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Abstract

Recently a small and growing empirical literature has attempted to analyze the role that quality
plays in our understanding of trade. In particular, the recent work of Khandelwal (2010) has brought the
insights of structural IO models of demand to bear into trade data. Our work builds on this new structural
literature; we use similar demand estimation techniques on a panel of Danish apparel firms from 1997
to 2010 in order to analyze how firms responded to China’s entry to the WTO and the dismantling of
the Multi-Fibre Agreement. We explore the implications of offshoring and import competition on the
distribution of apparel quality within Denmark, and demonstrate the firm-level mechanisms that induced
the observed aggregate changes. In particular, we show that the quality ladder tightens in response to
trade shocks as initially low quality firms upgrade their quality relative to other firms while initially
middle and high quality downgrade their output quality. An important qualification is that the quality
of exports from the source country is a key determinant in both the uptake of offshoring and resultant
decisions regarding quality. Finally, import competition appears to spur entry of higher quality firms
and exit of lower quality producers. Nevertheless, the reallocation pattern is imperfect, suggesting that
two sources of heterogeneity – the productivity and the quality margin – are key to understanding these
patterns.
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1 Introduction

Understanding product quality is instrumental to understanding the welfare gains from trade. At the ag-
gregate level, import competition or access to new inputs can increase consumer’s choice and lower price
but also spur changes in the quality of goods that are offered to consumers. This paper seeks to understand
how firms’ output quality decisions are affected by changes in trade costs. Our research question is driven
by two recent observations in the literature. First, there appears to be a great deal of heterogeneity in the
quality of goods across countries within various aggregations of product definitions (Khandelwal, 2010; Hal-
lak and Schott, 2011).1 Second, there has been an explosion of growth in trades in intermediates, offshoring
and supply chain disintegration (Yi, 2003; Feenstra, 2010). Put together, this suggests that in high-income
countries, downstream producers may be sourcing from lower quality firms than they had been in the past
(including intra-firm trade through FDI). This naturally leads to a question of whether firms’ importing of
potentially lower quality inputs affects their output quality in an appreciable way.

Some current evidence from middle income countries suggest that access to high quality inputs from
abroad can help induce quality upgrading (Eslava, Fieler and Xu, 2013). Our paper explores the opposite
direction – the sourcing of inputs from low-quality producing countries by a high quality producing country.
There is ambiguity in the possible response of quality: access to cheaper, potentially homogeneous inputs
and a more competitive environment may lead to upgrading; however, if inputs themselves are differentiated
and trade lowers the relative cost of lower quality inputs it may induce quality downgrading.

Estimating the quality of goods presents a host of econometric problems. Product quality is an unob-
servable and in most datasets used by trade economists there are no observable product characteristics that
might act as a proxy.2 Moreover, there are endogeneity issues since price and quality are normally deter-
mined jointly. This has led to a literature that attempts to back out unobservable quality from information
on prices and market shares, sometimes with the aid of a structural model. Following Khandelwal (2010),
we employ demand models used in the IO literature (e.g. Berry, 1994) to back out quality as a residual of
a regression of market shares on price.3 We exploit a very rich dataset to construct plausibly exogenous
instruments that allow us to weaken assumptions that the literature has made in the past.4 The structural
approach along with our instrumenting strategy allows us to model quality flexibly and separates price effects
that may reflect changes to the competition faced by firms and not by changes in physical quality output.

We employ a novel dataset on Danish apparel firms that contain highly disaggregated information on
the import and export transactions of firms as well as information on their employees and production. With
this data, we empirically document the response of quality, at the firm-product level, to changes in the
opportunities for offshoring. We analyze apparel firms before and after China’s entry into the WTO as well
as the end of the Multi-Fibre Arrangement (MFA) – which led to the dismantling of nearly all quotas and
tariffs on apparel in the EU. China’s entry in the WTO in December 2001 made it a part of the MFA and
quotas on apparel and textile imports were slowly phased out, ending completely in 2008. As Denmark is
a small country, but a member of the EU and WTO, the specific changes can be viewed as an exogenous

1For example, Hallak and Schott find an average difference in quality between rich and poor countries of .38 log points in
2003, down from 0.67 in 1989.

2An exception is Crozet, Mayer and Head (2012) who use direct quality measures of Champagne wines.
3Throughout the paper, we will use the term quality to reflect a demand shock or perceived quality from the consumer’s

point of view, as in Sutton (2012): “it includes not just ‘quality’ in the usual narrow sense (a feature of the product’s physical
characteristics), but also a range of characteristics that include, for example: brand advertising... services... [and] logistics”
(Sutton, 2012, p.17).

4A bevy of such datasets has led to the concurrent development of such instruments for different purposes. See e.g. Hummels
et al. (forthcoming) and Amiti, Itskhoki and Konings (forthcoming).
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change to Danish firms’ foreign competition and their offshoring opportunities. As we will document, the
industry went through a major change in the aftermath of these events, yielding substantial variation in
access to and use of offshoring in the time-series as well as the cross-section. In addition, lowering the MFA
induced massive import competition.

Our empirical investigations both confirm and complicate previous work. At the aggregate level, we find
that a large shock to trade costs was followed by a concurrent shortening of the quality ladder (i.e., the
quality of goods became more similar), and a change in the distribution of quality with more weight lower on
the ladder. We also see massive exit of lower end producers and entry of high end producers – suggesting that
import competition may force out some low-end goods while spurring specialization in new high-end goods.
At the firm level, we find that increased offshoring is associated with a decrease in the quality ladder. We
also find that the negative effect of offshoring is particularly strong when sourcing to low-quality countries.

When we begin to allow for heterogeneity in firms’ joint offshoring and quality decisions, the story becomes
more complicated. In particular, we find that lower quality firms that begin to engage in offshoring tend to
upgrade their quality relative to other firms’ within the same year, while higher quality firms that increase
their offshoring activity tend to downgrade their quality. We find evidence both at the aggregate and at the
firm level that quality ladders tend to tighten and the weight in the tails of the quality distributions tends
to shift to the right.

We build a simple model to guide us in our empirical approach. In our framework, firms endogenously
choose their sourcing strategy, their output quality and their price. Firms differ in their ability to produce
high quality goods. Moreover, firms at home have an absolute advantage in producing high quality goods
relative to firms based abroad. In line with our empirical results, we find that, when facing a trade shock
that affects the relative cost of producing at home or abroad, quality differences between firms are declining:
firms at the bottom of the quality distribution start offshoring and upgrade the quality of their products,
while firms with relatively higher quality that were already involved in offshoring engage in more offshoring
and downgrade their quality.

Our paper is related to several recent contributions in the literature. Both Bloom et al. (2012) and Utar
(forthcoming) provide strong evidence that increased competition from China led to massive restructuring
and increased innovation in the European apparel and textile industry, but do not explicitly focus on product
quality. Kugler and Verhoogen (2012) document and model how larger and more efficient firms choose
higher quality inputs and produce higher quality output that they sell at a higher price when the scope for
differentiation is large enough. Holmes and Stevens (forthcoming) show that quality differences can explain
the substantial size heterogeneity observed in many industries, and also that smaller, more focused and higher
quality firms were more resistant to the surge of imports from China. Closer to us, Amiti and Khandelwal
(2013) extend Khandelwal’s analysis using product level data from 56 countries to the US and find that lower
tariffs are associated with product upgrading for firms close to the world quality frontier, but discourage
upgrading for firms distant from the frontier. Roberts et al. (2012) use firm level data about export by
product and destination for Chinese footwear exporters and estimate a firm specific demand component
together with a cost and an export market profitability components. They find that both the cost and
demand components are related to firms’ success and they also document a reallocation of resources towards
more productive and higher demand firms following the removal of EU quotas. Piveteau and Smagghue
(2013) use similar French data to study the link between product upgrading and import competition. They
find evidence that firms improve the quality of their export products when import competition increases.5

5See also Martin and Méjean (forthcoming) who use a different empirical approach to study the same question. They also
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However, none of these papers focus on how firm-level offshoring decisions in advanced economies are related
to product quality. Analyzing this relationship is the main contribution of our paper.6

The remainder of the paper proceeds as follows. Section 2 provides a brief discussion on the Danish
apparel industry as well as the MFA and also presents some reduced form evidence about changes that
occurred over time. Section 3 describes the various datasets that we use. Section 4 presents an illustrative
model of offshoring and quality decisions that guides our empirical analysis. Section 5 details our empirical
methodology. Section 6 presents the results of our estimation and a discussion of the results. Finally, Section
7 concludes.

