

their weakness with respect to an item z belonging to a different nest; it is similar in spirit to

Order Independence (Axiom 9).

Axiom 13 (α-Consistency). There exists α ≥ 0 such that, for each items D,D′ ⊆ Bk and

z ∈ Bl 6= Bk,

P (z|D ∪ {z}) ≤ P (z|D′ ∪ {z}) iff
1

|D|α
P (D|D ∪D′) ≥ 1

|D′|α
P (D′|D ∪D′).

This axiom is a generalization of Axiom 12, allowing for a rescaling of the choice probabilities

of items D,D′ by their cardinalities to power α.
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Axiom 14 (Separable Ratios). For any a, b, c, d ∈ Bk and z ∈ Bl 6= Bk if

P (a|{a, b}) = P (c|{c, d})

then
P (a|{a, z})/P (z|{a, z})
P (b|{b, z})/P (z|{b, z})

=
P (c|{c, z})/P (z|{c, z})
P (d|{d, z})/P (z|{d, z})

.

This axiom is an adaptation of the axiom in Fudenberg and Strzalecki (2014) with the

same name; it connects the first stage choice and the indirect payoffs at the second stage. In

Fudenberg and Strzalecki (2014), the condition after ”then” equalizes the choice probability

ratio of a over b and that of c over d at the first stage. Since we can’t directly observe these

choice probability ratios in our set-up, we use the probability ratios of these items over another

nest’s item z to infer the relevant information.

We require a richness condition of the following form: A includes every menu, and, for all

γ ∈ (0,∞), Bk, and x ∈ Bk. there exists y ∈ Bk such that P (x|{x, y})/P (y|{x, y}) = γ.

Proposition 11. Assume the richness condition. Fix a nest structure {Bk}Kk=1. Axioms 4, 10,

11, 13 ,14 are satisfied if and only if P is represented as a nested entropy model with menu-costs.

To prove this proposition, we first show that Axiom 11 implies that there is a utility function

u such that the choice within each nest is logit. Second, we show that Axiom 10 implies that

for some value function U choice between nests is also logit. Third, using Axioms 13 and 14 we

relate the value function U to the utility function u.

The following results is a straightforward implication of Proposition 11.

Corollary 1. Assume the richness condition. Fix a nest structure {Bk}Kk=1. Axioms 4, 10, 11,

12 ,14 are satisfied if and only if P is represented as a nested entropy model.

A.15.3 Proof of Proposition 11

We only show the sufficiency of the axioms, because their necessity is straightforward.

Step 1: There are values U(D) for any subset of each nest D ⊆ Bk such that the first stage

choice probabilities can be written as
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P1(Bk|A) =
exp[U(Bk ∩ A)]∑
l exp[U(Bl ∩ A)]

(9)

Fix a nest Bk and its subset D and set U(D) := 0. Next, for any other nest Bl and its

subset D′ ⊂ Bl, set U(D′) := log P1(Bl|D∪D′)
P1(Bk|D∪D′)

. Then, using such D′ ⊆ Bl, we set U(D′′) :=

log P1(Bk|D′∪D′′)
P1(Bl|D′∪D′′)

exp[U(D′)] for any D′′ ⊆ Bk, D
′′ 6= D.

For any nests Bn, Bm with n,m 6= k, and their subsets D̃ ⊆ Bn, D̄ ⊆ Bm,

P1(Bn|A)

P1(Bm|A)
=

P1(Bn|D ∪ D̃ ∪ D̄)

P1(Bm|D ∪ D̃ ∪ D̄)
(∵ IIN)

=
P1(Bn|D ∪ D̃ ∪ D̄)

P1(Bk|D ∪ D̃ ∪ D̄)

P1(Bk|D ∪ D̃ ∪ D̄)

P1(Bm|D ∪ D̃ ∪ D̄)

=
P1(Bn|D ∪ D̃)

P1(Bk|D ∪ D̃)

P1(Bk|D ∪ D̄)

P1(Bm|D ∪ D̄)
(∵ IIN)

=
exp[U(D̃)]

exp[U(D)]

exp[U(D)]

exp[U(D̄)]

=
exp[U(D̃)]

exp[U(D̄)]

whenever A ∩ Bn = D̃ and A ∩ Bm = D̄. The case of n = k and/or m = k is analogous. This

leads to the desired claim (9).

