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Salanié Matching Predictions



Introduction
Unrestricted Heterogeneity

No Heterogeneity
Restricted Heterogeneity

Rationalizing, Identifying, Testing

Observed: some data distributed as X ' F
Theory: FX ∈ F = (F θ)

Rationalizing the data: is F in F , if so for which (set of values)
θ(F )?

Just/exact identification: θ(F ) is a singleton

under/partial identification: it is a proper set

overidentification: for some F it is empty.

Testing the theory: for some statistic S(X ), for some F ,

F S 6∈ (F θ
S ).
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(Basic) Matching Models

Frictionless (including perfect information)
mostly 1-to-one and bipartite (the marriage problem)
with or without transfers.

Rationalizability: infer the primitives of the model from observed
mathing patterns (and possibly transfers and/or outcomes)

Testing: what features of the data could reject the model?
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The NTU model

Strict preferences P (everything can be rationalized under
indifference)
may be represented by Um(w) for men, Vw (m) for women
0=single, utilities Um(0),Vw (0).

stable matching: no blocking coalitions of 1 or 2 members.
denote um the utility of man m, vw for woman w
um ≥ Um(0), vw ≥ Vw (0)
and if Um(w) > um then Vw (m) < vw and vice-versa.
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NTU Coupling Equations

um = max
w
{Um(w)|Vw (m) ≥ vw}

vw = max
m
{Vw (m)|Um(w) ≥ um} .

{m|Vw (m) ≥ vw} is the acceptance set of woman w .
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Transferable Utility

Now Um(w) and Vw (m) are pre-transfer utilities; transfers clear
the market.
man m gets Um(w)− tmw , woman w gets Vw (m) + tmw .
stable matching: no blocking coalitions of 1 or 2 members after
transfers
utilities after transfers um, vw
um ≥ Um(0), vm ≥ Vw (0)
and:
Φ̃(m,w) ≡ Um(w) + Vw (m) ≤ um + vw .
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TU Coupling Equations

um = max
w

(
Φ̃(m,w)− vw

)
vw = max

m

(
Φ̃(m,w)− um

)
.

All men belong to the acceptance set of woman w .
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One Market

We only observe “who marries whom” on one marriage market;
we do not restrict unobserved heterogeneity (“universal domain.”)

NTU: rationalizes anything and usually much more
if (m,w) are matched, then put w at the top of Pm and vice versa.

TU: rationalizes anything as unique equilibrium with Φ̃ in normal
cone of convex polytope at the observed matching.
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Several Identical Markets

Echenique Math OR 2006: if we observe different matchings they
must all be stable.
Take a collection H of matchings, when is there a P that
rationalizes it, i.e. all matchings in H are stable for P?

(TU: theory almost-rejected since stable matching is generically
unique.)
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Not everything goes

Suppose H=all feasible matchings is rationalizable by some P.
Take m and w such that (with ≥ 3 agents on each side)
neither the men-preferred stable matching nor the woman-preferred
one match m and w .
Now take a matching that gives the women-preferred match to m
and the men-preferred match to w .
That matching is blocked by m and w pairing.

Therefore with ≥ 3 agents on each side not every set of feasible
matchings is rationalizable.
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Partial Results

if the matchings in H all assign different partners to each agent,
then H is rationalizable.
Proof:

1 take any order O on the matchings in H.

2 Take any man m; order according to O the group of women
he never matches with, and the group of those he is observed
to match with in one matching.

3 For woman w , do the same but reverse order O.

if H is rationalizable then it can be rationalized in a lot of ways.
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Salanié Matching Predictions



Introduction
Unrestricted Heterogeneity

No Heterogeneity
Restricted Heterogeneity

Aggregate Matchings

Echenique-Lee-Shum Yenmez Eca 2013:

Mx identical men of type x = 1, . . . ,X , with identical preferences
Wy identical women of type y = 1, . . . ,Y , with identical
preferences

An aggregate matching is a feasible matrix n(x , y) of numbers of
matches per type.
E.g: x , y = 1, 2, 3, 11 0 10

0 22 41
13 91 0
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Cycles and Rationalizability

Link all non-zero elements on same row or column of matrix n:

n is rationalizable in NTU iff graph has no connected distinct
minimal cycles.
n is rationalizable in TU iff graph has no minimal cycle.