2 The Danish Apparel Industry and the End of the Multi Fibre

Arrangement

The Danish apparel industry is concentrated predominantly in the medium to high end segment of the fashion
industry. Denmark has a well established reputation in producing original design. The sector represents more
than 25% of the so called creative industries that were recently singled out by the Danish government as a
major component for future growth. It also experienced a dramatic growth over the last decade, increasing
revenue from DKK 37 billion in 2003 to DKK 56 billion in 2010.7

We identify our sample of firms in the apparel industry by looking at all firms that declared having
produced at least one type of apparel product in the Survey of Manufacturers (see the next section for
a detailed data description). Most firms are specialized in apparel, and we keep all firms with at least
90% of their sales in the apparel industry.8 This means that most of our firms are what Gereffi (1999)
refers to as “Branded Manufacturers” (OMBs) in addition to a few traditional apparel manufacturers. These
producers engage in production sharing with their offshore counterparts. I.e., these firms typically engage in
outward processing where raw materials or parts are purchased by the firms themselves and then exported for
assembly. This type of production is distinct from that of firms dubbed “Branded Marketers.” These firms
focus solely on design, distribution and marketing while contracting out the entire manufacturing process.
These latter firms have become increasingly common and now dominate much of the industry, especially as
“fast-fashion” grows in popularity.9

An apparel product is defined as any product in the 2-digit categories 61 and 62 according to the Combined
Nomenclature (CN). Table 1 shows the most common products made by our sample of firms. As we can see,
the most observed items in our dataset are relatively basic products, although they still incorporate a large
Danish design component.

find evidence of a positive relationship between upgrading and import competition through a reallocation of market share from
low quality firms to high quality firms.

6In addition to this growing empirical literature there is a theoretical literature on the interaction between offshoring
and productivity that suggests offshoring affects output and wages through a myriad of channels that may push in opposite
directions (Grossman and Rossi-Hansberg, 2008). While this literature is on productivity and quality, it suggests that the
effects of offshoring on certain firm variables may be ambiguous and requires empirical analysis.

7See Ministry of Business and Growth (2013), Denmark at work - Plan for Growth in the Creative Industries and Design.
8The distribution of sales is bimodal with a one peak around 90% and another around 1%. For the handful of firms between

1% and 90% of sales in apparel, we spot checked them and used industry codes to identify those firms were engaged in apparel.
Leather goods, shoes and bedding do not fall under the 61 and 62 headings, so our spot checks admitted those firms to the
sample.

9Fast-fashion refers to those firms that compete on responding quickly (or themselves defining) trends. These firms are often
concerned with quality as it pertains to the perception of “fashionability” and less with physical quality as this is often forgone
in order to keep price down and allow for faster response times. For a discussion of “lean-retailing” in general see Evans and
Harrigan (2005) or Cachon and Swinney (2011). The canonical example of fast-fashion firms with presence in the US are H&M
and Zara.
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The discussion above hinted at our concept of quality. Quality in apparel is normally broken down into
two components – the physical quality of the good (e.g., open-end spinning versus ringspun cotton, thread
count, non-bleeding dyes) and the “fashionability” of the item.10 Branded manufacturers exercise a great
deal of control over both of these as they often work on supplying parts to assemblers. Branded marketers,
while making contracts with and demands of offshored firms, have less control over the physical quality of
the good beyond demands they place on manufacturing firms. Because our firms fall in the former camp,
we believe they are best modeled as having a great deal of control over the output quality. What we cannot
do in our analysis (and will become clear in later sections) is separate physical quality from fashionability.
This can be a particularly big issue when thinking about apparel because “fashionability” can substitute for
poor physical input quality. In fact, this is the strategy behind many middle-end wholesalers who engage
in “fast fashion” where copying designers and putting clothing out quickly and cheaply has supplanted
more traditional design. The same is true of traditional manufacturers who engage in extensive marketing
campaigns. The fashionability discussion comes down to the fact that quality in apparel, unlike for some
other goods, is a relative concept as much as an absolute one. I.e., perceived fashionability may depend on
the menu of clothing, and changes quickly over time. The trickiness of interpreting quality will come back
(with less subtlety) in the empirical section. For now, we highlight that apparel quality is a rich concept
that leaves ample room for vertical differentiation – and, importantly, the source of quality differences is
something on which we remain agnostic. This discussion is particularly relevant for countries like Denmark,
which have comparative advantage in design and distribution. With this discussion of the industry in hand,
we turn to a brief history of the quota system that governed apparel through the early 2000s.

Starting in the 1970s, most trade in the apparel industry was governed by a series of quotas called the
Multi-Fibre Arrangement (MFA), and later the Agreement on Textiles and Clothing (ATC). The MFA was
phased out in several stages beginning in 1995 and ending in 2005. China entered the WTO in December
2001 and by January 2002 had dismantled many restrictions on its textile and apparel trade and caught up
to the transition path of other WTO members. Thus, China’s entry into the WTO provided a large, new
outsourcing opportunity for Danish firms starting around 2001. While China’s entry into the WTO is the
largest shock to the Danish textile industry, the phase out of the MFA/ATC in general led to large changes
in the industry. In this section we outline a few of the key changes that occurred over the duration of our
panel – especially in regards to the changing composition of firms engaged in the apparel trade as well as
the import decisions of apparel manufacturers in particular.

From 1997 to 2010, imports of apparel in Denmark grew by 26.5% in real terms. However, the value of
net imports fell, while in weight terms they continued to rise until very recently. A large part of the drop
in value comes from the crisis after 2007. However, even focusing on the years 1997-2007, the value of net
imports fell .28 log points in nominal terms while the weight increased .61 log points. Put differently, while
the physical number of goods entering Denmark from abroad has grown, their value at port has declined.
This pattern is shown in figure 1. Part of this can be explained by the extension of the European Union – as
Eastern European countries entered the EU, reporting requirements and prices changed. Moreover, there has
been a general (but not extreme) decline in the price index of apparel. However, while these two facts matter,
they miss the crucial compositional changes that can explain the stark patterns in imports over time. These
patterns can be more fully reconciled if one decomposes imports into those by retailers and branded marketers
versus traditional manufacturers and OMB firms (the latter group, recall, is our definition of a manufacturer).

10We are thankful to Avinash Vora for walking us through the daily goings-on of an Indian textile and clothing factory. Also,
to Line Lyngholm at Bestseller for helping us understand the Danish apparel industry. For an attempt at formally modeling
the distinctions noted above, see Liegey (1993).
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For pure importers, the value of net imports increased by 43.2% over the period; however, they decreased by
154.4% for manufacturers. This latter fact stems from the shrinking number of manufacturing firms. Put
together, the above points demonstrate a trade environment characterized by changing cost and markup
structure as both the cost of goods decline over time and the nature of imports change.

