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Abstract

In this paper, we propose a model of discrete time dynamic congestion games with atomic players.

This approach allows to give a precise description of the dynamics induced by the individual strategies

of players and to study how the steady state is reached, either when players act selfishly, or when the

traffic is controlled by a planner. We model also seasonalities by assuming that departure flows fluctuate

periodically with time. We focus mostly on simple networks and give closed form formulas for the long-

run equilibrium and optimal latencies, as functions of the seasonality. We then derive computations

and bounds on the price of anarchy. We also characterize optimal and equilibrium flows and show that,

although they produce different costs, they coincide from some time onwards.

Keywords: Network games, price of anarchy, dynamic flows.

OR/MS Subject Classification: networks/graphs: multicommodity, theory; games/group decisions:

noncooperative; transportation: models, network.
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1 Introduction

The analysis of transportation networks naturally leads to the consideration of congestion games, where

each agents selfishly behaves as to minimize her own time on the road without regard for the effects that

this behavior has on the other agents’ traveling time. The social outcome of the individual selfish behavior

can be compared to the outcome that a benevolent planner would choose. A way of comparison is, for

instance, the price of anarchy (see, e.g. Roughgarden, 2005, 2007, Roughgarden and Tardos, 2007), namely

the ratio of the worst social cost induced by selfish behavior to the optimal social cost.

Although the matter of this theory is traffic flows, most of the existing literature is actually static.

The commonly adopted justification is that the static game represents the steady state of a dynamic

model where the flow over the network is constant over time. At least two reasons make the static model

unsatisfactory: first, even if the flow of travelers is constant, it may be important to determine how the

steady state is reached; second, in real life traffic flows are rarely constant, although they are often periodic

or nearly periodic.

In this paper, we study a dynamic model of congestion where the flow of departures fluctuates with

time. An example is routing with seasonal flow of traffic, where more drivers enter the system at rush

hours. One can also think of firms who use common facilities and who face seasonal demands. The aim

is to characterize long-run average latencies imposed on the system by selfish players, socially optimal

average latencies and to compute the price of anarchy. In particular, we are interested in analyzing the

long-run effect of selfish behavior, and the impact of seasonality. The consideration of periodic rather than

constant departures in a dynamic congestion game is novel.

1.1 Model

We consider a dynamic congestion game on a simple network in which finitely many parallel edges link

a source to a destination. Time is discrete and at each stage, a generation of finitely many players enters

at the source. The number of players entering the network per stage is a periodic function of time. Players

are ordered by priorities, and successively choose edges. Each edge e is endowed with a free-flow transit

time τe and a capacity γe. When a player chooses an edge, she enters it right-away and travels on that edge
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at a constant speed for τe periods. At most γe players can exit the edge at the same time and priorities

define who goes first. When reaching the edge, the player waits until there remains less than γe players

with higher priority ahead of her. The latency suffered by the player is thus the sum of the transit and

waiting time.

An equilibrium of the game is the result of the selfish behavior of each player who seeks to minimize

her own latency. An optimal strategy is the choice of a social planner who allocates the players over the

network in order to minimize the limit average total latency. As usual, the price of anarchy is the ratio of

the worst equilibrium latency to the optimal latency.

1.2 Results

As a benchmark, in Section 3 we study uniform departures where the same number of players depart at

each time and fill up the capacity of the network. We prove that the optimal flow is unique: at each stage,

the flow on each edge matches its capacity. Then, we prove that in all equilibria, the flow coincides with

the optimal flow from some stage on. Yet, in the worst equilibrium, all players pay eventually the highest

transit cost. The intuition is that the first players all choose the fastest edges and induce congestion.

Eventually, all edges get so congested that all latencies become equal to the highest transit time. This

result shows the impact of the dynamic nature of the model on latencies. While optimal and equilibrium

behavior eventually coincide, the selfish behavior of the first players have consequences that cannot be

undone and are paid by all future generations.

Then, in Section 4, we study sequences of departures which are periodic over time. We assume that

departures are sometimes above and sometimes below capacity, but, on average over a period, they fill the

capacity. We show that, even in this case, the flows induced by optima and equilibria, averaged over a

period, eventually coincide. However, since at some stages players enter above capacity, waiting queues

form. We introduce a measure of discrepancy between a periodic sequence and the uniform sequence and

prove that, compared with the case of uniform departures, both optimum and equilibrium latencies are

incremented by exactly this amount. We provide two alternative ways of computing this measure.

From our characterizations of optimal and equilibrium latencies, we derive computation of the price of
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anarchy for this model. The main findings are the following. Firstly, the price of anarchy is bounded by the

ratio of the highest to the lowest free-flow transit time, irrespectively of capacities. The bound is tight and

is approximately achieved for networks for which fast roads are wide and slow roads are narrow. For these

networks, achieving optimality entails that some players accept to use slow roads. Secondly, we are able to

compute the price of anarchy as a function of the seasonality of departures and find that the irregularity

of the departure process can only reduce the price of anarchy. Intuitively, when too many players depart

at the same time, the capacity constraints imply that the planner cannot avoid queues to be created. In

the worst case, when the number of players departing at the same time is very large, the equilibrium is

nearly optimal.

1.3 Related literature

Our model belongs to the class of congestion games with atomic players. In his fundamental paper,

Wardrop (1952) modeled selfish behavior of a huge number of agents on an network as a nonatomic flow

and introduced a concept of equilibrium that has become the standard reference in the literature. Charnes

and Cooper (1961) showed the relation between Nash and Wardrop equilibria and Haurie and Marcotte

(1985) proved that, under some conditions, the Wardrop equilibrium in a nonatomic model can be obtained

as a limit of Nash equilibria of atomic models. The relation between atomic and nonatomic games has

been recently studied by Bhaskar, Fleischer, and Huang (2010). A nice survey of Wardrop equilibria can

be found in Correa and Stier-Moses (2010). General congestion games with a finite number of players

were introduced by Rosenthal (1973), who proved that they have pure Nash equilibria; they are actually

isomorphic to potential games (see Monderer and Shapley, 1996). The issue of multiplicity of equilibria

in atomic congestion games was studied by Harker (1988), Bhaskar, Fleischer, Hoy, and Huang (2009).

Consistently with this literature, we find multiple equilibria for our game.

Importantly, our model is dynamic. Equilibrium concepts in dynamic network models date back to

Vickrey (1969) in the economic literature and to Yagar (1971) in the transportation literature. We refer

the reader to Koch and Skutella (2011) for an extensive list of references on this topic. Some of the recent

mathematical formulations of the model resort to deterministic queueing theory, as introduced originally
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by Vickrey (1969) and later developed by Hendrickson and Kocur (1981). In this stream of literature

Akamatsu (2000, 2001), Akamatsu and Heydecker (2003), Mounce (2006, 2007), Anshelevich and Ukkusuri

(2009), Hoefer, Mirrokni, Röglin, and Teng (2009), and especially Koch and Skutella (2011) extended

some results known for static congestion games to dynamic congestion games. These last authors used a

deterministic queueing model to study dynamic flows and characterize Nash equilibria, showing the relation

between dynamic and static models, and computed the price of anarchy for the dynamic model. Along

these lines, Cominetti, Correa, and Larré (2011) studied equilibria for flows over time in the single-source

single-sink deterministic queuing model and constructively proved existence and uniqueness of equilibria

when the inflow rate is piecewise constant. Koch, Nasrabadi, and Skutella (2011) used measure-theoretic

techniques to combine continuous and discrete time models of flow over time and, among other things,

extended to this general setting the classical max-flow min-cut theorem. Compared with this literature, an

important novelty of our work is to study the impact of the seasonality of flows of players into the system.

Moreover most of the literature deals with nonatomic games, the exception being Hoefer et al. (2009). The

dynamic of our game is deliberately simple to allow explicit computations of optima and equilibria, and to

analyze precisely the impact of the behavior during the transient phase on the steady state. Relatedly, Shah

and Shin (2010) considered the transient phase of a dynamic network before a steady state equilibrium is

reached. Although their model is stochastic, some of the questions they consider are close in spirit to our

model.

For measuring the efficiency of a game, we use the now famous price of anarchy, namely the ratio

between the worst Nash equilibrium latency and the social optimum latency. This measure was introduced

by Koutsoupias and Papadimitriou (1999), the name was coinded by Papadimitriou (2001) and since

then, inefficiency of equilibria in routing games has been studied by several authors (see among others

Roughgarden and Tardos (2002, 2004), Correa, Schulz, and Stier-Moses (2004, 2008, 2007)).

1.4 Organization of the paper

The paper is organized as follows. Section 2 presents the model. Section 3 considers the case of uniform

departures over time. Section 4 deals with the case of periodic departures at capacity over the period.
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Section 5 contains several extensions of the main model. All proofs are relegated in the Appendix.

2 Model

2.1 Description of the game

We consider a dynamic congestion game, based on the model of Ford and Fulkerson (1958) of flows

on networks. We are given a simple directed network where a source is linked to a destination by finitely

many parallel edges (see Figure 1).

s

d

e1 e2 e3 e4 e5

Figure 1: Parallel network.

