## What Do Matching Models Predict?

Bernard Salanié Columbia University

June 8, 2015



*Observed:* some data distributed as  $X \simeq F$ 

Theory:  $F_X \in \mathcal{F} = (F^{\theta})$ 

*Observed:* some data distributed as  $X \simeq F$ 

Theory:  $F_X \in \mathcal{F} = (F^{\theta})$ 

Rationalizing the data: is F in  $\mathcal{F}$ , if so for which (set of values)  $\theta(F)$ ?

• Just/exact identification:  $\theta(F)$  is a singleton

*Observed:* some data distributed as  $X \simeq F$ 

Theory:  $F_X \in \mathcal{F} = (F^{\theta})$ 

Rationalizing the data: is F in  $\mathcal{F}$ , if so for which (set of values)  $\theta(F)$ ?

- Just/exact identification:  $\theta(F)$  is a singleton
- under/partial identification: it is a proper set

*Observed:* some data distributed as  $X \simeq F$ 

Theory:  $F_X \in \mathcal{F} = (F^{\theta})$ 

Rationalizing the data: is F in  $\mathcal{F}$ , if so for which (set of values)  $\theta(F)$ ?

- Just/exact identification:  $\theta(F)$  is a singleton
- under/partial identification: it is a proper set
- overidentification: for some *F* it is empty.

*Observed:* some data distributed as  $X \simeq F$ 

Theory:  $F_X \in \mathcal{F} = (F^{\theta})$ 

Rationalizing the data: is F in  $\mathcal{F}$ , if so for which (set of values)  $\theta(F)$ ?

- Just/exact identification:  $\theta(F)$  is a singleton
- under/partial identification: it is a proper set
- overidentification: for some *F* it is empty.

*Observed:* some data distributed as  $X \simeq F$ 

Theory:  $F_X \in \mathcal{F} = (F^{\theta})$ 

Rationalizing the data: is F in  $\mathcal{F}$ , if so for which (set of values)  $\theta(F)$ ?

- Just/exact identification:  $\theta(F)$  is a singleton
- under/partial identification: it is a proper set
- overidentification: for some *F* it is empty.

Testing the theory: for some statistic S(X), for some F,

$$F^S \notin (F_S^{\theta}).$$



Frictionless (including perfect information)

Frictionless (including perfect information) mostly 1-to-one and bipartite (the *marriage problem*)

Frictionless (including perfect information) mostly 1-to-one and bipartite (the *marriage problem*) with or without transfers.

Frictionless (including perfect information) mostly 1-to-one and bipartite (the *marriage problem*) with or without transfers.

Rationalizability: infer the primitives of the model from observed mathing patterns (and possibly transfers and/or outcomes)

Frictionless (including perfect information) mostly 1-to-one and bipartite (the *marriage problem*) with or without transfers.

Rationalizability: infer the primitives of the model from observed mathing patterns (and possibly transfers and/or outcomes)

Testing: what features of the data could reject the model?

Strict preferences P (everything can be rationalized under indifference) may be represented by  $U_m(w)$  for men,  $V_w(m)$  for women 0=single, utilities  $U_m(0)$ ,  $V_w(0)$ .

Strict preferences P (everything can be rationalized under indifference)

may be represented by  $U_m(w)$  for men,  $V_w(m)$  for women 0=single, utilities  $U_m(0)$ ,  $V_w(0)$ .

stable matching: no blocking coalitions of 1 or 2 members. denote  $u_m$  the utility of man m,  $v_w$  for woman w

Strict preferences P (everything can be rationalized under indifference)

may be represented by  $U_m(w)$  for men,  $V_w(m)$  for women 0=single, utilities  $U_m(0)$ ,  $V_w(0)$ .

stable matching: no blocking coalitions of 1 or 2 members. denote  $u_m$  the utility of man m,  $v_w$  for woman w

$$u_m \geq U_m(0), \ v_w \geq V_w(0)$$

and if  $U_m(w) > u_m$  then  $V_w(m) < v_w$  and vice-versa.

## NTU Coupling Equations

## NTU Coupling Equations

$$u_m = \max_{w} \{ U_m(w) | V_w(m) \ge v_w \}$$
  
 $v_w = \max_{m} \{ V_w(m) | U_m(w) \ge u_m \}.$ 

## NTU Coupling Equations

$$u_{m} = \max_{w} \{ U_{m}(w) | V_{w}(m) \ge v_{w} \}$$
$$v_{w} = \max_{m} \{ V_{w}(m) | U_{m}(w) \ge u_{m} \}.$$

 $\{m|V_w(m) \ge v_w\}$  is the acceptance set of woman w.