More evidence that these aggregate changes reflect changes in importer composition and import prices
comes from the sourcing and exporting patterns of the firms involved. While the former underwent substantial
changes, the latter changed very little. The customers of Danish apparel themselves appear to have changed
little – in 1997, 85% of Danish apparel exports go to just 7 countries and these same countries constitute 75%
of exports by the end of the sample. The countries themselves are all in Scandinavia and Western Europe,
consistent with the idea that Denmark specializes in high quality apparel, which it exports to its rich
neighbors. This pattern is similar when one breaks exports into those by pure importers and manufacturers.

While the exporting patterns change very little, there are drastic changes in the composition of imports.
To discuss the changing composition of imports, it helps to discuss apparel trade at non-manufacturing and
manufacturing firms separately. For manufacturing firms, we focus predominantly on imports of raw textiles
and apparel (that is to say, assembled goods that the manufacturing firms process or finish) and refer to
these as intermediates. These goods constitute over the years anywhere from 40-80% of all imports done by
apparel firms and on average constitute 60% of imports with a downward trend.11 As discussed above, there
was a rise in the share of apparel in intermediate inputs for Danish firms.

What is more interesting and relevant for an analysis of the global sourcing chain is the rapid increase
in sourcing from Asian countries and in particular China. Figure 2 documents the rise of China in Danish
apparel. Figure 3 breaks this down by domestic producers and pure offshorers and importers.12 While
movement to China was steadily growing, starting with its entry to the WTO, trade with China began to
rise rapidly and constitutes 45% of Danish apparel imports by the end of the sample. When we break things
down by domestic producers and not, we see that offshoring to and importing from China climbs to 45%
(and imports from China, Hong Kong and India climbs to 60%) for non-domestic firms and climbs from
about 4% to 16% for domestic producers. Moreover, in the latter group, we see the collapse of work being
done in Central and Eastern Europe (mostly Poland and Lithuania) and its being supplanted by trade with
China and Turkey. Overall, there is robust evidence that the end of the MFA and China’s entry to the WTO
resulted in massive changes in the Danish apparel industry – domestic producers moved their offshoring
services from countries nearby to Asia while other firms began both offshoring to and importing directly
from Asia.

A few studies suggest that in addition to changes in prices and productivity, the end of quotas can induce
changes in the quality of exported goods. Amiti and Khandelwal (2013) find that China upgraded the quality
of many of its products after the fall of the MFA, but this upgrading was heterogeneous and depending on
the initial quality. Moreover, as documented in Brambilla et al. (2010), Chinese apparel product quality
may have risen but decreased relative to the rest of the world. Both these results suggest that the MFA
shock led China to offer upgrade the quality of its cheaper, already lower-quality goods while focusing less
on the high-end segment of the market. In a similar vein, Manova and Zhang (2012) find evidence that
Chinese firms that expand and export “use higher quality inputs to produce higher quality goods.” Finally,

11This is actually an underestimate, especially later in the sample. Many of our firms have diversified away from consumer
apparel into industrial apparel as well as other textile products such as bedding, shoes, bags, etc and also into leather goods.
We don’t include these in our definition of intermediates.

12We do not make much of this distinction between these two subsets of firms, but our sample of non-domestic producers
includes those Danish firms that do design at home but offshore production (pure offshorers) as well as those firms that are
engaged mostly in retail, whole sale and distribution (traditional importers.)
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Khandelwal et al. (2013) find that the end of the quota system led to large productivity gains for Chinese
firms as more efficient firms entered the industry. The image of China that emerges in this discussion fits in
with a general trend of Asian countries that, in the past, have expanded their production activities. Gereffi
(1999) details a brief history of the apparel industry in East Asian countries over time and details a general
trend of starting out at focusing on low quality, mass production and improving industrial practices over
time.

3 Data

We employ several datasets provided by Statistics Denmark that paint a comprehensive picture of the apparel
industry in Denmark. The key datasets are the universe of customs transactions (UHDI) as well as production
data on all apparel manufacturers who employ at least 10 individuals or meet a revenue threshold (VARES).
For each firm, we observe all of their product lines at the Combined Nomenclature (CN) 8-digit level.13 For
each product line, we observe the product’s revenue value rounded to thousands of DKK and the number
units sold. This allows us to construct unit value which we use as a proxy for price. It is well known that
unit values can be a noisy measure of price – even at a highly disaggregated data the product definitions can
mask heterogeneity that moves unit prices even when no price movement has occurred. Moreover, in our
data set firms are prone to recording errors that are easily spotted. We clean our data in the following way:

1. Removing the top and bottom 1% in prices. In particular, we remove these within a product code and
after removing year means. This helps remove outliers that most likely represent recording errors or
unit-measure errors (e.g, unit values in the pennies or in the hundreds of thousands).

2. Removing those product lines with less than 45,000 DKK (roughly 7500 USD) deflated to the year
2000 price level. This helps avoid rounding errors – because revenue is rounded to the thousands while
units are recorded exactly, low revenue firms may end up with the same level of sales reported in our
data set but radically different levels of quantity sold.

3. Removing product-years where the price differs by the median price by more than a factor of 1. This
removes only a few observations that would not have been otherwise removed, but in our dataset we
find that some product prices will spike in a single year by an order of magnitude from the norm. We
assume these are recording errors hence their removal.

From a third database (FIRE) we observe employment, intermediates use and capital at the firm level. As
is usual in multi-product firm datasets, there is no mapping from firm-level inputs to product-level outputs
so this level of disaggregation remain unobserved.

In addition to data on sales and manufacturing inputs, we observe the universe of firms’ trade transactions
in Denmark by product and destination or origin. The firms in both datasets can be linked together. This
allows us to observe the import and export transactions of our apparel firms as well as other firms involved in
the apparel industry. The import and export data includes values (without rounding) and quantities so we
can construct unit values (a phrase we use interchangeably with price) for these goods as well. Combining
these datasets allows us to construct our instruments, as discussed in the next section.

13The Combined Nomenclature is the system for recording trade data used by the EU. The first 6 digits are the same as HS10
classifications and the last 2 digits are defined by the EU’s documentation. In the case of apparel, the last 2 digits distinguish
weight and material used in construction of apparel.
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Our production data panel runs from 1997 to 2010, thus covering China’s entry into the WTO, the
beginning of the dismantling of the MFA, and the conclusion of this operation in 2005. Our data on trade
begins in 1993 as does our data on employment and other firm side variables. Some of our aggregate statistics
on trade exploit the full length of the panel, but mostly we focus on the time frame of 1997-2010 so that we
can focus on those firms that we know are producing domestically and nothing else.

In addition to these datasets, we bring in several outside data sources. Data on quotas comes from the
EC’s SIGL database. This database includes product-level data on quota utilization, quota fill rates and
license volume for the entire length of our panel. For data on exchange rates we used data published by the
IMF’s International Financial Statistics and the Federal Reserve’s FRED Database.

4 An Illustrative Model

Before turning to the empirical analysis, we present an illustrative model of a firm that makes three decisions:
an output price, an output quality and a sourcing strategy. The model yields some predictions of how the
distribution of firms’ quality (what we will call the quality ladder) changes in response to new offshoring
opportunities. To keep the model as parsimonious as possible, we abstract from any exporting behavior of
the firm and assume there is a single composite input. Moreover, all propositions regarding falling trade costs
are done in a partial equilibrium manner – i.e., we do not assume that domestic prices of inputs themselves
change in response to changes in the prices of foreign inputs. We should also notice that this model is
actually a model of sourcing decisions by the firm whereas one thinks of offshoring as a particular kind of
sourcing – the substituting of in-house labor for foreign-labor. We only deal with this distinction in the
empirical section.

Before turning to the firm, we briefly discuss consumers in this model. The representative consumer in
this model has standard CES preferences with quality shifters given by:

U =

(ˆ
J

[v(j)x(j)]
σ−1
σ

) σ
σ−1

where j indexes a variety produced by a firm j, J is the set of all varieties, vj is the quality of variety j, x
is the quantity consumed of a given variety and σ is the elasticity of substitution between any two varieties.
This admits a well known demand function given by:

x(j) = Av(j)σ−1p(j)−σ

where A is an aggregate demand shifter that depends on the ideal price index generated by the CES prefer-
ences above and aggregate income. Firms ultimately take A as given.