More interesting:
n is rationalizable in TU iff it is rationalizable in NTU as the
men-preferred or the woman-preferred matching
(as with the Gale-Shapley deferred acceptance mechanism).
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Intuition for NTU

Strict preferences Px imply that if two cells y and y ′ in row x are
nonzero, x must prefer one of these women to the other, say y to
y ′

if in column y cells x and x ′ are nonzero, then for stability women
y must prefer x ′ to x

→ cycles must be flows.

But connected cycles cannot be flows.

Salanié Matching Predictions



Introduction
Unrestricted Heterogeneity

No Heterogeneity
Restricted Heterogeneity

Intuition for NTU

Strict preferences Px imply that if two cells y and y ′ in row x are
nonzero, x must prefer one of these women to the other, say y to
y ′

if in column y cells x and x ′ are nonzero, then for stability women
y must prefer x ′ to x

→ cycles must be flows.

But connected cycles cannot be flows.
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NTU extremal matchings: cannot be a cycle because we could
improve by shifting one side in the direction of their flow.
TU matchings cannit be a cycle for the same reason.
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NTU

Aggarwal (forthcoming AER): the NMRP (again!)

identical preferences on one side of the market: all hospitals agree
on ranking of residents.
then each hospital’s acceptance set is a quality threshold.
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TU

m has observed type xm, w has observed type yw
there is also unobserved payoff-relevant heterogeneity.
ANOVA decomposition:

Φ̃(m,w) = Φ(xm, yw ) + εm(yw ) + ηw (xm) + umw .

umw interacts unobservables → restrict it to be 0: separability.
Choo and Siow 2006, Chiappori, Salani’e and Weiss 2015,
Galichon–Salanié 2015.
Content: no complementarities across unobservables (conditional
on observables.)
Does not exclude matching over unobservables; but restricts its
form.
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Content: no complementarities across unobservables (conditional
on observables.)
Does not exclude matching over unobservables; but restricts its
form.
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Content: no complementarities across unobservables (conditional
on observables.)
Does not exclude matching over unobservables; but restricts its
form.
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Identifying Joint Surplus

Unknown
(

Φ̃mw

)

Observed (µ(x , y))

Theory: stability

Data: one cross-section

Restrictions: separability, distributional assumptions
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Salanié Matching Predictions



Introduction
Unrestricted Heterogeneity

No Heterogeneity
Restricted Heterogeneity

Consequence

Then (Chiappori-Salanié-Weiss 2012)

Theorem

Under (S), there exists U(x , y) and V (x , y) such that
U(x , y) + V (x , y) = Φ(x , y) and for any match (m ∈ x ,w ∈ y)

um = U(x , y) + εm(y) and vw = V (x , y) + ηw (x).
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Two One-Sided Choice Models

Moreover:

Theorem

v(w) = max
x

(V (x , y) + ηw (x)).

Proof:

v(w) = max
x

max
m∈x

(Φ(x , y) + εm(y) + ηw (x)− u(m))

= max
x

(
Φ(x , y) + ηw (x)−min

m∈x
(u(m)− εm(y))

)
≡ max

x
(Φ(x , y) + ηw (x)− U(x , y))

≡ max
x

(V (x , y) + ηw (x)) .
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The general solution — Galichon-Salanié

Assume that for each w ∈ y ,
the vector (ηw (x))x has a multidimensional cdf Qy

and for each m ∈ x ,
the vector (εm(y))y has a multidimensional cdf Px

Also assume “large markets”: many m ∈ x , many w ∈ y .
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Utilities

Then expected utilities for a woman of type y , given all the
V (x , y), are

E (v(w)|w ∈ y) = EQy max
x

(V (x , y) + ηw (x)) ≡ Hy (V·y )

And the solution has total surplus:

W =
∑
x

pxGx(Ux ·) +
∑
y

qyHy (V·y )

for the equilibrium U and V .
Still many unknown quantities. . . the U(x , y)’s and V (x , y)’s.
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Salanié Matching Predictions



Introduction
Unrestricted Heterogeneity

No Heterogeneity
Restricted Heterogeneity

Inverting E max for Given y

Unknown V·y

Observed µ·|y

FOC of Hy (V·y )

FOC of H∗y (µ·|y ) = max
V

(µ · V − Hy (V·y ))
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Some Convex Analysis

The expected utility Hy (V·y ) is convex; and the implied marriage
patterns are

µ(x , y) =
∂Hy

∂V (x , y)
.