Now  $U_m(w)$  and  $V_w(m)$  are pre-transfer utilities; transfers clear the market.

man m gets  $U_m(w) - t_{mw}$ , woman w gets  $V_w(m) + t_{mw}$ .

Now  $U_m(w)$  and  $V_w(m)$  are pre-transfer utilities; transfers clear the market.

man m gets  $U_m(w)-t_{mw}$ , woman w gets  $V_w(m)+t_{mw}$ . stable matching: no blocking coalitions of 1 or 2 members after transfers

utilities after transfers  $u_m, v_w$ 

Now  $U_m(w)$  and  $V_w(m)$  are pre-transfer utilities; transfers clear the market.

man m gets  $U_m(w)-t_{mw}$ , woman w gets  $V_w(m)+t_{mw}$ . stable matching: no blocking coalitions of 1 or 2 members after transfers

utilities after transfers  $u_m, v_w$ 

$$u_m \geq U_m(0), \ v_m \geq V_w(0)$$

and:

$$\tilde{\Phi}(m,w) \equiv U_m(w) + V_w(m) \leq u_m + v_w.$$

## TU Coupling Equations

# TU Coupling Equations

$$u_m = \max_{w} \left( \tilde{\Phi}(m, w) - v_w \right)$$
$$v_w = \max_{m} \left( \tilde{\Phi}(m, w) - u_m \right).$$

## **TU** Coupling Equations

$$u_m = \max_{w} \left( \tilde{\Phi}(m, w) - v_w \right)$$
$$v_w = \max_{m} \left( \tilde{\Phi}(m, w) - u_m \right).$$

All men belong to the acceptance set of woman w.

We only observe "who marries whom" on one marriage market; we do not restrict unobserved heterogeneity ("universal domain.")

We only observe "who marries whom" on one marriage market; we do not restrict unobserved heterogeneity ("universal domain.")

*NTU*: rationalizes anything and usually much more if (m, w) are matched, then put w at the top of  $P_m$  and vice versa.

We only observe "who marries whom" on one marriage market; we do not restrict unobserved heterogeneity ("universal domain.")

NTU: rationalizes anything and usually much more if (m, w) are matched, then put w at the top of  $P_m$  and vice versa.

TU: rationalizes anything as unique equilibrium with  $\tilde{\Phi}$  in normal cone of convex polytope at the observed matching.

Echenique *Math OR* 2006: if we observe different matchings they must all be stable.

Echenique *Math OR* 2006: if we observe different matchings they must all be stable.

Take a collection H of matchings, when is there a P that rationalizes it, i.e. all matchings in H are stable for P?

Echenique *Math OR* 2006: if we observe different matchings they must all be stable.

Take a collection H of matchings, when is there a P that rationalizes it, i.e. all matchings in H are stable for P?

(TU: theory almost-rejected since stable matching is generically unique.)

Suppose H=all feasible matchings is rationalizable by some P.

Suppose H=all feasible matchings is rationalizable by some P. Take m and w such that (with  $\geq 3$  agents on each side) neither the men-preferred stable matching nor the woman-preferred one match m and w.

Suppose H=all feasible matchings is rationalizable by some P.

Take m and w such that (with  $\geq 3$  agents on each side)

neither the men-preferred stable matching nor the woman-preferred one match m and w.

Now take a matching that gives the women-preferred match to m and the men-preferred match to w.

Suppose H=all feasible matchings is rationalizable by some P.

Take m and w such that (with  $\geq 3$  agents on each side)

neither the men-preferred stable matching nor the woman-preferred one match m and w.

Now take a matching that gives the women-preferred match to m and the men-preferred match to w.

That matching is blocked by m and w pairing.

Suppose H=all feasible matchings is rationalizable by some P.

Take m and w such that (with  $\geq 3$  agents on each side) neither the men-preferred stable matching nor the woman-preferred

one match m and w.

Now take a matching that gives the women-preferred match to m and the men-preferred match to w.

That matching is blocked by m and w pairing.

Therefore with  $\geq 3$  agents on each side not every set of feasible matchings is rationalizable.

if the matchings in H all assign different partners to each agent, then H is rationalizable.

if the matchings in  ${\cal H}$  all assign different partners to each agent, then  ${\cal H}$  is rationalizable.