Each edge has a transit cost and a capacity. Time is discrete and at each stage t, finitely many players

depart from the source and choose a path to the destination. The number of departures per stage is

throughout assumed to be periodic. The data of the model are thus as follows:

• A directed network N = (E, (τe)e∈E , (γe)e∈E), composed of

– a finite ≺-ordered set of edges E = {e1, . . . , en} that connect a source to a destination,

– for each e ∈ E, a free-flow transit cost τe ∈ N (simply called transit cost in the sequel); without

any loss of generality we assume that ei ≺ ej implies τi ≤ τj ,
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– for each e ∈ E, a capacity γe ∈ N; we denote γ :=
∑

e∈E γe the capacity of the network.

• An integer K and a vector δ = (δ1, . . . , δK) ∈ NK . With an abuse of notation, we use the same

symbol δ to denote the periodic sequence obtained by infinitely concatenating δ. This will be the

sequence of departures from the source.

The dynamic of the model is the following.

• At each stage t ∈ N+, a finite set Gt of players departs from the source. This is called the generation

at time t and we assume that #Gt = δk if t = k mod K. We denote the i-th player in generation

Gt by [it] (when there is no risk of confusion, the square brackets are removed). We thus have an

infinite set of players G := ∪tGt. We order this set (anti-lexicographically) by C as follows:

[js] C [it] iff s < t or (s = t and j < i).

This order represents priorities, if [js]C [it] and if these two players are on the same edge at the same

time, then [js] exits first.

• Upon departure, each player [it] observes the choices of players [js]C [it] and chooses an edge εit ∈ E.

Denote hit the history of information available to player [it]

hit = {εjs : [js] C [it]},

and Hit the set of all possible [it]-histories. A strategy for player [it] is a mapping σit : Hit → E, that

is εit = σit(hit). We let Sit be the set of all strategies available to player [it] and S := ×[it]∈GSit

the set of strategy profiles.

• Player [it] then progresses along edge εit by taking a step of size 1 per unit of time. At stage t+ τεit

she arrives at the exit of the edge where a queue might have formed.

• The rules for exiting the queue are the following:
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– All players [js] C [it] that are in the queue are ahead of [it].

– At most γe players can exit e simultaneously. When she arrives at the end of εit, if player [it]

finds less than γεit players in the queue, then she exits immediately; otherwise, only the first

γεit players exit at this stage and player [it] waits for one stage. This process repeats until there

remains less than γεit players in the queue ahead of player [it].

These data and rules define a game Γ(N ,K, δ) with perfect information. Each strategy profile σ ∈ S

induces a choice of edge εit(σ) ∈ E for each player [it]. We denote `it(σ) the latency suffered by player [it],

defined as

`it(σ) = cit(σ) + wit(σ),

where cit(σ) := τεit(σ) is the transit cost paid by player [it] and wit(σ) is the waiting cost paid by player

[it], namely, the number of stages that [it] spends queueing.

We define the total transit cost ct, the total waiting cost wt, and the total latency `t at stage t as follows:

ct(σ) =
∑

[it]∈Gt

cit(σ),

wt(σ) =
∑

[it]∈Gt

wit(σ),

`t(σ) =
∑

[it]∈Gt

`it(σ) = ct(σ) + wt(σ).

For each integer p, the total latency over the period {pK + 1, . . . , (p+ 1)K} is

Lp(σ) =

(p+1)K∑
t=pK+1

`t(σ).

The average total latency over P periods is

L̄P (σ) =
1

P

P∑
p=1

Lp(σ).

If limP→∞ L̄P (σ) exists, then it is called asymptotic average total latency for the strategy σ.
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Definition 2.1. A strategy profile σ is an equilibrium if

`it(σ) ≤ `it(σ′it, σ−it) for all [it] ∈ G, for all σ′it ∈ Sit,

where σ−it indicates the profile of strategies of all players different from [it]. We denote E the set of

equilibria of the game. The quantity

Eq(N ,K, δ) := inf
σ∈E

lim
P→∞

L̄P (σ)

is called the worst equilibrium latency.

Definition 2.2. A strategy profile σ is socially optimal (henceforth optimal) if

lim inf
P→∞

L̄P (σ′) ≥ lim sup
P→∞

L̄P (σ) for all σ′ ∈ S . (2.1)

If (2.1) holds for some σ ∈ S , then

Opt(N ,K, δ) := lim inf
P→∞

L̄P (σ) = lim sup
P→∞

L̄P (σ)

is called the optimal latency.

Observe that the existence of an equilibrium is guaranteed. Indeed, each player cares only about the

strategies of the finitely many players ahead of him. Therefore, finding the best-response of a player

amounts to solving a finite minimization problem, and finding an equilibrium amounts to solving these

problems sequentially. However, with the above definition of optimal strategy, existence has to be proved.

There is obviously an asymmetry between the two definitions, which stems from the type of rationality

driving the two concepts. An equilibrium is a strategy profile such that each finitely lived player optimizes

given the choices of the other players. By contrast, an optimal strategy is the choice that a long-lived

planner would like to take in order to optimize the long-run social welfare. Since we assume that departures

are periodic, the model is stationary, and one would expect an optimal strategy to be periodic as well.

This statement holds true, as we shall see, but this requires a proof.
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3 Uniform departures

In this section, we assume that departures are uniform over time that is, K = 1 and there exists an

integer δ ≤ γ such that the infinite sequence of departures is δ := (δ, δ, . . . ). To simplify notation, we write

(N , δ) rather than (N , 1, δ). We study this benchmark case in details. In the following subsections we

characterize optima and equilibria at capacity, i.e., when δ = γ, derive estimates of the price of anarchy,

and then generalize the results to departures below capacity, i.e., δ < γ.

3.1 Departures at capacity

Assume that the sequence of departures is γ := (γ, γ, . . . ). Our first main result gives a characterization

of optimal and equilibrium strategies and of the associated latencies. We introduce another piece of

notation: let xt(σ) = (xet (σ))e∈E be the allocation of generation t, defined by

xet (σ) = #{[it] ∈ Gt : εit(σ) = e}.

The total latency at stage t can be re-written as,

`t(σ) =
∑
e

xet (σ)τe + wt(σ)

and if we denote

z̄T :=
1

T

T∑
t=1

zt

the average of a finite sequence (z1, . . . , zT ), then the average total latency becomes

¯̀
T (σ) =

∑
e

x̄eT (σ)τe + w̄T (σ).

Theorem 3.1. (a) The optimal latency Opt(N ,γ) exists and

Opt(N ,γ) =
∑
e

γeτe.
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A strategy σOpt is optimal if and only if for all t ∈ N+ and for all e ∈ E we have xet (σ
Opt) = γe.

(b) There exists a time T0 such that, for each t ≥ T0, in each equilibrium σ, xet (σ) = γe for each edge e.

Furthermore, there exists an equilibrium σ Eq such that for each t ≥ T0, `it(σ
Eq) = maxe τe for each

player [it] ∈ Gt. This strategy σ Eq yields the worst equilibrium latency

Eq(N ,γ) =

(∑
e

γe

)
max
e
τe.

Theorem 3.1 says that optimal strategies exist and are the ones that fill exactly the capacity of each edge

at each stage. Regarding equilibria, the main findings are that the flows, or allocations, of any equilibrium

coincide eventually with those generated by optimal strategies. The insight is that the selfish behavior of

the players in the first generations creates permanent queues that increase the latency of edges for future

generations. In the worst case, the latency incurred on each edge is eventually equal to the highest transit

cost, which is paid by all players from some time on.

To see that the equilibrium latency may not be unique, consider a network with two edges e1, e2, each

having capacity 1, and with transit costs τei = i. There is an equilibrium in which the first two players go

on e1. The first pays 1 and the second pays 2. From that point on, in each generation, there is one player

per edge, and each player pays 2. This is the worst equilibrium, and the associated latency is 2. But since

the second player in the first generation is indifferent between the two edges, there is another equilibrium

where the first player [11] chooses e1 and the second player [21] chooses e2. Their payoffs are again 1 and

2 respectively. Yet, since the first generation creates no congestion, the next two players can also adopt

these strategies and pay respectively 1 and 2. Repeating this at each generation, we get a strategy profile

which is both optimal and an equilibrium with long-run latency 1.5.

The formal proof of Theorem 3.1 can be found in the Appendix. The intuition is as follows. First

consider point (a). Suppose that a strategy profile sends on some edge an average number of players that

is higher than the capacity. This creates an exploding queue on this edge and therefore a diverging average

waiting cost. As a result, such a strategy cannot be optimal. Now, if the long-run average number of

players does not exceed the capacity on any edge, this means that the strategy is similar to a stationary
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one where the allocation exactly matches the capacities at each stage. We conclude that these are the only

optimal strategies.

Regarding point (b), the idea is that the selfish players first fill cheap (or short) edges, thereby creating

queues. As a result, the latency of these edges increases for future generations, and, at some point,

all latencies become equal. From that point on, players are basically indifferent and allocations match

capacities.

3.2 The price of anarchy

A direct consequence of Theorem 3.1 is a computation of the price of anarchy.