Now consider a firm j that faces a constant unit cost. The quality production function is

vj = ψα

where ψ is the input quality from a single composite input and α < 1 implies thare are diminishing marginal
returns to input quality.
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The cost of the input is linear in its quality14 and given by:

c(ψ) = as +
(
bs/ω

zs
j

)
ψ

where s represents the sourcing strategy of the firm.
The firm can either decide to produce at home (H) or abroad (F). Depending on their choice, they face

a fixed per-unit cost as that the firm pays regardless of quality, and a variable term bs/ω
zs
j that the firm

pays for higher quality inputs. While bs is constant for all firms that choose a similar sourcing strategy, the
variable cost per unit of input quality diminishes with the firm’s ability to produce quality ωj . The ωj term
is drawn from a distribution Ω and varies across firms. zs ≤ 1 is a term that represents the loss in a firm’s
ability to transform quality depending on sourcing. In the extreme case that zH = 1 and zF = 0, the firm
is able to utilize it’s own productive capacity if its produces in house but has no ability to curb quality cost
if it offshores.15 In addition to unit costs, firms will pay a fixed cost of operation, f .

Moreover firms have a Hicks-Neutral productivity shifter, λj , inherited from a distribution Λ. The actual
cost paid by the firm is c(ψ)/λj .

Thus, the profit function of the firm is given by:

π(v, p) = Avσ−1p−σ (p− c(ψ)/λ)− f

As the demand is CES, conditional on a sourcing strategy and quality choice, the price will be a constant
proportional markup over cost. With the price concentrated out, the profit function can be written as:

π(ψ) = κ1(λjψ
α)σ−1c(ψ)1−σ − f

where κ with some subscript will always represent some constant that does not depend on any productivity
parameters, quality parameters, or parameters that differ with source. The FOC for this problem can be
written as,16

α
c(ψ)

ψ
=c′(ψ)

14It is trivial to make the costs convex and of the form as+
(
bs/ω

zs
j

)
ψγs with γs > 1 ∀s. However, no results will depend on

this and it adds unnecessary flexibility to the cost function. The additive structure can be rationalized if production is Leontief
in two components – a homogeneous piece and a heterogeneous one.

15To motivate this a bit more, one can imagine that the composite input comes from two inputs – in-house labor and materials.
A firm has access to labor-augmenting technology. Thus, if it uses a production plan that is more in-house labor intensive it can
exploit said labor-augmenting technology; but if it engages in a more materials-intensive production plan and uses less labor the
total productivity effect of the labor-augmenting technology is diminished. Alternatively, this can represent “communication
costs” in the vein of Grossman and Rossi-Hansberg (2008).

16In fact, CES preferences are not necessary for this fact. Any demand system generated by a representative consumer with
preferences of the form U(x1v

α1
1 , x2v

α2
2 , ..., xJv

αJ
J ) would yield the same first order condition as long as the firm’s problem is

completely static and there are no fixed costs that depend on quality. The first order condition comes directly from the fact
that when quality and quantity substitute in a multiplicative way the entire problem can be restated in terms of picking quality
adjusted quantities

(
x̃i = xiv

αi
i

)
and prices

(
p̃i = pi/v

αi
i

)
. See Feenstra and Romalis (forthcoming) for a related discussion.
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Plugging in the specified function for costs implies that, conditional on a sourcing strategy,

ψ∗ =
α

1− α
ωzsj

as
bs

c∗s =
as

1− α
p∗s =

σ

σ − 1

as
1− α

π∗s = κ2λ
(σ−1)
j (as/bs)

α(σ−1)
ω
zsα(σ−1)
j a(1−σ)

s − f

where the asterisk denotes optimal choices. Notice that firms will only produce if they can assure themselves
positive profits. This draws out an area in Λ×Ω space where firms will actually produce. Thus, changes in
costs and aggregate demand parameters (which are captured by κ2) will affect entry and exit.

We will assume that aH > aF but bF > bH . These two restrictions say that the home country has an
absolute advantage for high quality input production, but the foreign country has an absolute advantage for
low quality input production. To determine if a firm offshores, she will compare the variable profits from
each sourcing stategy:

πH
πF

= ω
(1−zs)α(σ−1)
j

(
aH
aF

)(σ−1)(α−1)(
bF
bH

)α(σ−1)

Which leads to a cutoff for offshoring:

ωj ≤

(aH
aF

) (1−α)
α
(
bH
bF

) 1
(1−zs)

If the term zs = 1 then all firms either offshore or produce domestically. Moreover, it is clear from the
expression above that there will be a discrete jump in quality between offshorers and domestic producers
near the cutoff.

The derivative of the cutoff with respect to either bF or aF is negative – so as trade costs go down
the offshoring cutoff increases. The change in quality associated with a change in the cost schedule cF (ψ)

depends on how the ratio (aF /bF ) changes. This is clear from the expression. A decrease in the fixed part
of the unit cost leads to a decrease in output quality – the firm does not need to increase quality too much
to recuperate that portion. On the other hand, a decrease in the variable part of the unit cost leads to an
increase in quality since it becomes cheaper to produce. Finally, a standard iceberg trade cost would have
no affect on output quality choice since it would perfectly cancel out. The reason for why the derivative of
quality with respect to as is positive is similar to the reasoning for the Alchian-Allen effect (see Hummels
and Skiba, 2004).

To summarize, this model yields the following propositions:17

17The relevant content of the model is summarized in this proposition. In the appendix we present a second model that has
no closed form solution and places slightly different assumptions on costs. Importantly, in this general case with fixed costs
of design and a more general marginal cost structure, we show that the content of the proposition holds. In particular, under
assumptions of log supermodularity between trade costs and quality, it will be the case that the first part of the proposition
holds. Because both this simple, closed-form model and the more general model both yield the same predictions we focus on
the first case.
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Proposition 1 (Quality). If aF and bF decrease and, moreover, bF decreases faster than aF so that bF /aF
decreases then,

1. Firms that were already offshoring will increase their quality.

2. Some firms will begin to offshore and their quality will decrease.

3. Firms of sufficiently high quality will not respond.

On the other hand, if aF and bF decrease and aF decreases faster than bF then,

1. Firms that were already offshoring will decrease their quality.

2. Some firms will begin to offshore and their quality will decrease (relatively more than in the other
scenario).

3. Firms of sufficiently high quality will not respond.

Proposition 2 (Entry/Exit). If A stays constant and as and/or bs decrease then low quality firms enter.
However, if A decreases then the joint distribution of λ and ω determines entry and exit patterns.

The above characterizes very sharply how the length of the quality ladder (the difference between the
highest and lowest quality) and the shape of that ladder (where there is mass) changes. This proposition
also yields sharp predictions about heterogeneity in the response to offshoring. In particular, we expect
“middle quality” firms that had initially low offshoring to increase their offshoring activity and downgrade
their quality more than low or high quality firms.

When we turn to the data, it will turn out that nearly all firms engage in at least some offshoring activity.
Hence one should think of this model as largely descriptive. To operationalize this proposition in the data
we will focus on looking at how the shape of the quality ladder changes and how firms at different positions
along the quality ladder respond to new offshoring opportunities. First, quality is a relative statement, so
looking over time will require us to see how firms compare to the mean of the distribution. In particular,
we modify our predictions about heterogeneity to suggest that lower quality firms ought to increase their
offshoring and their quality relative to other firms, while middle and high quality firms ought to offshore
even more while moving closer to the mean relative to other firms (downgrading) or having a more muted
response. Bringing entry and exit into the situation completes the picture and allows us to discuss higher
order moments of the quality distribution. In particular, we also explore the skewness of the distribution.