Step 2: There are positive values W (z) for each item z such that the second stage choice

probabilities can be written as

P2(x|Bk, A) =
W (x)∑

z∈Bk∩AW (z)
. (10)

For any nest Bk, menus A,A′ and items x, y ∈ A ∩ A′, we have

P2(x|Bk, A)

P2(y|Bk, A)
=

P (x|A)

P (y|A)

=
P (x|A′)
P (y|A′)

(∵ Within-nest IIA)

=
P2(x|Bk, A

′)

P2(y|Bk, A′)
.
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Then, following essentially the same argument in the previous step, we can construct values

{W (z)}z∈Bk that satisfy (10). Note that by the richness condition and (10), {W (z)|z ∈ Bk} =

(0,∞) holds at each nest Bk

Step 3: For each nest Bk there exists ηk > 0 such that for all D ⊆ Bk

U(D) = ηk

(
log
∑
z∈B

W (z)− α log |D|

)
. (11)

For each nest Bk, its subsets D,D′ and any item z ∈ Bl 6= Bk we have

exp[U(D)] ≥ exp[U(D′)] ⇔ P1(Bk|D ∪ {z}) ≥ P1(Bk|D′ ∪ {z}) (∵ Step1 )

⇔ P (D|D ∪ {z}) ≥ P (D′|D′ ∪ {z})

⇔ 1

|D|α
P (D|D ∪D′) ≥ 1

|D|′α
P (D′|D ∪D′) (∵ α-Consistency)

⇔ 1

|D|α
∑
z∈D

W (z) ≥ 1

|D|′α
∑
z∈D′

W (z). (∵ Step2 )

Therefore, for each Bk, we can find an increasing function fk such that exp[U(D)] =

fk(
1
|D|α

∑
z∈DW (z)) for all D ⊆ Bk.

By the richness condition, for each γ ∈ (0,∞) and a, c ∈ Bk, there are b, d ∈ Bk such that

P (a|{a, b})
P (b|{a, b})

=
P (c|{c, d})
P (d|{c, d})

= γ.

By Separable Ratios, for any z ∈ Bl 6= Bk

P1(Bk|{a, z})
P1(Bl|{a, z})

P1(Bl|{b, z})
P1(Bk|{b, z})

=
P1(Bk|{c, z})
P1(Bl|{c, z})

P1(Bl|{d, z})
P1(Bk|{d, z})

,

which is, by Step 1, equivalent to

exp[U({a})]
exp[U({z})]

exp[U({z})]
exp[U({b})]

=
exp[U({c})]
exp[U({z})]

exp[U({z})]
exp[U({d})]

,
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or,
fk(W (a))

fk(W (b))
=
fk(W (c))

fk(W (d))
.

Because of γ = P2(a|Bk,{a,b})
P2(b|Bk,{a,b})

= P2(c|Bk,{c,d})
P2(c|Bk,{c,d})

= W (a)
W (b)

= W (c)
W (d)

by Step 2, this leads to the functional

equation of the form

fk(γr) = gk(γ)fk(r)

for all r, γ > 0. This is a special case of the Pexider functional equation43 and the nonzero

solutions are of the form fk(r) = βkr
ηk for some βk, ηk > 0.

Therefore

exp[U(D)] = fk

(
1

|D|α
∑
z∈D

W (z)

)

= βk

(
1

|D|α
∑
z∈B

W (z)

)ηk

= exp

[
log βk + ηk(log

∑
z∈B

W (z)− α log |D|)

]

Fix an item xk ∈ Bk. We normalize the values {W (z)}z∈Bk by multiplying a positive

constant to satisfy W (xk) = exp[U({xk})/ηk]. Note that this normalization does not affect any

previous steps. Then the above equation implies exp[U({xk})] = exp [log βk + U({xk})], which

leads to βk = 1. This proves (11).

Step 4: There are utilities {u(z)}z∈Z such that P is represented by a nested entropy model

with cost coefficients {ηk}Kk=1.

Set u(z) := U({z}) for each item z ∈ Z. Then, for any nest Bk and item z ∈ Bk, (11)

implies W (z) = exp[u(z)/ηk]. Therefore (10) and (11) are written as

P2(x|Bk, A) =
exp[u(x)/ηk]∑

z∈Bk∩A exp[u(z)/ηk]
,

U(D) = ηk

(
log
∑
z∈D

exp[u(z)/ηk]− α log |D|

)
.

43See Theorem 4, Section 3.1 of Aczél (1966).
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These equations and (9)-(10), combined with Lemma 4, imply that P is represented by a

nested entropy model with menu-costs. Q.E.D.

The following lemma follows from the well-known formula for the maximized value with

entropy cost (see Chapter 3 of Train (2009)) and the fact that Cα(p) is the entropy cost minus

ηα log |A|.

Lemma 4. For any η > 0, α ≥ 0, and menu A,

max
p∈∆(A)

∑
z∈A

p(z)u(z)− ηCα(p) = η

(
log
∑
z∈A

exp[u(z)/η]− α log |A|

)
.
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