Corollary 3.2. The price of anarchy of the game Γ(N ,γ) is

Poa(N ,γ) :=
Eq(N ,γ)

Opt(N ,γ)
=

(
∑

e γe) maxe τe∑
e γeτe

≤ maxe τe
mine τe

.

The last inequality is straightforward and shows that the price of anarchy admits an upper bound the

does not depend on capacities but only on the relative lengths of edges. This bound is tight. To see this,

consider a network with two edges, such that τ1 = 1, τ2 = N , γe1 = N2, γe2 = 1. The number of players

per stage is N2 + 1. The price of anarchy for this network is (1 +N2)N/(N2 +N) which is roughly N for

N large.

This example shows that the price of anarchy is unbounded over this class of networks. Intuitively, in

the worst network the first road is very fast and very large, the second road being slow and narrow. In

equilibrium, all players wish to take the fast road. But because of the capacity constraint, a queue builds

up on the fast road, so its latency increases until it becomes as costly as the slow road. In steady state,

this queue becomes permanent, and all players pay the cost of the slow road. The social optimum is quite

different. If one player per generation uses the slow road, then all other players benefit from the fast road

without queue.

On the other hand, if roads have comparable length, then the equilibrium is not very different from the

social optimum and the price of anarchy is close to one.
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3.3 Below capacity

We now assume that the sequence of departures is δ = (δ, δ, . . . ) with δ < γ and derive characterizations

of optima, equilibria, and price of anarchy, from Theorem 3.1. For convenience, assume that the transit

costs are different from one edge to the other, that is, for e, f ∈ E, e ≺ f implies τe < τf (this is without

loss of generality, see Lemma 6.2).

For f ∈ E denote f≺ := {e : e ≺ f} and f- := f≺ ∪ {f}, where e≺1 = ∅. For each δ < γ, there is a

unique f ∈ E such that ∑
e∈f≺

γe < δ ≤
∑
e∈f-

γe.

Define the (sub-)network Nδ with set of edges f-, such that each edge e ∈ f≺ has transit cost τe and

capacity γe, and edge f has transit cost τf and capacity δ −
∑

e∈f≺ γe ≤ γf . The total capacity of Nδ is

precisely δ. The next result states that optima and equilibria are those of Nδ deduced from Theorem 3.1.

Proposition 3.3. (a) The optimal latency Opt(N , δ) exists and

Opt(N , δ) =
∑
e∈f≺

γeτe +

δ − ∑
e∈f≺

γe

 τf .

A strategy σOpt is optimal if and only if for all t ∈ N+

xet (σ
Opt) = γe for e ≺ f and xft (σOpt) = δ −

∑
e∈f≺

γe.

(b) The worst equilibrium latency Eq(N , δ) exists and

Eq(N , δ) = δτf .

There exists a time T0 such that in any equilibrium σ Eq, for each t ≥ T0,

xet (σ
Eq) = γe for e ≺ f and xft (σ Eq) = δ −

∑
e∈f≺

γe.

14



(c) The price of anarchy

Poa(N , δ) =
δτf∑

e∈f≺ γeτe + (δ −
∑

e∈f≺ γe)τf
(3.1)

is decreasing over δ ∈ {
∑

e∈f≺ γe + 1, . . . ,
∑

e∈f- γe}.

The idea of the proof is simple and we only give informal arguments. It is sub-optimal, both from

the individual and from the social perspective, to use edges with transit cost above τf . Thus, optimal

and equilibrium latencies are computed by applying Theorem 3.1 to the sub-network Nδ whose capacity

is precisely the number of departures. That is, we can find an optimal strategy where players are confined

to the sub-network. Regarding equilibria, we remark that each player can choose a best-response in the

sub-network, and this for every strategy profile of other players.

Notice that the monotonicity of the price of anarchy holds only within each interval
∑

e∈f≺ γe < δ ≤∑
e∈f- γe. The sequence of prices at the cut-points,

Poa(N ,
∑
e∈f-

γe) =
(
∑

e∈f- γe)τf∑
e∈f- γeτe

need not be monotonic with f . To see it, consider the following example.

Example 3.4. Consider a network with E = {e1, e2, e3}, where γei = 2 and τe1 = 1, τe2 = 5, τe3 = 6. A

simple application of (3.1) shows that

Poa(N , δ) =


1 for δ = 2,

10/6 for δ = 4,

9/6 for δ = 6.

4 Periodic departures

In this section, we consider periodic sequences of departures (δ1, . . . , δK), characterize optimal and

equilibrium latencies and derive a computation of the price of anarchy. For most of this section, we assume

that the average number of departures equals the capacity of the network:
∑K

k=1 δk = γK.
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4.1 Optimal and equilibrium latencies

To get a feeling of how seasonality affects optimal and equilibrium latencies, consider the following

example.

Example 4.1. Consider a network having two edges e1, e2 with γe1 = γe2 = 1 and τei = i, and assume

that the 3-periodic sequence of departures is δ = (6, 0, 0) where all players depart at the same time. Then,

the following strategy which allocates three player per period to each edge is optimal.

σOpt(it) =


e1 for i odd,

e2 for i even.

To see it, consider the first two players and send the first one to e1, the second one to e2. Then, the next

two players have to queue at least for one period, so it is as if they had departed one period later and it is

optimal to send one of them to e1 and the other to e2. Now, the remaining two players have to queue at

least two periods, so it is as if they had departed two periods later, and it is again optimal to send one of

them to e1 and the other to e2.

The total latency over a period of time {1, 2, 3} (modulo 3) is 15, that is, 3 times the single-period

optimal total latency that we would have if departures were uniform (2, 2, 2) plus the added cost of 6

induced by the waiting times: two players pay an extra cost of 1 and two players pay an extra cost of 2.

Consider now the following equilibrium strategy σ Eq. For t = 1 we let

σ Eq(it) =


e1 for i = 1 or i even,

e2 for i > 2, odd,

therefore the latencies for the first six players are

`11(σ
Eq) = 1, `21(σ

Eq) = 2, `31(σ
Eq) = 2,

`41(σ
Eq) = 3, `51(σ

Eq) = 3, `61(σ
Eq) = 4.
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For t ≥ 4 (again when t = 1 mod 3),

σ Eq(it) =


e1 for i odd,

e2 for i even,

and

`1t(σ
Eq) = 2, `2t(σ

Eq) = 2, `3t(σ
Eq) = 3,

`4t(σ
Eq) = 3, `5t(σ

Eq) = 4, `6t(σ
Eq) = 4.

It is easy to check that this is an equilibrium. It is constructed in such a way that each player chooses e1

when he is indifferent between the two edges. This choice makes it the worst equilibrium. In the steady

state, the total equilibrium payoff over a 3-period is 18, that is 3 times the single-period equilibrium total

latency when departures are uniform plus the added cost of 6 induced by the waiting times.

In the same network, when the 3-periodic sequence of departures is δ = (3, 2, 1), then the following

strategy σOpt is still optimal

σOpt(it) =


e1 for i odd,

e2 for i even.

The last player at stage 1 has to wait for one period. The situation is then as if she had arrived at stage

2, thus the last player at stage 2 also has to wait for one period. The total latency over any period of time

{1, 2, 3} (modulo 3) is thus 11, that is, 3 times the single-period optimal total latency that we would have

if departures were uniform (2, 2, 2) plus the added cost of 2 induced by the waiting times.

Consider now the (worst) equilibrium strategy σ Eq. We have

σ Eq(11) = σ Eq(21) = σ Eq(12) = σ Eq(13) = e1,

σ Eq(31) = σ Eq(22) = e2,
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therefore the latencies for the first six players are

`11(σ
Eq) = 1, `21(σ

Eq) = 2, `31(σ
Eq) = 2,

`12(σ
Eq) = 2, `22(σ

Eq) = 2, `13(σ
Eq) = 2,

and then, for t ≥ 4,

σ Eq(it) =


e1 for i odd,

e2 for i even,

and

`1t(σ
Eq) = 2, `2t(σ

Eq) = 2, `3t(σ
Eq) = 3, for t = 1 mod 3,

`1t(σ
Eq) = 2, `2t(σ

Eq) = 3, for t = 2 mod 3,

`1t(σ
Eq) = 2, for t = 3 mod 3.

So in steady state the total equilibrium payoff over a 3-period is 14, that is 3 times the single-period

equilibrium total latency when departures are uniform plus the added cost of 2 induced by the waiting

times.

We see from this example that, since departures are not uniform, some queues have to be created and

some players must pay a positive waiting cost. We define now a quantity that measures the total waiting

cost.

Let NK(γ) be the set of K-periodic sequences (δ1, . . . , δK) such that
∑K

k=1 δk = γK. Define the

following binary relation on NK(γ):

Definition 4.2. For any two elements δ, δ′ ∈ NK(γ), we say that δ′ is obtained from δ by an elementary
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operation (denote it δ → δ′), if there exist times i, j, with i < j, such that

δi > γ,

δl = γ, for all l such that i < l < j,

δj < γ,

δ′i = δi − 1,

δ′i+1 = δi+1 + 1,

δ′l = δj for l /∈ {i, i+ 1},

where indices i, j are considered modulo K.