It is important to highlight the crucial role of vertical differentiation in this context. In this model,
vertical differentiation is not simply a productivity shifter or demand shifter as in the standard set up –
rather two sources of heterogeneity separate physical productivity and quality capablity. More importantly,
this quality capability is affected by the firms’ sourcing decisions. If this ingredient were not there, then the
results would be radically different. In particular, in the absence of fixed costs of importing that depend
on quality, we show in the appendix that in a very general model neutral shifters of revenue do not change
firms’ optimal choice of quality. On the other hand, some kind of complementarity between sourcing strategy
and capability (as in this model) or between capability and design (as in the fixed costs case) can generate
a heterogeneous response of firms to new offshoring opportunities. The idea of non-neutral differences in
firms’ ability to change the quality of a particular variety is what sets vertically differentiated markets apart
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from those that are horizontally differentiated.

5 Econometric Model

Before moving to the analysis of imported inputs and offshoring we first need to define more clearly our
structural estimation procedure for extracting quality from price and sales data. This section outlines our
econometric model, including consumer demands, timing assumptions and decision making by firms, as well
as the details of mapping our model to data and instrumenting strategy.

5.1 Consumer Demand

We follow the recent work of Khandelwal (2010) and Amiti and Khandelwal (2013) in using the discrete
choice framework common in IO and labor to model consumer demand. In particular, assume that consumer
i has indirect utility for good (j, t) given by,

Vijt = δjt − αpjt + εijt

where δjt is a common taste for product jt, p is price and ε is a consumer specific taste shock for product jt.
We assume that ε is distributed as generalized extreme value (GEV). The GEV distribution allows for more
complicated substitution patterns than the extreme value distribution. In particular, it allows for goods to
be grouped into non-overlapping “nests.” This allows one to model the agent as first picking a nest, then -
conditional on their nest - picking a good. Formally, consumer i picks good jt iff

Vijt ≥ Vikt∀(kt)

Berry (1994) shows that in the limit of a continuum of consumers, the market share for product jt is
given by,

sjt =
e(δjt−αpjt)/(1−σ)∑
k∈Jgj

e(δk−αpk)/(1−σ)︸ ︷︷ ︸
Within Group Share

(∑
k∈Jgj

e(δk−αpk)/(1−σ)
)1−σ

∑
g

[(∑
k∈Jg e

(δk−αpk)/(1−σ)
)1−σ

]
︸ ︷︷ ︸

Group Share in Total

where σ is a parameter that governs nest substitution, g indexes nests (or groups) and Jg is the set of
products in nest g. In the same paper, he also demonstrates the following transformation of the data that
allows for estimation of model parameters in a linear setting:

log sjt − log s0t = δjt − αpjt − δ0t + σ log sjt/g

where s0t is the market share of some outside good and sjt/g is the within group share of product jt. There
are J × T observations here but a total of (J + 1) × T + 2 parameters. Since we can only truly estimate
(δjt − δ0t), we are free to make one normalization and so we set δ0t = 0. This still leaves the problem
unidentified, and so we adopt the practice of splitting the quality parameter into fixed effects and an error
term. In particular, we set δjt = δ1

j + δ2
t + δ3

jt where the first term represents the average quality of good j,
the second term represents a secular trend in quality growth and the third term is a product-time deviation.
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We will treat the last term as a regression error and so we have the new estimating equation,

log sjt − log s0t = δ1
j + λt − αpjt + σ log sj/g + δ3

jt

where λt = δ2
t − δt0 is secular growth in quality relative to outside good growth – this subtlety will be very

important later on. In general, δ3
jt is correlated both with price and the nest share. We will discuss our

instrumenting strategy in detail in subsection 5.4. This strategy will depend on our model of firm production,
so we turn to that now.

5.2 Firms’ Decisions

Since all of our estimation is done off of the demand system, we do not need to make strong assumptions
about what happens with production. However, in order to explain our instrumenting strategy, we present
a basic outline of the timing of production decisions. We assume that the firm goes through three stages in
each period – and only makes decisions in two of them. In the first stage, firms decide on their quality and
production plan given expectations about costs and demand. In the second stage, a vector of costs shocks
is realized and the firm produces. Finally, in the third stage, they set prices and compete. The timing
here is typical in quality models and is similar to that found in Sutton (1998, 2012). The timing of the
shocks is similar to that employed by Ackerberg, Caves and Fraser (2006) – decisions are made after the
realization of an initial TFP shock and then there is a second ex-post productivity shock.18 Notice that, as
one would expect, price is mechanically correlated with quality through both its impact on the markup and
the marginal cost. As usual, we solve this problem using backward induction.

In the final stage of the period (after cost uncertainty has been revealed), firms set their prices and
compete. Suppose as in Berry, Levinsohn and Pakes (1995) that there are F firms active on the market
producing differentiated products. Each firm produces a subset Γf of the J products available on the market.
Consider first the short run profit function of firm f :

Πf =
∑
j∈Γf

(pj −mcj) qj

=
∑
j∈Γf

(pj −mcj)Msj (p, δ;ϑ)

where qj is the quantity of good j produced by the firm, pj is the price of the product, mcj is the marginal
cost19, M is the size of the market and s is market share, that depends on the price vector, as well as the
unobserved quality of the good, δj .20 Our first major timing assumption is that firms optimize statically –
i.e., they can costlessly move prices and quality each period.

18This timing assumption is admittedly not without loss of generality. While we do allow for predictable TFP shocks, De
Loecker et al. (2013), for example, use price directly in the first stage of an OP-style production function estimation. Thus, in
their model, unanticipated production shocks are by construction uncorrelated with price. In the industry we examine, apparel,
the design and planning process happens, by definition, before production takes place while marketing and selling logistics occur
after (Frederick and Staritz, 2012). Thus, we think it reasonable to assume that “physical quality” – design and input sourcing
– are determined before production cost shocks that price may respond to are realized.

19BLP models this as a function of the observed characteristics of each specific product wj and an unobserved component
$j . In the final stage, it is considered as given to the firm. Our assumption is that marginal cost is not known until quality
decisions (now endogenous) have been made.

20Since this model is for explanatory reasons rather than analytic results, we have allowed δj to indicate quality for both the
firm and consumer; in general, all we would need is for there to exist a monotonic function g(ξj) = δj that maps from the firms’
“physical quality” to the consumers’ “tastes quality.”
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Maximizing profits with respect to price, we get the following FOC:21

sj (p, δ;ϑ) +
∑
j∈Γf

(pj −mcj)
∂sj (p, δ)

∂pj
= 0

Given the pricing strategy, in the first stage the firm’s expected profit is given by,

E

∑
j∈Γf

(
pj

(
~δ, ε
)
−mc(~δ, ε)

)
Msj

(
p, ~δ;ϑ

)
where we have momentarily used the vector notation to make explicit that the firms’ decisions depend on
the whole vector of choices. We assume that mc(δj , ε) depends on quality and some vector of possible cost
shifters that the firm has not yet learned. The expectation is over these shifters and of other firms’ shifters
(since they all jointly determine relative market shares). Firms choose quality to maximize profit, expecting
a cost shock in the second stage and price competition in the final stage,

E

∑
j∈Γf

(
∂pj
∂δk
− ∂mc(δj , ε)

∂δk

)
sj(p, δ;ϑ) +

∑
j∈Γf

(
pj

(
~δ, ε
)
−mc(δj , ε)

) ∂sj
∂δj

 = 0

After this, the shock ε is realized and firms produce. The crucial difference between this model and a
model where quality and price are determined simultaneously is the presence of the expectation operator
in deciding on quality. Thus, while δj will depend on expectations of cost shocks, it will be uncorrelated
with particular realizations. This assumption will allow us to exploit the orthogonality between certain cost
shocks and unobserved quality in estimating the demand model’s parameters. This strategy parallels the
proxy method of estimating production functions where one uses assumptions about timing of investment
and hiring decisions relative to realization of productivity innovations to identify certain parameters.