#### Proof:

**1** take any order  $\mathcal{O}$  on the matchings in H.

if the matchings in H all assign different partners to each agent, then H is rationalizable.

#### Proof:

- **1** take any order  $\mathcal{O}$  on the matchings in H.
- ② Take any man m; order according to  $\mathcal{O}$  the group of women he never matches with, and the group of those he is observed to match with in one matching.

if the matchings in H all assign different partners to each agent, then H is rationalizable.

#### Proof:

- **1** take any order  $\mathcal{O}$  on the matchings in H.
- ② Take any man m; order according to  $\mathcal{O}$  the group of women he never matches with, and the group of those he is observed to match with in one matching.
- **3** For woman w, do the same but reverse order  $\mathcal{O}$ .

if the matchings in H all assign different partners to each agent, then H is rationalizable.

#### Proof:

- **1** take any order  $\mathcal{O}$  on the matchings in H.
- ② Take any man m; order according to  $\mathcal{O}$  the group of women he never matches with, and the group of those he is observed to match with in one matching.
- **3** For woman w, do the same but reverse order  $\mathcal{O}$ .

if the matchings in H all assign different partners to each agent, then H is rationalizable.

#### Proof:

- **1** take any order  $\mathcal{O}$  on the matchings in H.
- ② Take any man m; order according to  $\mathcal{O}$  the group of women he never matches with, and the group of those he is observed to match with in one matching.
- **3** For woman w, do the same but reverse order  $\mathcal{O}$ .

if H is rationalizable then it can be rationalized in **a lot** of ways.

Echenique-Lee-Shum Yenmez Eca 2013:

Echenique-Lee-Shum Yenmez Eca 2013:

 $M_x$  identical men of type  $x=1,\ldots,X$ , with identical preferences  $W_y$  identical women of type  $y=1,\ldots,Y$ , with identical preferences

Echenique-Lee-Shum Yenmez Eca 2013:

 $M_x$  identical men of type  $x=1,\ldots,X$ , with identical preferences  $W_y$  identical women of type  $y=1,\ldots,Y$ , with identical preferences

An aggregate matching is a feasible matrix n(x, y) of numbers of matches per type.

E.g: 
$$x, y = 1, 2, 3$$
,

$$\begin{pmatrix} 11 & 0 & 10 \\ 0 & 22 & 41 \\ 13 & 91 & 0 \end{pmatrix}$$

Link all non-zero elements on same row or column of matrix n:

Link all non-zero elements on same row or column of matrix n:

*n* is rationalizable in NTU iff graph has no connected distinct minimal cycles.

Link all non-zero elements on same row or column of matrix n:

*n* is rationalizable in NTU iff graph has no connected distinct minimal cycles.

n is rationalizable in TU iff graph has no minimal cycle.

Link all non-zero elements on same row or column of matrix n:

n is rationalizable in NTU iff graph has no connected distinct minimal cycles.

n is rationalizable in TU iff graph has no minimal cycle.

## More interesting:

n is rationalizable in TU iff it is rationalizable in NTU as the men-preferred or the woman-preferred matching (as with the Gale-Shapley deferred acceptance mechanism).

Strict preferences  $P_x$  imply that if two cells y and y' in row x are nonzero, x must prefer one of these women to the other, say y to y'

Strict preferences  $P_x$  imply that if two cells y and y' in row x are nonzero, x must prefer one of these women to the other, say y to y' if in column y cells x and x' are nonzero, then for stability women y must prefer x' to x

Strict preferences  $P_x$  imply that if two cells y and y' in row x are nonzero, x must prefer one of these women to the other, say y to y' if in column y cells x and x' are nonzero, then for stability women

if in column y cells x and x' are nonzero, then for stability womer y must prefer x' to x

ightarrow cycles must be flows.

Strict preferences  $P_x$  imply that if two cells y and y' in row x are nonzero, x must prefer one of these women to the other, say y to y'

if in column y cells x and x' are nonzero, then for stability women y must prefer x' to x

ightarrow cycles must be flows.

But connected cycles cannot be flows.

NTU extremal matchings: cannot be a cycle because we could improve by shifting one side in the direction of their flow.

NTU extremal matchings: cannot be a cycle because we could improve by shifting one side in the direction of their flow. TU matchings cannit be a cycle for the same reason.

## NTU

Aggarwal (forthcoming AER): the NMRP (again!)