Consider the directed graph representing this binary relation → and denote D(δ) the distance in this

graph from δ to the uniform sequence γK = (γ, . . . , γ). An elementary operation δ → δ′ consists in moving

one unit from a slot where the capacity is over-filled, to the next slot. For any δ 6= γK , there exist i, j such

that

δi > γ, δi+1 = · · · = δj−1 = γ, δj < γ,

so that an elementary operation can be performed (note that indices are considered modulo K, so this

definition is invariant under circular permutation). In other words, any δ 6= γK has at least one successor in

the graph and γK is the only element with no successor. Then, D(δ) is the minimal number of elementary

operations one has to perform to transform δ into γK (in the next subsection, we prove that D(δ) < +∞

for any δ). See Figures 2,3, and 4.

Our next main result, Theorem 4.3, states that the quantity D(δ) measures the total waiting time

incurred by the players due to non-uniform departures. We need an additional piece of notation. For each

integer p, the total allocation over the period {pK + 1, . . . , (p+ 1)K}, is Xp(σ) = (Xe
p(σ))e, with

Xe
p(σ) =

(p+1)K∑
t=pK+1

xet (σ).
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1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

Figure 2: Operations needed to transform (6, 0, 0) into (2, 2, 2).

Theorem 4.3. Let δ ∈ NK(γ). Then

(a) The optimal latency Opt(N ,K, δ) exists and

Opt(N ,K, δ) = K
∑
e

γeτe +D(δ).

A strategy profile σOpt ∈ S is optimal if and only if for each edge e ∈ E, and for each integer p ∈ N+,

we have Xe
p(σOpt) = γeK.

(b) The worst equilibrium latency Eq(N ,K, δ) exists and

Eq(N ,K, δ) = K

(∑
e

γe

)
max
e
τe +D(δ).
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1 2 3 1 2 3 1 2 3 1 2 3

Figure 3: Operations needed to transform (3, 2, 1) into (2, 2, 2).

1 2 3 1 2 3 1 2 3

Figure 4: Operations needed to transform (3, 1, 2) into (2, 2, 2).

There exists an integer P0 such that in any equilibrium σ Eq, for each edge e ∈ E, and each integer

p ≥ P0, we have Xe
p(σ Eq) = γeK.

This result gives a computation of optimal and equilibrium latencies. There are two main insights.

First, as in the uniform case, optimal and equilibrium strategies are eventually identical. Namely in both

cases, the average number of players that choose an edge over a period is equal to its capacity. Second,

non-uniform departures create periodic queues. The length of these queues depends on the measure D(δ)

of discrepancy between the distribution of departures and the uniform distribution. Remarkably, the effect

of seasonality on optimal and equilibrium latencies is the same.

The formal proof is in the appendix. The idea is to prove the result by induction on the number

D(δ). The main argument is that if δ′ is obtained from δ by an elementary operation, then the departure

sequence δ creates one more unit of average waiting time than δ′ does. The reason is that under δ, there

is a departure over capacity at some stage, and δ′ is obtained from δ by letting a player postpone her

departure by one unit of time, thus saving her one unit of waiting time.

21



4.2 On periodic queues

The main finding of Theorem 4.3 is that, to account for periodic departures, we have to compute

the additional waiting time D(δ) induced by the sequence δ. This is defined as the minimal number of

elementary operations one has to perform to transform the sequence δ into the uniform sequence. In this

section, we give a “dual” formula for D(δ).

We introduce some notation. A sequence δ ∈ NK(c) is identified with a vector δ = (δ1, . . . , δK) such

that
∑K

m=1 δm = γK. This can be thought of as a “distribution” over the integers {1, . . . ,K}. The

“cumulative distribution function” of this distribution is the following vector,

Cdf(δ) = (δ1, δ1 + δ2, . . . , δ1 + · · ·+ δK), (4.1)

whose m-th component is Cdfm(δ) =
∑m

k=1 δk. We denote I(δ) the “integral” of the cumulative distribu-

tion function,

I(δ) =

K∑
m=1

m∑
k=1

δk. (4.2)

As a special case, for the uniform distribution γ = (γ, . . . , γ), we have Cdfk(γ) = kγ and

I(γ) =
K(K + 1)

2
γ.

Lastly, for each m ∈ {1, . . . ,K}, we define the circular permutation πm:

δ = (δ1, . . . , δK) 7−→ πmδ = (δm+1, . . . , δK , δ1, . . . , δm).

The dual formula for D(δ) is given in the following proposition.

Proposition 4.4. For each δ ∈ NK(c),

D(δ) = max
m=1,...,K

I(πmδ)− I(γ). (4.3)

To prove the result we show that D(δ) coincides with the dual expression for δ = γ and that the dual
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formula decreases by one along each elementary operation. To get an intuition, consider the following

example.

Example 4.5. Consider γ = (2, 2, 2), then, by (4.1), Cdf(γ) = (2, 4, 6) and, by (4.2), I(γ) = 12.

If δ = (6, 0, 0), then Cdf(δ) = (6, 6, 6) and I(δ) = 18.

If δ′ = (3, 2, 1), then Cdf(δ′) = (3, 5, 6) and I(δ′) = 14.

Moreover D(δ) = 6, since to go from δ = (6, 0, 0) to γ = (2, 2, 2) two players have to be moved from

position 1 to position 2 and two players have to be moved from 1 to 3. A similar argument shows that

D(δ′) = 2, since one player has to be moved from 1 to 3. These results are in accordance with (4.3).

4.3 Price of anarchy

We derive a computation of the price of anarchy from the results obtained in the previous sections.

Corollary 4.6. Let δ ∈ NK(γ). Then

Poa(N ,K, δ) =
K
∑

e γeτe +D(δ)

K (
∑

e γe) maxe τe +D(δ)
≤

∑
e γeτe

(
∑

e γe) maxe τe
= Poa(N ,K,γ).

It is clear that Poa(N ,K, δ) is a decreasing function of D(δ), that is, the price of anarchy decreases

when departures are periodic. The intuition is that queues have to be created at stages where departures

are above capacity. So at the optimum, the planner may want to create these queues on the edges with

smallest transit cost, thereby choosing a strategy profile that resembles the equilibrium. The extreme case

is δ = (Kγ, 0, . . . , 0). Using equation 4.3,

D(δ) = K2γ − K(K + 1)

2
γ =

K(K − 1)

2
γ

and Poa(N ,K, δ) is close to 1 when K is large. In that case, the equilibrium is almost optimal.

4.4 Below capacity

We assume now that the departures over a period are below the capacity of the network:
∑K

k=1 δk < γK.

As in Subsection 3.3, consider the sub-network Nδ with capacity δ = (1/K)
∑K

k=1 δk. When departures
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are uniform over time, Proposition 3.3 states that it is enough to apply the results for the network Nδ at

capacity. This is no longer the case when departures are not uniform.

To see this, consider a network with two edges e1, e2 with τe1 = 1, γe1 = N , τe2 = M , γe2 = 1, that is, e1

is short and wide, e2 is long and narrow. Consider the K-periodic departure sequence δ = (KN, 0, . . . , 0).

The average number of departures over a period is N which is less that the capacity of the network N + 1.

The sub-network Nδ is simply {e1} whose capacity is filled by these departures. On this sub-network,

optimum and equilibrium latencies at capacity obviously coincide, and from Theorem 4.3, they are equal

to

Opt(Nδ,K, δ) = Eq(Nδ,K, δ) = 1 +K(K − 1)/2

Now, if M < K, it is not optimal, nor an equilibrium, to use e1 only. The first N players pay 1, the second

batch of N players pay 2, . . . , the M -th batch of N -players pay M . Then, the next player pays M + 1

if he chooses e1 and M if he chooses e2. We thus see that in any equilibrium, at least one player chooses

e2 and that the strategy profile where all players choose e1 is not socially optimal: letting the last player

switch to e2 improves latencies for all players.

However, is M ≥ K, then the optimal and equilibrium latencies are those of Nδ at capacity.

This example shows that, for departures below capacity, the extra cost due to seasonality is more

delicate to characterize, as it depends on relations between the departure process and the parameters of

the network. We give a sufficient condition, under which it is enough to study the subnetwork Nδ at

capacity. Assume that all capacities are equal to one, let f be the edge such that the set of edges of Nδ is

f- := {e : e - f} and let f+ be the next edge in N .

Proposition 4.7. If τf+ ≥ τf +K, then equilibrium, optimal latencies and price of anarchy of Γ(N ,K, δ)

are those of Γ(Nδ,K, δ).

5 Extensions

We have considered dynamic congestion games with simple networks, simple latency functions, discrete

time and atomic players. We have introduced a new dimension to congestion models: the non-stationarity
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of the departure process, and characterized optimal and equilibrium latencies. An obvious direction of

generalization is to consider more general networks. The formal model is easily adapted. The network is

now

N = (V,E, (τe)e∈E , (γe)e∈E)

where (V,E) is a directed graph with set of vertices V and set of edges E. The source and the destination

are two special vertices. Each edge is endowed with a transit time and a capacity. The choice of a player

is now a path in the graph from the source to the destination. The total latency suffered by a player is the

sum of latencies over edges.