For the eventual estimation of quality growth, we need no further assumptions on production. Our
assumptions on demand structure are somewhat stronger, but follow the standard in industrial organization.
We now turn to a discussion of the data as well as a more detailed look at the precise set of estimating
equations and instrumenting strategy that we employ.

5.3 Nest Structure, Trade and Market Size

In the apparel industry, goods are split into knitted and crocheted wear and also woven wear. Our nests
ignore this distinction and are based on combining 4 digit Combined Nomenclature codes which are the
same as 4 digit HSIC codes. Thus, the nesting structure is based on the type of apparel product and ignores
construction-method, fabric and weight (when available). The nesting structure respects gender whenever
possible. In total there are 16 nests listed in Table 2 In our estimation, we remove the accessories category.
This is a matter of over-aggregation within an 8 digit code – year to year price and quantity data is very
erratic for such a broad category at the firm level. Within each nest, we observe products at the 8 digit
level. These are highly disaggregated and normally include the particular type of garment, the material and
sometimes characteristics or weight. For example, some products are “Men’s suits, of wool or fine animal hair,
knitted or crocheted” and “Women’s knee-length stockings, measuring per single yarn less than 67 decitex,
of synthetic fiber.” We will define a variety as a CN8 code at a particular firm. Thus, if 2 firms both make

21While we allow for some general form of competition, as is standard in this literature we assume that the equilibrium is at
the point where firms’ solve their first order conditions (Caplin and Nalebuff, 1991).
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men’s wool suits, then they are counted as two separate varieties. This structure leaves us with around 3,000
varieties in the sample. As discussed in the section on consumer demand, we break up each variety’s quality
into a fixed component, an economy-wide time varying component, and a product-time deviation.22

Before discussing our instrumenting strategy, some discussion of the outside good is in order. As is
typical in the demand literature, the outside good can often be very important for estimation. In our
setting, because we use time-fixed effects, the choice of outside good will not matter for our estimates of
any parameters or elasticities. However, the outside good will largely determine the shape of the time-fixed
effects which determine aggregate changes in quality over time. This is obviously of great importance to our
estimates. For the outside good, we use the total quantity of imports into Denmark. This means that after
quotas fall and imports into Denmark dramatically increase, the outside good grows and this influences our
quality estimates. We will discuss interpreting this more in the results section. In effect, this fact leads us
to focus on looking at how firms respond within time periods and over long differences instead of focusing
on year-to-year differences. However, we also discuss several strategies based on movement along a unit-free
quality ladder than helps to distinguish relative quality growth of firms.

5.4 Instrumenting Strategy

The standard endogeneity issue in demand estimation is that price will be correlated with the unobservable
demand shock. This is also true of the nest share – and in fact, the unobservable is theoretically a direct input
into a product’s within nest share. Hence, estimating this model relies on locating suitable instruments. The
problem of finding plausibly exogenous instruments in the structural framework is that quality and price are
chosen concurrently. In fact, many “cost shifters” that an econometrician might identify – e.g., wages – are
almost certainly a reflection, at least partially, of the quality of an input. Given the discussion in section 3,
we believe that unanticipated shocks to costs may actually be plausibly correlated with price but not with
quality. This idea was exploited in the work of Foster, Haltiwanger and Syverson (2008) who used structural
estimates of innovations to firm’s productivity as instruments. This particular strategy relies on the idea that
output and input are homogeneous, and so any differences in productivity truly reflect supply-side shocks.
Our environment is one of vertically differentiated goods, and so we attempt to construct cost shocks directly.

Denmark’s size and location within the EU leads to an economy where the vast majority of firms engage
in some trade. Our instrumenting strategy relies on the idea that trade, via exchange rate risk, leads to
unanticipated cost shocks to the firm. In particular, we will use forecast errors on exchanges as instruments.
Implicitly, we are assuming that a firm’s quality is fixed conditional on the choice of a sourcing strategy
and that at least some exchange rate risk is passed through in price. The source of variation arises from
cross-sectional heterogeneity in import mixes across firms.

To make things more explicit, we model exchange rates as a simple exponential AR(1) process:

ect = eρcct−1 exp(µc + σczct−1)

22At this time, our estimation ignores the distinction between domestic sales and foreign sales by firms. If exports and
domestic sales are highly correlated, since we use market share measures instead of levels-measures, this problem is abated. In
an extreme situation, if domestic sales (in quantities) were a constant fraction of total sales (i.e., qdomft = qftθt) for all firms,
then there would be no problem with our estimates. If there is no systematic relationship between share of exports in output
and our instruments, then our aggregation of exports and domestic quantities would lead to higher variance of our estimates
but no bias. If the share of exports is systematically correlated with our instruments, then there is bias. It is difficult to sign
this bias given our instrumenting strategy, however in section 6.1 we assess the validity of our parameters and find that our
parameter estimates fall in line with the literature while our quality measures correlate with important firm level variables.
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Taking logs this can be expressed as an AR(1):

εct = µc + ρcεct−1 + σczct

where c indexes countries, zct ∼ N (0, 1), σc is the error variance and (µc, ρc) govern the AR process. The
AR(1) was chosen because of the forecasting powers of simple random walks.

After estimation one can construct forecast errors as:

η̂ct = εct − Ê(εct)

The instrument is given by:
ζ1
ft =

∑
c

η̂cts
imps
ft,c

where f indexes firms and simpsft,c is the share of firm f ’s imports that are from country c.23 Notice that
this instrument is measured at the firm level, while the demand equation is at the product level. Hence, we
cluster all errors at the firm level.

To instrument for the nest share parameters, we use sales weighted averages of the cost shocks across
a firm’s competitors within a nest. This is similar in spirit to the approach used by Berry, Levinsohn and
Pakes (1995), who use own product characteristics as instruments for price and average characteristics of
firms’ competing products as instruments for their nest share. The instrument is constructed as follows:

ζ2
ft =

∑
f ′ 6=f

ssalesf ′t ζf ′t

Aside from the issue discussed above, there are several possible threats to internal validity, and we
attempt to address them now. First of all, since sourcing strategies are endogenously determined alongside
quality, our first instrument may be invalid. However, since all firms engage in some trade, this problem only
occurs if there is a systematic relationship between quality and the exchange rate risk posed by different
countries. For example, if low-quality input countries also have higher exchange rate risk than high-quality
input countries, the E(δit|ζ1

ft) 6= 0. However, even if this were true, this does not mean that exchange rate
errors and unobservable quality are not uncorrelated. I.e., E(δitζ

1
ft) = 0. This will still be true by our timing

assumption and given that forecast errors are mean 0.
The fact that we use unanticipated shocks should strengthen the validity of these instruments. Exchange

rates can be correlated with quality if exchange rates in levels are informative about sourcing patterns. The
use of shocks to other firms as a natural extension of the BLP procedure is also a useful new instrument.
Past papers have relied on the use of the number of competitors to identify nest parameters – however, this
relies on making assumptions about the response of quality to firm entry and exit. As we are interested
in examining precisely entrants and exiters in our data, we want to rely on instruments that do not make
assumptions about these groups and the markets.

To conclude this section, we briefly discuss the clustering strategy and particular choice of estimation
method. Our instruments are firm level while the unit of observation is a product. It is also plausible that
unobservable quality decisions may be autocorrelated for a particular product – in fact, we assume as much
as we are studying quality upgrading. To address both of these concerns, we employ the two-way clustering

23We ignore those countries that are part of the European Exchange Rate Mechanism (ERM 2) as the Danish Kroner is
pegged to the Euro (and varies less than 1% around the peg).
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strategy suggested by Cameron et al. (2000). Thus, we allow for arbitrary correlation of demand across
products within a firm each period, and across time for each period.