## NTU

Aggarwal (forthcoming AER): the NMRP (again!)

identical preferences on one side of the market: all hospitals agree on ranking of residents.

#### NTU

Aggarwal (forthcoming AER): the NMRP (again!)

identical preferences on one side of the market: all hospitals agree on ranking of residents.

then each hospital's acceptance set is a quality threshold.

## TU

### TU

m has observed type  $x_m$ , w has observed type  $y_w$  there is also unobserved payoff-relevant heterogeneity.

#### TU

m has observed type  $x_m$ , w has observed type  $y_w$  there is also unobserved payoff-relevant heterogeneity. ANOVA decomposition:

$$\tilde{\Phi}(m,w) = \Phi(x_m,y_w) + \varepsilon_m(y_w) + \eta_w(x_m) + u_{mw}.$$

#### TU

m has observed type  $x_m$ , w has observed type  $y_w$  there is also unobserved payoff-relevant heterogeneity. ANOVA decomposition:

$$\tilde{\Phi}(m,w) = \Phi(x_m,y_w) + \varepsilon_m(y_w) + \eta_w(x_m) + u_{mw}.$$

 $u_{mw}$  interacts unobservables  $\rightarrow$  restrict it to be 0: separability. Choo and Siow 2006, Chiappori, Salani'e and Weiss 2015, Galichon–Salanié 2015.

#### TU

m has observed type  $x_m$ , w has observed type  $y_w$  there is also unobserved payoff-relevant heterogeneity. ANOVA decomposition:

$$\tilde{\Phi}(m,w) = \Phi(x_m,y_w) + \varepsilon_m(y_w) + \eta_w(x_m) + u_{mw}.$$

 $u_{mw}$  interacts unobservables  $\rightarrow$  restrict it to be 0: separability. Choo and Siow 2006, Chiappori, Salani'e and Weiss 2015, Galichon–Salanié 2015.

**Content:** no complementarities across unobservables (conditional on observables.)

#### TU

m has observed type  $x_m$ , w has observed type  $y_w$  there is also unobserved payoff-relevant heterogeneity. ANOVA decomposition:

$$\tilde{\Phi}(m,w) = \Phi(x_m,y_w) + \varepsilon_m(y_w) + \eta_w(x_m) + u_{mw}.$$

 $u_{mw}$  interacts unobservables  $\rightarrow$  restrict it to be 0: separability. Choo and Siow 2006, Chiappori, Salani'e and Weiss 2015, Galichon–Salanié 2015.

**Content:** no complementarities across unobservables (conditional on observables.)

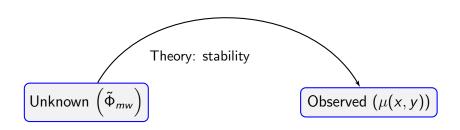
Does *not* exclude matching over unobservables; but restricts its form.

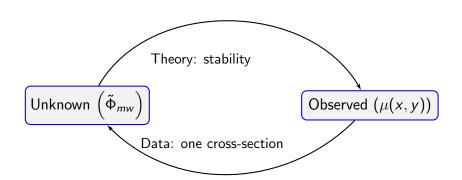


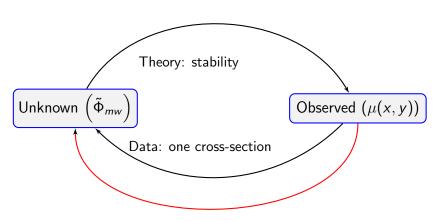
$$\left[\mathsf{Unknown}\,\left( ilde{\Phi}_{\mathit{mw}}
ight)
ight]$$

Unknown 
$$\left( ilde{\Phi}_{mw}
ight)$$

Observed  $(\mu(x,y))$ 







Restrictions: separability, distributional assumptions

#### Consequence

#### Consequence

Then (Chiappori-Salanié-Weiss 2012)

#### $\mathsf{Theorem}$

Under (S), there exists 
$$U(x,y)$$
 and  $V(x,y)$  such that  $U(x,y) + V(x,y) = \Phi(x,y)$  and for any match  $(m \in x, w \in y)$   $u_m = U(x,y) + \varepsilon_m(y)$  and  $v_w = V(x,y) + \eta_w(x)$ .