We choose as a convention, used in Koch and Skutella (2011), that queues are formed at the end of an

edge. That is, all the players in a given generation who choose a given edge enter it at the same time, and

progress along the edge at the same speed. The queue is formed at the exit, where priorities are used to

define who exits first. With simple networks, forming queues at the entry would not change the results.

However, with general networks, this convention is important.

Given a network N = (V,E, (τe)e∈E , (γe)e∈E), a cut is a subset of edges such that each path from the

source to the destination goes through one of its edges. A cut is minimal if the sum of capacities of its

edges is minimal among all cuts of the graph. We define the capacity of a network as the capacity of a

minimal cut.

A general question is how to compute the price of anarchy for general networks and general departure

process. Our main results answered this question for simple networks. In what follows, we provide a simple

generalization and explain the difficulties of handling the two dimensions together.

5.1 Series of parallel networks

In this section we consider series of parallel networks and uniform departures.

For h ∈ {1, . . . ,H} let N (h) = (E(h), (τe)e∈E(h) , (γe)e∈E(h)) be a parallel network and consider the

network Nser(H) obtained by concatenating N (1), . . . ,N (H) in series (see Figure 5). We call this a series-

of-parallel network.

Clearly, any subnetwork N (h) is a cut of Nser(H). Let N (∗) be a minimal cut of Nser(H) and let γ(∗)
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Figure 5: Series of parallel networks.

be the capacity of N (∗). Optimal and equilibrium values are characterized as follows.

Theorem 5.1. (a) The optimal latency Opt(Nser(H),γ(∗)) exists and

Opt(Nser(H),γ(∗)) =

H∑
h=1

Opt(N (h),γ(∗)).

A strategy is optimal if and only if its restriction to (N (h),γ(∗)) is optimal for h ∈ {1, . . . ,H}.

(b) The worst equilibrium latency Eq(Nser(H),γ(∗)) exists and

Eq(Nser(H),γ(∗)) =
H∑
h=1

Eq(N (h),γ(∗)).

Any equilibrium strategy σ Eq is such that its restriction to (N (h),γ(∗)) is an equilibrium for h ∈

{1, . . . ,H}.

The insights are as follows. First, the capacity of the network is naturally defined as the capacity of

its minimal cut. Second, due to the modular structure of the graph, each sub-network can be analyzed

separately. As a result, optimal and equilibrium latencies are additive over the parallel modules.

It follows directly that the price of anarchy of this network is dictated by the sub-network with the

highest price of anarchy.
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Corollary 5.2. Given a series-of-parallel network Nser(H), we have

Poa(Nser(H),γ(∗)) ≤ max
h∈{1,...,H}

Poa(N (h),γ(∗)).

5.2 General networks and Braess paradox

Consider a Wheatstone network as in Figure 6.

s

b

d

c

τ = 3 γ = 2τ = 1 γ = 1

τ = 3 γ = 2

τ = 1

γ = 10

τ = 1 γ = 1

Figure 6: Wheatstone network.

The set of edges is E = {(sb), (sc), (bc), (bd), (cd)} with the following transit costs and capacities

edge τ γ

(sb) 1 1

(sc) 3 2

(bc) 1 10

(bd) 3 2

(cd) 1 1
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Notice that {(sb), (cd)} is a minimal cut of the network and the capacity of this cut is 2. Consider the

case of constant departure at capacity, i.e., δ = γ = 2. The social optimum is achieved by a strategy σOpt

such that

σOpt
it (hit) =


(sb)(bd) for i odd,

(sc)(cd) for i even.

The optimal latency is therefore 8.

Consider now the following strategy1 σ Eq.

σ Eq
it (hit) =



(sb)(bc)(cd) for [it] = [11],

(sb)(bc)(cd) for [it] = [21],

(sb)(bc)(cd) for [it] = [12],

(sc)(cd) for [it] = [22],

(sb)(bd) for [it] = [1t], t ≥ 3

(sc)(cd) for [it] = [2t], t ≥ 3.

The induced latencies are

`it(σ
Eq) =



3 for [it] = [11],

4 for [it] = [21],

4 for [it] = [12],

5 for [it] = [22],

5 for [it] = [1t], t ≥ 3

5 for [it] = [2t], t ≥ 3.

That is, the first players choose the zig-zag path (sb)(bc)(cd) which is the fastest. This creates congestion

to the point that the fourth player [22] prefers to take the right path (sc)(cd). Thereafter, the zig-zag path

1We define only the choices made by players at equilibrium. A complete description of the strategies would specify the
choices for all histories.
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is too congested and in each subsequent generation, one player takes the left path (sb)(bd) and the other

player takes the right path.

We find therefore that the equilibrium latency is 10. This example shows a significant difference between

this case and all the results in the previous sections. Although optimal and equilibrium flows eventually

coincide, it is no longer the case that all players eventually pay the maximal free-flow transit cost. As a

matter of fact, all players end up paying even more than that. This is due to the fact that in the transient

phase, they use the path (sb)(bc)(cd) that they abandon later on. But their initial use of this path creates

congestion on two different edges (sb) and (cd) that will be part of the steady state equilibrium flow.

We see that the topology of the network strongly affects the price of anarchy. We leave as an open

problem to compute optimal and equilibrium values for general networks.

Remark 5.3. In static congestion games, a paradox due to Braess (1968, 2005) can arise: adding a new

edge to a network may increase the worst equilibrium latency. A Braess-type paradox holds also in dynamic

games. If we remove the edge (bc) in the network of Figure 6, then the equilibrium and the social optimum

coincide. This appears even more paradoxical since the edge (bc) is not used in equilibrium in steady state.

A version of Braess’s paradox for dynamic congestion games can be found in Macko, Larson, and Steskal

(2010). Relatedly, an analysis of a dynamic Braess-type paradox in communication networks is provided

by Xia and Hill (2013).

6 Appendix

Proof of Theorem 3.1

We start with a series of preparatory definitions and lemmata.

Definition 6.1. Two networks N ,N ′ are said to be equivalent if for each K ∈ N+ and for each δ ∈ NK ,

given the games Γ(N ,K, δ) and Γ(N ′,K, δ), for each strategy profile σ of one game, there exists a strategy

profile σ′ of the other game such that each player in the first game pays the same cost as the corresponding

player in the other game.
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Lemma 6.2. A simple network such that τei = τei+1 is equivalent to a network where the two edges ei, ei+1

are merged into a single edge with capacity γei + γei+1.

Proof. Given a network N , let Γ(N ,K, δ) be the associated game. Let us assume that ei, ei+1 have the

same transit cost and consider the network N ′ where the two edges are replaced by a single edge f with

capacity γei + γei+1 . By associating ei and ei+1 with f , each strategy σ in Γ(N ,K, δ) is naturally mapped

to a strategy σ′ in Γ(N ′,K, δ) with the same payoff profile. Conversely, each strategy σ′ in ΓN ′,K,δ can also

be mapped to a strategy σ in Γ(N ,K, δ) with the same payoff profile, provided that players who choose f

in Γ(N ′,K, δ) at some stage, choose ei or ei+1 in suitable proportions at the same stage. Namely, let Nf

be the number of those players. Write Nf = k(γei +γei+1) + r with r < γei +γei+1 , and r = rei + rei+1 with

rei ≤ γei , rei+1 ≤ γei+1 (with one strict inequality). In σ, kγe+i + rei players choose ei, and kγei+1 + rei+1

choose ei+1.

As a consequence, whenever convenient, we may either assume that all transit costs are different, or

that all capacities are 1.

Definition 6.3. For each edge e, denote qet (σ) the length of the queue on edge e at the end of stage t.

This is the waiting cost paid by player [1(t + 1)] to enter edge e. We say that queues are vanishing if for

each e

lim supT q
e
T (σ)

T
= 0.

Lemma 6.4. Let σ ∈ S be a strategy profile. If queues are not vanishing then

lim inf
T

¯̀
T (σ) = +∞.

Proof. Assume that there exists e such that

lim supT q
e
T (σ)

T
> 0.

Then, there exists α > 0 and a subsequence {Tk} such that along this subsequence we have qeTk(σ) ≥ αTk.

This implies that there exists a player who has a waiting time of w = bαTkc. This in turn implies that for
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each integer s ≤ w, there exists a player who has waiting time s. Thus, the total waiting time adds up to

at least

1 + · · ·+ w =
w(w + 1)

2

and the average waiting time at stage Tk is such that

w̄Tk(σ) ≥ bαTkc(bαTkc+ 1)

2Tk
.

The r.h.s. diverges as k →∞, which concludes the proof.

Lemma 6.5. Let σ ∈ S be a strategy profile. If queues are vanishing then

lim inf
T

¯̀
T (σ) ≥

∑
e

γeτe.

In the proof of Lemma 6.5 and of the following Claim 6.6, we use Lemma 6.2 and assume for simplicity

that each edge e has capacity γe = 1, so that the number of edges equals the size of any generation and∑
e γeτe =

∑
e τe.