6 Results

6.1 Parameter and Quality Estimates Overview

For the sake of comparison, we run an OLS estimate, simple logit model and the full nested logit. The results
of the estimation are shown in table 3. First, notice the expected biases in the OLS estimate: both price
and nest share are positively correlated with unobserved quality, which drives both coefficients up. In the
simple logit model, the estimate of price is pushed up a great deal – this stems from omitting the nest share
and imposing overly restrictive substitution patterns. The final nested logit model successfully removes the
upward bias and all coefficients are significant – this is even with our fairly conservative clustering strategy
which allows for arbitrary auto-correlation in the error term within products over time and also across a
firm’s products in a given year.24 Our estimated price coefficient of −.0077 falls comfortably in the range of
parameters estimated by Khandelwal (2011) for all industries, where the median estimated coefficient was
−.001 and the IQR for all coefficients across industries was .070.25

Before turning to questions about offshoring, we explore the plausibility of our results by looking at
several statistics implied by our structural estimates. First, we can back out implied price elasticities that
are derived from the nested logit model as follows:∣∣∣∣d log sj

d log pj

∣∣∣∣ = ε = αpj

[
1

1− σ
− sj −

σ

1− σ
sj/g

]
where α is the price coefficient and σ the substitution parameter. In the event that σ = 0, this collapses to
the familiar formula for logit demand. Figure 4 contains the density of elasticities implied by our estimates.
They are fairly reasonable – the mean elasticity is 1.90 and the median is 1.66. There is substantial hetero-
geneity within nests and table 4 contains summary statistics by nest for the 5 largest nests. In this table we
see that cross-nest heterogeneity in elasticities can be very high – with women’s coats and men’s coats (not
pictured) containing many of the outliers. This might reflect either model rigidity – the same substitution
parameter may not be right for all nests. However the assumption keeps things simple without an enormous
cost to plausibility. It may also just reflect the idea that men’s coats and women’s coats have a dispropor-
tionately large number of high quality, highly inelastically demanded goods. The range of elasticities is a bit
larger in absolute magnitude than those found by Khandelwal, but we believe that makes sense here as our
more disaggregated goods might be more substitutable. Importantly, the magnitude of elasticities is highly
correlated with quality, which again suggests that the estimated parameters implied by the model display
internally valid properties. It is important to note that nothing in our estimation forces these patterns to
hold.

In addition to looking at the implied elasticities, we can see how our estimates of quality correlate
with unit values, adjusting for various confounders – a common approach in the literature. Table 5 below

24In fact, the most conservative possible clustering strategy would be by firm and allow for arbitrary cross-product-time
correlations. We found that in this case our results are more precisely estimated. We have chosen to report the results that
work the most against us since we still find them plausible and significant.

25Khandelwal ran his regression using 2 digit SITC industries to define a goods-market, defined 6-digit products as goods
and defined country-product pairs as varieties. Thus, he is estimating a more aggregated system than we are but we take his
estimates as a useful benchmark for comparison. See Roberts et al. (2012) for a similar study of the Chinese footwear industry
using firm-level export data at the product level.
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summarizes the correlation between price, quality, elasticity and size. As expected, quality and price are
highly correlated – but imperfectly so. Figure 5 plots this relationship with nest and year means removed.
The red line is a lowess fit that is nearly linear and clearly upward sloping. Price and size, measured by
employment, are more correlated than quality and size – but all signs are positive. We cannot necessarily
establish causality but it speaks to the idea that larger firms can exploit market power in addition to physical
quality in order to raise prices. The work of Kugler and Verhoogen (2012) suggests that quality explains
the correlation between size and price. One way to see if our results are consistent with this hypothesis is to
run their reduced form regression of employment on price controlling for quality. To that end, we run the
following regression:

logPjft = αj + αt + β logEmpft + γδjft + εjft

where δjft is our estimate of quality. Here, we purge the regression of product (at the Combined Nomenclature
8 level) level and time fixed effects. For the sake of comparison, we also run a regression with firm-CN8 pair
fixed effects – i.e., we also look at the coefficient employing only within firm-product variation. The results
of this set of regressions are in table 6. We can see here that, when we look at the price-size correlation
controlling for observed quality, the coefficient decreases. If we look only at within product-firm variation, we
find that the employment effect becomes insignificant while the importance of quality goes up considerably.
In either specification, we find quality to be an important piece of the size-price correlation. Our quality
estimates are positively correlated with price and size in statistically significant ways and help explain away
part of a phenomena that they could not do if they were just noise. We take the collective results above
as important proof that the quality estimates derived by the model do capture something non-trivial about
firm’s products.

It is important to remember that what we measure is not necessarily quality in the sense typically
understood. As discussed in section 2, we do believe that firms exercise a great deal of control over consumer
tastes for their goods. However, the way this is done is multifaceted – some firms may actually change the
physical quality of their good in the sense of improving the material (e.g. thread count, spinning method)
or they may alter their distribution to offer a wider variety of goods that change over short intervals. They
may also engage in increased marketing or in improving the aesthetic content of their output. We remain
agnostic on the source of quality differentiation and, indeed, we believe that most likely firms of a different
initial quality are changing their quality by exercising different options available to them. Importantly, for
our analysis, this agnosticism does not change the content of our observations. As long as quality reflects
real resources of some kind (distribution networks, designers, inputs, etc.), then analyzing how offshoring
correlates to our estimated quality measure will reflect important information about firms and their actions.

6.2 Quality Evolution and Quality Ladders

To think about how offshoring and the entry of China impacted product quality over time, we need to be
able to measure the secular growth in quality. It turns out that, in this methodology, this is an impossible
task without making unreasonable assumptions. The details of this will be made clear below. However, as
discussed in Section 4, we have predictions about what should happen to the distribution of quality over
time. By looking at centralized moments of the quality ladder over time, we can still say a great deal about
how the growth of China in the time series and the time series of aggregate quality comove.

To formally explore our predictions from section 4, we first define a good’s position on the quality ladder
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at time t as

ljt = δj + δjt −
1

nt

n∑
i=1

(δi + δit)

That is to say, it is the good’s quality purged of the time fixed effect and demeaned. Our quality ladder is
unitless but cardinal: the magnitude in difference between positions is a measure of the quality difference
between products. The changing shape of the quality ladder gives insight into aggregate changes. In order to
get a sense of how the distributions of quality change, figure 6 plots the density of the ladder measure at the
beginning and the end of our sample. Immediately a few patterns emerge: the right end point shifts in, and
there is more mass in the center of the distribution. Harder to see, but a strong fact that we demonstrate
below is that the distribution also becomes increasingly left skewed. The issues with interpreting these facts
is universal in demand estimation over time and we will discuss this further below. In spite of these facts,
we argue that focusing on higher moments of the quality ladder gives us insight into the effects of import
competition and offshoring – and which effect dominates in the aggregate. This is drawn into sharper focus
when paired with our firm-level analysis in subsection 6.3.

First, we explain the problems with analyzing changes over time and motivate looking at moments
besides the first. Recall that time fixed effects serve as secular shifters of quality relative to the outside good.
Hence, if there is a large shock to the supply of the foreign good (such as quotas being dismantled or tariffs
decreasing), then this will be picked up as a negative demand shock to domestic goods. This is a weakness
of any demand model that regress shares on prices. In particular, this method usually estimates δit − δ0t
where δ0t is the outside good’s quality. Hence, as long as the share and quality of the outside good is stable
over time, then looking at changes in δit reflects changes in quality. However, if the share of the outside good
is changing rapidly, which is likely to be the case in international trade when large liberalizations are often
the empirical object of interest, then one cannot easily interpret changes in absolute quality over time.