Moreover:

#### Moreover:

#### **Theorem**

$$v(w) = \max_{x} (V(x, y) + \eta_w(x)).$$

Moreover:

#### **Theorem**

$$v(w) = \max_{x} (V(x, y) + \eta_w(x)).$$

Proof:

$$v(w) = \max_{x} \max_{m \in x} (\Phi(x, y) + \varepsilon_m(y) + \eta_w(x) - u(m))$$

$$= \max_{x} (\Phi(x, y) + \eta_w(x) - \min_{m \in x} (u(m) - \varepsilon_m(y)))$$

$$\equiv \max_{x} (\Phi(x, y) + \eta_w(x) - U(x, y))$$

$$\equiv \max_{x} (V(x, y) + \eta_w(x)).$$



Assume that for each  $w \in y$ , the vector  $(\eta_w(x))_x$  has a multidimensional cdf  $\mathbf{Q}_y$ 

Assume that for each  $w \in y$ , the vector  $(\eta_w(x))_x$  has a multidimensional cdf  $\mathbf{Q}_y$  and for each  $m \in x$ , the vector  $(\varepsilon_m(y))_y$  has a multidimensional cdf  $\mathbf{P}_x$ 

Assume that for each  $w \in y$ , the vector  $(\eta_w(x))_x$  has a multidimensional cdf  $\mathbf{Q}_y$  and for each  $m \in x$ , the vector  $(\varepsilon_m(y))_y$  has a multidimensional cdf  $\mathbf{P}_x$  Also assume "large markets": many  $m \in x$ , many  $w \in y$ .

Then **expected utilities** for a woman of type y, given all the V(x, y), are

$$E(v(w)|w \in y) = E_{\mathbf{Q}_y} \max_{x} (V(x,y) + \eta_w(x)) \equiv H_y(V_{\cdot y})$$

Then **expected utilities** for a woman of type y, given all the V(x, y), are

$$E(v(w)|w \in y) = E_{\mathbf{Q}_y} \max_{x} (V(x,y) + \eta_w(x)) \equiv H_y(V_{\cdot y})$$

And the solution has total surplus:

$$W = \sum_{x} p_{x}G_{x}(U_{x\cdot}) + \sum_{y} q_{y}H_{y}(V_{\cdot y})$$

for the equilibrium U and V.

Then **expected utilities** for a woman of type y, given all the V(x, y), are

$$E(v(w)|w \in y) = E_{\mathbf{Q}_y} \max_{x} (V(x,y) + \eta_w(x)) \equiv H_y(V_{\cdot y})$$

And the solution has total surplus:

$$W = \sum_{x} p_{x} G_{x}(U_{x \cdot}) + \sum_{y} q_{y} H_{y}(V_{\cdot y})$$

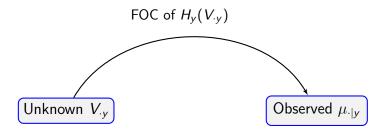
for the equilibrium U and V.

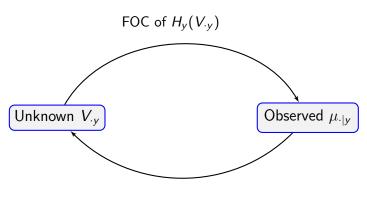
Still many unknown quantities... the U(x, y)'s and V(x, y)'s.

Unknown  $V_{y}$ 

Unknown  $V_{y}$ 

Observed  $\mu_{\cdot|y}$ 





FOC of 
$$H_y^*(\mu_{\cdot|y}) = \max_{V} (\mu \cdot V - H_y(V_{\cdot y}))$$

The expected utility  $H_y(V_{\cdot y})$  is convex; and the implied marriage patterns are

$$\mu(x,y) = \frac{\partial H_y}{\partial V(x,y)}.$$

The expected utility  $H_y(V_{\cdot y})$  is convex; and the implied marriage patterns are

$$\mu(x,y) = \frac{\partial H_y}{\partial V(x,y)}.$$

We only need to invert!