Claim 6.6. If lim supT q
e
T (σ)/T = 0, then lim supT x̄

e
T (σ) ≤ 1.

Proof. Otherwise, there exists α > 0 and a subsequence {Tk} such that along this subsequence, x̄eTk(σ) >

1 + α, that is,

#{[it] : σit = e} ≥ Tk + αTk.

This means that over the time interval {1, . . . , Tk}, Tk + αTk players entered edge e. Since the capacity is

one, at most Tk players could go out of e over this time interval, and therefore at least αTk players are still

in e. Now, these players could be at different distances from the exit, but at least αTk/(maxe τe) of them

are exactly at the same distance from the exit and will reach it at the same time. Thus, at some stage t

with Tk ≤ t ≤ Tk + maxe τe, the queue is at least αTk/(maxe τe). This implies

lim supT q
e
T (σ)

T
≥ α

(maxe τe)
> 0,
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contradicting the assumption.

Proof of Lemma 6.5. Thanks to Claim 6.6, for any η < 1, there exists a time T (η) such that for all

T ≥ T (η) and for each edge e

x̄eT (σ) ≤ 1 + η. (6.1)

Since
∑

e x̄
e
T (σ) = γ, for each edge e, we have x̄eT (σ) = γ −

∑
f 6=e x̄

f
T (σ). Inequality (6.1) then implies

x̄eT (σ) ≥ γ − (γ − 1)(1 + η) = 1− (γ − 1)η.

As a consequence,

¯̀
T (σ) =

∑
e

x̄eT (σ)τe + w̄T (σ) ≥
∑
e

(1− (γ − 1)η)τe =
∑
e

τe − η(γ − 1)
∑
e

τe.

Setting η′ = η(γ − 1)
∑

e τe, we find that for all η′ > 0, there exists T ′ such that for all T ≥ T ′

¯̀
T (σ) ≥

∑
e

τe − η′.

That is,

lim inf
T

¯̀
T (σ) ≥

∑
e

τe,

as desired.

Lemma 6.7. Let σ ∈ S be a strategy profile. If at some stage t, there exists an edge e such that xet (σ) > γe,

then for all t′ ≥ t, there exists e′ with qe
′
t′ (σ) > 0.

Proof. Assume that at stage t we have xet (σ) > γe. This creates a queue qet (σ) > 0. At the next stage,

either xet+1(σ) ≥ γe, in which case

qet+1(σ) = qet (σ)− γe + xet+1(σ) ≥ qet (σ) > 0,

or xet+1(σ) < γe, but then there exists e′ such that xe
′
t+1(σ) > γe′ and thus qe

′
t+1(σ) > 0.
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Proof of Theorem 3.1(a). Since the size of a generation equals the capacity of the network, a strategy σ

that sends γe players on each edge e at each stage, satisfies lim supT
¯̀
T (σ) =

∑
e γeτe < +∞. We prove

now that such a strategy is optimal.

From Lemma 6.4, an optimal strategy must induce queues with negligible lengths and Lemma 6.5 shows

that the optimal latency is larger or equal than
∑

e γeτe. Thus, a strategy σ is optimal if xet (σ) = γe for

all t ∈ N+ and for all e ∈ E. It remains to prove that these are the only optimal strategies.

Consider t1 the first stage where there exists e such that xet1(σ) > γe. At this moment, a queue q1 ≥ 1

is created and, from Lemma 6.7, this queue will not disappear. It follows that lim infT w̄T (σ) ≥ q1. Now,

at t1 + 1, we are facing the same optimization problem except that the objective function is translated

upwards by some constant w1 ≥ 1. From Lemma 6.5, the optimal latency is
∑

e γeτe + w1. Therefore, for

any optimal strategy, there is no such stage t1. This ends the proof of Theorem 3.1(a).

Proof of Theorem 3.1(b). In this proof, it is convenient to assume τ1 < · · · < τn, which we can assume

without loss of generality from Lemma 6.2. We proceed by induction on the number n of edges. The result

being obvious for n = 1, consider n = 2.

Lemma 6.8. In any equilibrium, the allocation matches the capacities from some stage on.

Proof. Take a given equilibrium.

Claim 6.9. There exists a first player who is indifferent between the two edges.

Proof. The number of departures per generation is γ > γe1 . In any equilibrium, the first players choose

e1. The latency of a player is given by the expression,

f(x) = τ1 +

⌊
(x− γe1)+

γe1

⌋
,

with x the number of people in the queue at the same time as the player, and ahead of her. This latency

function is weakly increasing, and increases by 1 on each multiple of γe1 . Since γ > γe1 , there must exist

a first stage T0 where some player [iT0] would pay τ2 if she chose e1. Since the number of departures per

generation is γ = γe1 + γe2 , this stage T0 is the smallest t such that t(γ − γe1) + τ1 ≥ τ2, and this for any
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equilibrium. Indeed, before that stage, all players choose e1. Since only γe1 players per stage can exit,

t(γ − γe1) players remain in the queue, yielding a cost of τ1 + t(γ − γe1) which eventually reaches τ2.

As a consequence, player [iT0] is the first player to be indifferent between choosing e1 or e2.

Now, we consider two cases.

Case 1. Assume first that [iT0] or one her followers [jT0] in her generation chooses e1, that is, there exists

j ≥ i such that [jT0] chooses e1. Then, at the next generation, exactly γe1 players choose e1 and γe2 players

choose e2. Indeed, the first players to choose e1 pays τ2 + 1− 1. So if more than γe1 players choose e1, the

last one pays τ2 + 1 and could have paid τ2 be choosing e2. This scenario repeats at the next generation

since queues are stationary from that point on.

Case 2. The second possible case is that all players [jT0], with j ≥ i, choose e2. This can happen within an

equilibrium only if the number of those players is no more than τ2 (otherwise, we are in the previous case).

Then, the situation faced by the next generation GT0+1 is the same, that is, players [j(T0 + 1)] choose e1

for j < i, and player [i(T0 + 1)] is indifferent. Now, either i − 1 = γe1 and there is an equilibrium where

in each generation, players [jT ], j < i, choose e1, and the other players choose e2; or, in some generation,

there is a player [jT ] with j ≥ i who chooses e1 and we are in Case 1 from that stage on.

This concludes the proof of Lemma 6.8 for n = 2.

Now we argue that γmaxe τe is the worst equilibrium latency. Remark that the multiplicity of equilibria

stems from the indifference conditions, as seen in the previous proof. Consider the equilibrium where each

player, when indifferent between several edges, chooses the one with least transit cost, i.e., the first edge

in the order ≺. It follows from the previous proof that all player pay maxe τe from some stage on. Remark

also that in all equilibria considered above, no player pays more than maxe τe.

Assume now the result true for n−1 and consider a network with n edges. Until the latencies have not

reached τn, players use only the n− 1 first edges. By the induction hypothesis, if the number of players is∑
e≺en τe, then, from some point on, the allocation of players on edges matches the capacities. Since the
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number of departures is γ >
∑

e≺en τe, then the latencies of all edges e ≺ en eventually become equal to

τn−1 at some stage. Subsequent players may regard the edges e1, . . . , en−1 as a single edge with latency

τn−1. Thus, we are back to the two-edge case and may apply the previous argument.

Proof of Theorem 4.3

Claim 6.10. If lim infP L̄P (σ) < +∞, then for each e ∈ E, lim supP X̄
e
P (σ) ≤ γe.

Proof. The proof is as in Lemma 6.4 and Claim 6.6, treating each period as one stage. As before, assume

for simplicity that all capacities are one. If lim supP X̄
e
P (σ) > 1, then on a subsequence of stages, say Tk,

the average number of people on e exceeds the capacity by some α > 0. This implies that at least αTk

people are queuing which results in an unbounded average waiting time.

Lemma 6.11. For any strategy profile σ ∈ S ,

lim inf
P

L̄P (σ) ≥
∑
e

γeτe +D(δ),

and there exists a strategy σ ∈ S such that

lim sup
P

L̄P (σ) ≤
∑
e

γeτe +D(δ),

which is therefore optimal.

Proof. We consider only strategies σ ∈ S such that lim infP L̄P (σ) < +∞. From Claim 6.10, and as in

the proof of Lemma 6.5, for any η > 0, there exists P (η), such that for all P ≥ P (η), and each edge e ∈ E,

|X̄e
P (σ)−Kγe| ≤ η.

As a consequence, for P ≥ P (η), the average latency is such that

L̄P (σ) ≥
∑
e

X̄e
P (σ)τe ≥ K

∑
e

γeτe + η

(∑
e

τe

)
.
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Thus, the optimal latency is at least K
∑

e γeτe. Consider the relaxed optimization problem where the

players are allowed to choose their departure time in the system. There, we could force players to depart

uniformly over time, and therefore, the optimal latency of the relaxed problem is K
∑

e γeτe.

Now, we proceed by induction on the integer D(δ). If D(δ) = 0 then δ = γ, and the result follows

from Theorem 3.1. Assume D(δ) = 1, then the sequence of departures is either,

(γ, . . . , γ, γ + 1, γ − 1, γ, . . . , γ)

or

(γ − 1, γ, . . . , γ, γ + 1).