We only need to invert!
f a convex function on a convex set C → IR: it is continuous,
almost everywhere differentiable
define the Legendre-Fenchel (convex dual) transform:

f ∗(y) = max
x∈C

(xy − f (x))
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Convex Duality

The LF transform f ∗ is finite on some convex set C ∗ ⊂ IR; and it
is convex too
(as a convex (max) function of linear functions of y)
Duality: where f and f ∗ are differentiable,

f ′(x) = y iff (f ∗)′(y) = x .

=a “convex inversion formula”.
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Applying Convexity

The Legendre-Fenchel transform of Hy is

H∗y (µ·|y ) = max
V·y

(∑
x

µx |yV (x , y)− Hy (V·y )

)
.

It is another convex function, and

V (x , y) =
∂H∗y
∂µx |y

can be estimated from the data.
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Consequences

Consequence 1:

Φ(x , y) = U(x , y) + V (x , y) =
∂G ∗x
∂µy |x

+
∂H∗y
∂µx |y

just identifies the marital surplus if we know Px , Qy , and µ(x , y).

Consequence 2:
Expected utilities etc are easily computed
we can even recover the full distribution of vw |w ∈ y .
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Identification. . . sort of

We only have conditional just identification:
for each possible choice of error distributions Px and Qy ,
for every sequence of numbers (µ(x , y)),
there is one joint surplus Φ that rationalizes the matching patterns
µ
the model is not testable; we have too many degrees of freedom
with the error terms.
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Salanié Matching Predictions



Introduction
Unrestricted Heterogeneity

No Heterogeneity
Restricted Heterogeneity

Identification. . . sort of

We only have conditional just identification:
for each possible choice of error distributions Px and Qy ,
for every sequence of numbers (µ(x , y)),

there is one joint surplus Φ that rationalizes the matching patterns
µ
the model is not testable; we have too many degrees of freedom
with the error terms.
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Using Comparative statics

=the only way we can test various specifications of errors, given
more cross-sections.
All separable models share some comparative statics,
so that we can test separability
But each of them has additional specific implications
so that we can test between them.
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Salanié Matching Predictions



Introduction
Unrestricted Heterogeneity

No Heterogeneity
Restricted Heterogeneity

Observed Transfers

Salanié 2015: we could observe

Case 1: only the mean value of the transfer tmw in each
“cell” (x , y)—that is,

txy = E (tmw |x , y)

Case 2: for each realized match, the value of the transfer
tmw .

We need to restrict heterogeneity on pre-transfer utilities; we
assume separability again,

Um(w) = a(x , y) + εam(y) + ηaw (x)

Vw (m) = b(x , y) + εbm(y) + ηbw (x).
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Transfers are Separable

tmw = T (x , y) + ηaw (x)− εbm(y);

and

T (x , y) = a(x , y)− ∂G ∗x
∂µy |x

=
∂H∗y
∂µx |y

− b(x , y).
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Identification

Observing only the mean value (case 1)

t(x , y) = T (x , y) + E
(
ηaw (x)− εbm(y)|(x , y)

)
hardly helps at all.
Case 2: if we observe all tmw then we can test separability by

tmw + tm′w ′ = tmw ′ + tm′w .

and we can identify the distributions of εb and ηa if εa ≡ 0 and
ηb ≡ 0,
that is if

Um(w) = a(x , y) + ηaw (x)

Vw (m) = b(x , y) + εbm(y).
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Conclusion: testing for complementarities

Becker 1973: given supermodular surplus

Φ(x ∨ z , y ∨ t) + Φ(x ∧ z , y ∧ t) ≥ Φ(x , t) + Φ(z , y)

we have Positive Assortative Matching.
Reverse question: when can we infer complementarities in surplus?
Hard if we do not know the distributions of unobserved
heterogeneity;
may be possible with observed transfers in Case 2.
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