The expected utility  $H_y(V_{\cdot y})$  is convex; and the implied marriage patterns are

$$\mu(x,y) = \frac{\partial H_y}{\partial V(x,y)}.$$

We only need to invert!

f a convex function on a convex set  $C \to {\rm I\!R}$ : it is continuous, almost everywhere differentiable

The expected utility  $H_y(V_{\cdot y})$  is convex; and the implied marriage patterns are

$$\mu(x,y) = \frac{\partial H_y}{\partial V(x,y)}.$$

We only need to invert!

f a convex function on a convex set  $C \to \mathbb{R}$ : it is continuous, almost everywhere differentiable define the Legendre-Fenchel (convex dual) transform:

$$f^*(y) = \max_{x \in C} (xy - f(x))$$



The LF transform  $f^*$  is finite on some convex set  $C^* \subset \mathbb{R}$ ; and it is convex too (as a convex (max) function of linear functions of y)

The LF transform  $f^*$  is finite on some convex set  $C^* \subset \mathbb{R}$ ; and it is convex too (as a convex (max) function of linear functions of y)

Duality: where f and  $f^*$  are differentiable,

$$f'(x) = y$$
 iff  $(f^*)'(y) = x$ .

The LF transform  $f^*$  is finite on some convex set  $C^* \subset \mathbb{R}$ ; and it is convex too

(as a convex (max) function of linear functions of y) Duality: where f and  $f^*$  are differentiable,

$$f'(x) = y$$
 iff  $(f^*)'(y) = x$ .

=a "convex inversion formula".

# Applying Convexity

# **Applying Convexity**

The Legendre-Fenchel transform of  $H_y$  is

$$H_y^*(\mu_{\cdot|y}) = \max_{V_{\cdot y}} \left( \sum_{x} \mu_{x|y} V(x, y) - H_y(V_{\cdot y}) \right).$$

# **Applying Convexity**

The Legendre-Fenchel transform of  $H_y$  is

$$H_y^*(\mu_{\cdot|y}) = \max_{V\cdot y} \left(\sum_x \mu_{x|y} V(x,y) - H_y(V_{\cdot y})\right).$$

It is another convex function, and

$$V(x,y) = \frac{\partial H_y^*}{\partial \mu_{x|y}}$$

# **Applying Convexity**

The Legendre-Fenchel transform of  $H_y$  is

$$H_y^*(\mu_{\cdot|y}) = \max_{V\cdot y} \left(\sum_x \mu_{x|y} V(x,y) - H_y(V_{\cdot y})\right).$$

It is another convex function, and

$$V(x,y) = \frac{\partial H_y^*}{\partial \mu_{x|y}}$$

can be estimated from the data.

#### Consequence 1:

$$\Phi(x,y) = U(x,y) + V(x,y) = \frac{\partial G_x^*}{\partial \mu_{y|x}} + \frac{\partial H_y^*}{\partial \mu_{x|y}}$$

just identifies the marital surplus if we know  $P_x$ ,  $Q_y$ , and  $\mu(x,y)$ .

#### Consequence 1:

$$\Phi(x,y) = U(x,y) + V(x,y) = \frac{\partial G_x^*}{\partial \mu_{y|x}} + \frac{\partial H_y^*}{\partial \mu_{x|y}}$$

just identifies the marital surplus if we know  $P_x$ ,  $Q_y$ , and  $\mu(x,y)$ .

#### Consequence 2:

Expected utilities etc are easily computed

#### Consequence 1:

$$\Phi(x,y) = U(x,y) + V(x,y) = \frac{\partial G_x^*}{\partial \mu_{y|x}} + \frac{\partial H_y^*}{\partial \mu_{x|y}}$$

just identifies the marital surplus if we know  $\mathbf{P}_x$ ,  $\mathbf{Q}_y$ , and  $\mu(x,y)$ .

#### Consequence 2:

Expected utilities etc are easily computed we can even recover the full distribution of  $v_w|w\in y$ .

We only have conditional just identification:

We only have conditional just identification: for each possible choice of error distributions  $\mathbf{P}_{x}$  and  $\mathbf{Q}_{y}$ ,

We only have conditional just identification: for each possible choice of error distributions  $\mathbf{P}_x$  and  $\mathbf{Q}_y$ , for every sequence of numbers  $(\mu(x,y))$ ,

We only have conditional just identification: for each possible choice of error distributions  $\mathbf{P}_x$  and  $\mathbf{Q}_y$ , for every sequence of numbers  $(\mu(x,y))$ , there is **one** joint surplus  $\Phi$  that rationalizes the matching patterns  $\mu$ 

We only have *conditional just identification*:

## Identification... sort of

for each possible choice of error distributions  $\mathbf{P}_x$  and  $\mathbf{Q}_y$ , for every sequence of numbers  $(\mu(x,y))$ , there is **one** joint surplus  $\Phi$  that rationalizes the matching patterns  $\mu$  the model is **not** testable; we have too many degrees of freedom with the error terms.