These two sequences are similar, up to circular permutations. Yet, since queues might be created at the

first stages, the starting point of the sequence is relevant. However, whenever departures are no more than

the capacity, it is possible to pay a total cost of at most
∑

e γeτe without creating queues. The impact

of these first stages disappears in the long run. It is thus without loss of generality to assume that the

sequence of departures is

(γ + 1, γ − 1, γ . . . , γ).

Consider [δ11], the last player in the first generation. In the relaxed problem, we may postpone by one

stage the departure time of player [δ11], and be back to the uniform departure case where the optimal

latency is K
∑

e γeτe. Now, at the first stage, since γ + 1 players depart, there exists at least one player

that must wait for at least one period. This situation repeats at each period and therefore the long run

average latency for any strategy is at least K
∑

e γeτe + 1. Now, it is possible to achieve exactly this

amount. Consider the optimal solution of the relaxed problem where player [δ11] postpones her departure

by one stage and becomes the first player in the second generation. An optimal strategy consists simply

in playing this strategy. Namely, the first γ players before [δ11] fill the capacities of the network. Then,

player [δ11] chooses, say, the first edge and waits for one period. The second generation fills the capacities

of the network, considering that one slot has been already taken by [δ11]. Subsequent generations with

size γ fill capacities. It is then clear that the only waiting cost is 1 and is paid by [δ11]. Observe that the
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choice of player [δ11] is immaterial. In any optimal strategy, the players in the second generation must fill

the capacities of the network, taking into account the choice of [δ11].

Now we consider the induction step. Assume the result to be true for any sequence δ′ with D(δ′) < n

and consider δ, δ′ such that δ → δ′, D(δ) = n and D(δ′) = n − 1. We want to prove that the long run

average latency is at least K
∑

e γeτe + D(δ′) + 1 and that this amount can actually be achieved. Since

δ → δ′, either there exist i < j − 1, δ′i ≥ γ, δ′j < γ such that δ and δ′ can be written as follows:

δ′ = (. . . , δ′i, γ + 1, γ, . . . , γ, δ′j , . . . )

δ = (. . . , δ′i + 1, γ, γ, . . . , γ, δ′j , . . . )

or there exist i, δ′i ≥ γ, δ′i+1 < γ + 1 such that δ and δ′ can be written as follows:

δ′ = (. . . , δ′i, δ′i+1, . . . )

δ = (. . . , δ′i + 1, δ′i+1 − 1, . . . )

Consider the first case. If t∗ = i mod K, under δ, players depart above capacity. There is thus at least

one player [jt∗] who has to wait for at least one stage. Consider the relaxed problem were we are allowed

to postpone the departure of this player by one stage, that is, to transform δ into δ′. At stage t∗ + 1,

players still depart above capacity so the postponed player [jt∗] still induces a waiting time of at least

one. But without delaying the departure of [jt∗], this waiting time is paid two times, at stages t∗ and

t∗ + 1. This shows that the long run average latency is at least K
∑

e γeτe +D(δ′) + 1. This lower bound

is achievable by letting player [jt∗] wait for one stage and then choose the strategy she would have in the

relaxed problem. In the second case, postponing the departure of [jt∗] also saves one unit of waiting cost

since at stage t∗+1, players depart below capacity. As before, it can be remarked that the choice of [jt∗] is

not important, as long as subsequent players adjust for his choice so as to respect the capacity constraint

over the period. This concludes the induction proof.

Now, we characterize optimal strategies.

Lemma 6.12. If a strategy is optimal, then for each edge e, the number of players that choose that edge

over a period of K consecutive stages is Kγe.
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We start by the following observation.

Claim 6.13. For each δ ∈ NK(c), for each m ∈ {1, . . . ,K},

I(δ)− I(πmδ) = K(Cdfm(δ)− Cdfm(γ)).

Proof. We start from I(δ) =
∑K

k=1

∑k
j=1 δj and rewrite it as,

I(δ) = Kδ1 + (K − 1)δ2 + · · ·+ (K −m+ 1)δm + (K − (m+ 1) + 1)δm+1 + · · ·+ δK .

Similarly,

I(πmδ) = Kδm+1 + (K − 1)δm+2 + . . .

+ (K − (K −m) + 1)δK + (K − (K −m+ 1) + 1)δ1 + · · ·+ δm. (6.2)

It follows directly that,

I(δ)− I(πmδ) =
m∑
k=1

(K −m)δk −
K∑

k=m+1

mδk.

Replacing
∑K

k=m+1 δk by γK −
∑m

k=1 δk, we get,

I(δ)− I(πmδ) = (K −m)Cdfm(δ)−m(Kγ − Cdfm(δ)) = K(Cdfm(δ)− Cdfm(γ)),

as desired.

We get the direct corollary:

Corollary 6.14.

I(δ) = max
m=1,...,K

I(πmδ) iff, for all m ∈ {1, . . . ,K}, Cdfm(δ) ≥ Cdfm(γ).

The consequence is that we can choose the starting point of the cycle in such a way that, at the

optimum, no queues are left at the end of each cycle.
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Claim 6.15. Let δ = (δ1, . . . , δK) be the sequence of departures. Let k be such that I(πkδ) = maxm I(πmδ).

Then the strategy in the initial phase {1, . . . , k} can be chosen such that no queues remain at the beginning

of stage k + 1.

Proof. The sequence of departures is as follows:

(δ1, . . . , δk, δk+1, . . . , δK , δ1, . . . , δk, . . . )

which we decompose as an initial phase (δ1, . . . , δk) and a period

(δk+1, . . . , δK , δ1, . . . , δk).

From the choice of k, for each j = 1, . . . , k,

K+j−1∑
m=k+1

δm ≥ (K − k + j + 1)γ,

and thus
∑k

m=j δm ≤ (k − j + 1)γ. That is,

δk ≤ γ, δk + δk−1 ≤ 2γ, . . . , δ1 + · · ·+ δk ≤ kγ.

If for all j = 1, . . . , k, δj ≤ γ, then we can send players at capacity on each edge and no queues are

formed. Otherwise, there exists j < k such that δj > γ. But then, δj + · · · + δk ≤ (k − j + 1)γ and

δj+1 + · · ·+ δk ≤ (k − j)γ. It follows that

0 < δj − γ ≤ (k − j)γ − (δj+1 + · · ·+ δk),

which means that the excess of departures δj−γ > 0 at stage j is compensated by the deficit of departures

at stages {j + 1, . . . , k}. It follows that all queues formed at some stage j < k, can be undone before stage

k.

39



Claim 6.16. For any optimal strategy, for each edge e ∈ E and period p ∈ N+, if Xe
p(σ) = Kγe, then the

total latency over each period is

Lp(σ) = K
∑
e

γeτe +D(δ)

and no queues are left at the end of each period.

Proof. First argue that such a strategy exists. The proof of this fact is similar to that of Lemma 6.11

and proceeds by induction on D(δ). By Theorem 3.1, the result holds for D(δ) = 0. If D(δ) = 1, then

δ = (γ, . . . , γ, γ+1, γ−1, γ, . . . , γ) and, without loss of generality, we can choose δ = (γ+1, γ−1, γ, . . . , γ).

The strategy is deduced from an optimal strategy in the uniform case. The last player in G1 waits one

stage and plays the strategy she would have played, if her departure had been postponed by one stage.

For the induction step, assume that δ → δ′ and that the result is true for δ′. We write,

δ′ = (. . . , δ′i, γ + 1, γ, . . . , γ, δ′j , . . . )

δ = (. . . , δ′i + 1, γ, γ, . . . , γ, δ′j , . . . )

with δ′i ≥ γ, δ′j < γ. We deduce an optimal strategy in Γ(N ,K, δ) from an optimal strategy in Γ(N ,K, δ′)

by letting the last player in the i-th generation wait for one stage and then play the strategy she would

have played, if her departure had been postponed by one stage. As in the proof of Lemma 6.11, the total

latency is K
∑

e γeτe +D(δ′) + 1. If no queues were left at the end of the period under δ′, then, with this

strategy, no queues are left under δ, either. We have thus proved that there exists a strategy as in the

statement of the claim.

Proof of Lemma 6.12. Thanks to Claim 6.15, we assume from now on that k + 1 = 1 modulo K, or

equivalently, Cdf(δ) ≥ Cdf(γ) and we use Claim 6.16 to prove that any strategy that respects the capacity

of edges is optimal.

Finally, suppose that a strategy leaves a queue at the end of a period. This means that next period,

the network has to accomodate at least Kγ + 1 players which is not possible, the total capacity over K

stages being Kγ. Thus, there is an extra permanent queue which results in a long run average latency of

at least K
∑

e γeτe +D(δ) + 1, which precludes the strategy from being optimal.
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Proof of Theorem 4.3(a). The first part of the proof is similar to that of Theorem 3.1.

Lemma 6.11 generalizes Lemma 6.5, taking into account the queues created by non-uniform departures.

It shows that the optimal latency exists and is K
∑

e γeτe +D(δ). Finally Lemma 6.12 shows that for any

optimal strategy, for each edge e, the number of players that choose that edge over a period of K consecutive

stages is Kγe.

Proof of Theorem 4.3(b). We also proceed by induction on D(δ). If D(δ) = 0 then δ = γ, and the result

follows from Theorem 3.1. Recall that in that case, there exists a stage T0 such that, for each t ≥ T0,

in each equilibrium σ, xet (σ) = γe for each edge e. This stage T0 falls into one period of the sequence of

departures and let P0 be the next period, that is, the integer such that (P0−1)K+1 ≤ T0 ≤ P0K. Clearly,

for each integer p ≥ P0 and each edge e ∈ E, we have Xe
p(σ Eq) = γeK.

Let us do the induction step. We take two sequences δ, δ′ such that δ → δ′, assume the result to be true

for δ′, and prove it for δ. We want to prove that the long run average latency is at least K
∑

e γeτe+D(δ′)+1

and that this amount can actually be achieved. Since δ → δ′, either there exist i < j − 1, δ′i ≥ γ, δ′j < γ

such that δ and δ′ can be written as follows:

δ′ = (. . . , δ′i, γ + 1, γ, . . . , γ, δ′j , . . . )

δ = (. . . , δ′i + 1, γ, γ, . . . , γ, δ′j , . . . )

or there exist i, δ′i ≥ γ, δ′i+1 < γ + 1 such that δ and δ′ can be written as follows:

δ′ = (. . . , δ′i, δ′i+1, . . . )

δ = (. . . , δ′i + 1, δ′i+1 − 1, . . . )

We only treat the first case, the second case being similar. Denote t∗ ∈ {1, . . . ,K} the first stage where

δ′i + 1 players depart and let t∗p = t∗ + pK for each integer p. Then [(γ + 1)t∗p] is the last player in the

generation Gt∗p . Consider the game Γ∗ where the departure of each player [(γ + 1)t∗p] is postponed by one

stage so that [(γ + 1)t∗p] is the first player in generation Gt∗p+1. This game is identical to Γ(N ,K, δ′). We

claim that this auxiliary game Γ∗ and the actual game Γ(N ,K, δ) have the same equilibria. Clearly, for

all players that are ahead of [(γ + 1)t∗1], the two games are identical, so their equilibrium strategies are
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the same. Then in Γ(N ,K, δ), player [(γ + 1)t∗1] can at least play her equilibrium strategy, say e, in Γ∗.

Therefore, her best-response in the actual game Γ(N ,K, δ) is either e, or e′ ≺ e. If it is e′ ≺ e, it would

also be a best-reply in Γ∗ since τe′ < τe and the queues that [(γ + 1)t∗1] faces in Γ∗ cannot be larger than

those she faces in Γ(N ,K, δ). Thus, the best-reply of [(γ + 1)t∗p] is the same in both games. Finally, for

all players that come between [(γ + 1)t∗1] and [(γ + 1)t∗2], the two games are identical and thus they have

the same best-replies. By a simple induction, this holds for any [(γ + 1)t∗p].

As a consequence, from the induction hypothesis, the number of player who choose edge e over a period

is Kγe, and the worst equilibrium latency is Eq(N ,K, δ′) + 1. We also get by induction that for each

integer p ≥ P0 and each edge e ∈ E, we have Xe
p(σ Eq) = γeK.

Proof of Proposition 4.4

The proof builds on Corollary 6.14 from which we can derive the following findings. For any distribution

δ, there exists a circular permutation πm such that Cdfm(πmδ) ≥ Cdfm(γ). This happens if and only if

πmδ has the largest integral among all circular permutations. Since, from its definition, D(δ) is invariant

with respect to circular permutations, we assume from now on that I(δ) = maxm=1,...,K I(πmδ). The next

lemma establishes the link between D(δ) and I(δ).

Lemma 6.17. Let δ ∈ NK(γ) such that Cdfm(δ) ≥ Cdfm(γ) for all m ∈ {1, . . . ,K} and let δ → δ′. Then

Cdfm(δ′) ≥ Cdfm(γ) for all m ∈ {1, . . . ,K} and I(δ′) = I(δ)− 1.

Proof. Let δ ∈ NK(γ) be such that Cdfm(δ) ≥ mγ for all m ∈ {1, . . . ,K}. Take i < j such that δi > γ,

δl = γ for all l ∈ {i, . . . , j}, and δj < γ. Necessarily, 1 ≤ i < j ≤ K, that is, i and j are within the same

period. In other words, it is not possible to have the following situation:

(γ, . . . , γ, δj , . . . , δi, γ, . . . , γ)

for if it were the case, denoting M + 1 the rank of δi in this sequence, we would have
∑K

m=M+1 δm >

(K −M)γ. Thus,
∑M

m=1 δm < Mγ, a contradiction.

Define then δ′ by letting δ′i = δi− 1, δ′i+1 = δi+1 + 1, all other components remaining unchanged. Since
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∑i−1
m=1 δm ≥ (i − 1)γ and δi > γ, we have

∑i
m=1 δ

′
i =

∑i
m=1 δi − 1 ≥ iγ, and thus Cdfm(δ′) ≥ mγ for all

m ∈ {1, . . . ,K}. Now,

I(δ′) =
K∑
m=1

m∑
k=1

δ′k

=

K∑
k=1

(K − k + 1)δ′k

= I(δ)− (K − i+ 1) + (K − (i+ 1) + 1)

= I(δ)− 1,

as claimed.

Proof of Proposition 4.4. We may now conclude the proof of Proposition 4.4. Recall that D(δ) is the

minimal number of elementary operations needed for transforming δ into γ. For δ such that Cdf(δ) ≥

Cdf(γ), we have δ 6= γ if and only if I(δ) > I(γ). So, as long as Cdf(δ) ≥ Cdf(γ) and δ 6= γ, an

elementary operation is possible, and the result δ′ is such that Cdf(δ′) ≥ Cdf(γ) and I(δ′) = I(δ) − 1.

Therefore along each chain of elementary operations

δ → δ′ → · · · → δ(n) → . . .

the integral decreases by one until γ is reached. As a consequence, γ is reached eventually and along each

chain δ → · · · → γ, the number of operations is I(δ)− I(γ).

Proof of Proposition 4.7

Proof of Proposition 4.7. Consider first optimal strategies. We argue that an optimal strategy in Γ(Nδ,K, δ)

is also optimal in Γ(N ,K, δ). Such a strategy sends K players per period on each edge (we assume that all

capacities are one). It follows that the length of the queue on each edge is at most K at each point in time

and that each player pays at most τf+ + K. Thus, the total latency cannot be improved by transferring

players from edges in Nδ to edges outside of the sub-network. To justify it, consider two cases. First,
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consider a player who is paying τf+ + K in Nδ, in which case, he is last in the queue. Transferring this

player to f+ does not improve her own cost, nor the latencies of other players. Second, consider a player

who is paying less than τf+ + K in Nδ. Transferring this player to f+ increases her own cost by at least

one, whereas it only decreases queues by at most one, so this does not improve the total latency.

Similarly, we argue that an equilibrium in Γ(Nδ,K, δ) is an equilibrium in Γ(N ,K, δ). Since the

number of departures per period is Kδ, at each point in time, there exists an edge such that the average

number number of players who chose that edge in the past is at most K, and thus the length of the queue

is at most K. It follows that each player can choose an edge in Nδ that yields a cost of at most τf+ +K.

Therefore, there exists always a best-reply in the sub-network.

Proof of Theorem 5.1

Proof of Theorem 5.1. (a) It is clear that any subnetwork N (h) is a cut of Nser(H). Call N (∗) a minimal

cut of Nser(H) and call γ(∗) the capacity of N (∗).

Given that the capacity of the whole network Nser(H) is the capacity γ(∗) of its minimal cut N (∗),

there exists a flow such that that at any time t the input of each module N (h) is γ(∗), which is at most

the capacity of N (h). The modularity of the network assures that no flow on Nser(H) when restricted to

N (h) can do better than the optimal flow on N (h). Since there exists a flow on Nser(H) that coincides

with the optimal flows on each N (h), we have the result.

(b) The same modularity argument applies to the equilibrium.
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Proof of Corollary 5.2

Proof of Corollary 5.2. By definition

Poa(Nser(H),γ(∗)) =
Opt(Nser(H),γ(∗))

Eq(Nser(H),γ(∗))

=

∑H
h=1 Opt(N (h),γ(∗))∑H
h=1 Eq(N (h),γ(∗))

=
H∑
h=1

Eq(N (h),γ(∗))∑H
h=1 Eq(N (h),γ(∗))

Opt(N (h),γ(∗))

Eq(N (h),γ(∗))

≤ max
h∈{1,...,H}

Opt(N (h),γ(∗))

Eq(N (h),γ(∗))

= max
h∈{1,...,H}

Poa(N (h),γ(∗)),

which gives the desired result.
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Roughgarden, T. and Tardos, É. (2004) Bounding the inefficiency of equilibria in nonatomic congestion

games. Games Econom. Behav. 47, 389–403. URL http://dx.doi.org/10.1016/j.geb.2003.06.004.
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