=the only way we can test various specifications of errors, **given** more cross-sections.

=the only way we can test various specifications of errors, **given** more cross-sections.

**All** separable models share some comparative statics, so that we can test separability

=the only way we can test various specifications of errors, **given** more cross-sections.

**All** separable models share some comparative statics, so that we can test separability

**But** each of them has additional specific implications so that we can test between them.

Salanié 2015: we could observe

#### Salanié 2015: we could observe

• Case 1: only the mean value of the transfer  $t_{mw}$  in each "cell" (x, y)—that is,

$$t_{xy} = E\left(t_{mw}|x,y\right)$$

#### Salanié 2015: we could observe

• Case 1: only the mean value of the transfer  $t_{mw}$  in each "cell" (x, y)—that is,

$$t_{xy} = E\left(t_{mw}|x,y\right)$$

• Case 2: for each realized match, the value of the transfer  $t_{mw}$ .

#### Salanié 2015: we could observe

• Case 1: only the mean value of the transfer  $t_{mw}$  in each "cell" (x, y)—that is,

$$t_{xy} = E\left(t_{mw}|x,y\right)$$

• Case 2: for each realized match, the value of the transfer  $t_{mw}$ .

Salanié 2015: we could observe

• Case 1: only the mean value of the transfer  $t_{mw}$  in each "cell" (x, y)—that is,

$$t_{xy} = E\left(t_{mw}|x,y\right)$$

 Case 2: for each realized match, the value of the transfer t<sub>mw</sub>.

We need to restrict heterogeneity on pre-transfer utilities; we assume separability again,

$$U_m(w) = a(x, y) + \varepsilon_m^a(y) + \eta_w^a(x)$$
  
$$V_w(m) = b(x, y) + \varepsilon_m^b(y) + \eta_w^b(x).$$



# Transfers are Separable

# Transfers are Separable

$$t_{mw} = T(x, y) + \eta_w^a(x) - \varepsilon_m^b(y);$$

# Transfers are Separable

$$t_{mw} = T(x, y) + \eta_w^a(x) - \varepsilon_m^b(y);$$

and

$$T(x,y) = a(x,y) - \frac{\partial G_x^*}{\partial \mu_{y|x}} = \frac{\partial H_y^*}{\partial \mu_{x|y}} - b(x,y).$$

Observing only the mean value (case 1)

$$t(x,y) = T(x,y) + E\left(\eta_w^a(x) - \varepsilon_m^b(y)|(x,y)\right)$$

hardly helps at all.

Observing only the mean value (case 1)

$$t(x,y) = T(x,y) + E\left(\eta_w^a(x) - \varepsilon_m^b(y)|(x,y)\right)$$

hardly helps at all.

**Case 2:** if we observe all  $t_{mw}$  then we can test separability by

$$t_{mw} + t_{m'w'} = t_{mw'} + t_{m'w}$$
.

Observing only the mean value (case 1)

$$t(x,y) = T(x,y) + E\left(\eta_w^a(x) - \varepsilon_m^b(y)|(x,y)\right)$$

hardly helps at all.

Case 2: if we observe all  $t_{mw}$  then we can test separability by

$$t_{mw} + t_{m'w'} = t_{mw'} + t_{m'w}$$

and we can identify the distributions of  $\varepsilon^b$  and  $\eta^a$  if  $\varepsilon^a\equiv 0$  and  $\eta^b\equiv 0,$  that is if

$$U_m(w) = a(x, y) + \eta_w^a(x)$$
$$V_w(m) = b(x, y) + \varepsilon_m^b(y).$$

Becker 1973: given supermodular surplus

$$\Phi(x \lor z, y \lor t) + \Phi(x \land z, y \land t) \ge \Phi(x, t) + \Phi(z, y)$$

we have Positive Assortative Matching.

Becker 1973: given supermodular surplus

$$\Phi(x \lor z, y \lor t) + \Phi(x \land z, y \land t) \ge \Phi(x, t) + \Phi(z, y)$$

we have Positive Assortative Matching.

Reverse question: when can we infer complementarities in surplus?

Becker 1973: given supermodular surplus

$$\Phi(x \lor z, y \lor t) + \Phi(x \land z, y \land t) \ge \Phi(x, t) + \Phi(z, y)$$

we have Positive Assortative Matching.

Reverse question: when can we infer complementarities in surplus? Hard if we do not know the distributions of unobserved

heterogeneity;

may be possible with observed transfers in Case 2.