This does not mean that changes over time are completely meaningless. To understand this, consider the
following definition of aggregate sales weighted quality:

Qualt =
∑
j

δjt
salesjt∑
i salesit

that defines an “industry” level aggregate quality. Ideally, it would pick up secular growth in quality and
we could look at quality changes relative to this trend to determine if goods are downgrading or upgrading.
However, as we just discussed this is unlikely to be the case. This can be seen in figure 7, which plots the
evolution of our aggregate measure of quality. This graph appears to trend upward from 1997 to 2004 or so,
then nose-dive around 2004 and 2005 as the MFA came to a close. Then, noisily, it appears to flatten out
before beginning to move up again later in the sample – highlighting that the quality and supply of import
competition contaminates over-time changes.

To help tease apart the economic forces at play in this quality growth, we use a decomposition of aggregate
quality growth that is common in the productivity growth literature. In particular, we break out quality
growth into the following components:

Qualt −Qualt−1 = δt − δt−1︸ ︷︷ ︸
Time Trend

+
Nentrants

Nt
δ
Entrants
it −

Nexits

Nt−1

δ
Exits
it−1︸ ︷︷ ︸

Composition

+ ∆δ
Stayers
it︸ ︷︷ ︸

Idiosyncratic Growth

+ [Cov(δjt, sjt)− Cov(δjt−1, sjt−1)]︸ ︷︷ ︸
Reallocation

where sjt is the sales share of product j at time t. The first term measures the secular change in quality,
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contaminated by changes to the outside good. The second captures the effect of entry and exit. The third
captures the changes to firms that are present in both periods (Notice that within this effect are two smaller
effects: the actual idiosyncratic changes to quality of surviving firms as well as the shifts in weight that these
firms receive in the aggregate calculation). The last term captures the covariance between market share and
quality.

Figures 8-10 show the time fixed effects in levels, the composition effects (a growth rate) and again the
evolution of the covariance term in levels. One can see that the dismantling of the MFA and fall of the quotas
(in as much as these drive the time fixed effects) come out as a massive negative shock in the estimates that
is particularly pronounced around 2004 and 2005. The graph of fixed effects demonstrates the problem in
looking at estimates over time. On the other hand, the other two figures give us some useful information on
aggregate movements. Figure 9 plots the contribution of entry and exit to changes in the quality. One can
see that there is a sharp upward trend in this graph: it starts negative and ends the trend positive – reversing
sign around the time China enters the WTO. To interpret this figure, think of the composition effect as where
new entrants enter on the distribution of quality. After the WTO shock, new entrants are of higher quality
relative to incumbents and pushed mean quality up. This is in line with the point made in Section 4 that a
negative aggregate demand shock to domestic producers should change the entry cutoff in such a way that
induced entry of higher quality competitors. It is difficult to determine whether the radical changes in trade
barriers that occurred from 2001-2005 were alone responsible for this trend. However, the figure suggests at
least some response – that import competition might drive quality upgrading in the aggregate by moving it
at the extensive margin.

The final figure plots the evolution of the covariance term between quality and market shares. This term
appears to be flat around 2003, then drops considerably and flattens out again in 2005 and onward. A lower
covariance between quality and market share may reflect the fact that new entrants are of relatively high
quality but of low market share. However, it could also reflect a trend of relative quality downgrading among
established firms. This latter possibility aligns with our observation that offshoring induces tightening of the
quality ladder – in the extreme where all firms only produced one quality there would be zero correlation
between market size and output quality as the former would be determined solely by productivity. In
some sense then, this decreasing covariance term (the opposite of what one expects for the productivity
decomposition) reflects that offshoring allows firms to more easily produce similar quality goods but has a
more muted impact on the ability of firms to scale their production. Nevertheless, it is difficult to discern
these effects from each other since much of our analysis is about movement along the quality ladder. Both of
these stories fit with the predictions of our model – that there is a heterogeneous response to new offshoring
opportunities that may induce downgrading by middle quality firms. With the facts of this decomposition
in mind, we turn to explaining aggregate changes in the distribution.

We previously stressed that the quality ladder is shortening. A plot of these lengths in figure 11 confirms
that this is not specific to our choice of years.26 We run a structural break test, the results of which are
in table 7. The downward trend in ladder length increases after China’s entry into the WTO – suggesting
that this trade shock plays a role in aggregate trends. The compression of the quality ladder is consistent
with two forces at play: import competition driving out lower quality firms and offshoring opportunities
inducing compression of the ladder as some firms upgrade and other firms have a muted response. It is no
doubt true that both forces are important – we have evidence of import competition in the entry and exit

26We also run a host of robustness checks on measuring ladder length – including looking at standard deviation and the IQR.
The compression and results of the MFA shock are robust to these differences.
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patterns; we will show the significance of firms’ heterogeneous response in terms of offshoring and qualityin
the next subsection. This empirical finding mirrors some of the intuition from the productivity literature
that suggests lowest productivity firms exit after a trade shock – in addition to this effect, we show that
firms may endogenously compress further the distribution of quality.

In addition to this shortening of the ladder, there is movement from the right end point inward. A
plot of the skewness (Figure 12) reveals a sharp trend towards more negative skew. Our model suggests
two competing forces that might shape the changing skewness: a muted response at the top end with the
heterogeneous response at the bottom and the middle would suggest a thinning right tail with more mass
near the mean; on the other hand, highly productive firms that nevertheless produce lower quality goods
(productivity versus capability) will remain. If productivity and capability are positively correlated but
imperfectly so, there will remain a thin mass of low quality firms at the left tail while many high quality
entrants create more mass near the mean and the right end. The skewness result then highlights a tension
between the offshoring predictions of our model and more standard predictions regarding entry and exit and
suggests that this latter effect may dominate in certain parts of the aggregate story. The focus on higher
moments that we have employed here allows us to make this sort of interpretation. However, it is important
to note that this is at best suggestive. This serves as a cautionary note for the use of structural demand
estimation in trade - the estimates of quality are difficult to compare over time. With this discussion in mind,
in the next section we exploit firm-level variation to unpack how offshoring matters for the distribution of
quality.

6.3 Firms’ Quality Choices and Trade Regime Switches

In this section, we turn our analysis to firm-level variation in offshoring and quality decisions to explore
the correlation between the two. We stress that output quality and sourcing decisions are at least partially
jointly determined – thus, our regressions are best interpreted as correlations. However, these correlations are
still an important step in understanding how firm behavior changes in response to offshoring opportunities
and whether or not these behavioral changes conform to the predictions of our and others’ models. Our
model makes a few key predictions about how firms ought to respond to new offshoring opportunities. In
particular, we ought to see a negative correlation between offshoring and quality in general. However, and
more subtly, we expect that changes in offshoring conditional on being an offshorer already ought to be
positive for some firms and negative for others. Finally, for firms that actually begin to offshore, we have
predictions about how entry patterns into offshoring ought to correlate to initial quality. At first we focus
on a firm’s total offshoring activity irrespective of source country. Later on, we analyze how the relationship
might vary according to the country where imports are coming from. We specifically look at China and
exploit changes in quota structure as a large shock to offshoring costs that affected some firms over others.

Our definition of offshoring follows recent examples in the literature (in particular Hummels et al., 2013
and Autor et al., 2013). We first split imports into three rough categories for each firm – apparel (combined
nomenclature (CN) headings 61 and 62), direct apparel intermediates (CN headings 52-55), machinery and
other imports. Our definition of offshoring is what Hummels et al. call “narrow offshoring” – we focus on
apparel imports per employee. That is to say, offshoring is measured by the value of imports of the final
good that the firm produces divided by the number of employees at the firm. We feel this is the correct
definition of offshoring for at least two reasons. First, it matches up with the intuition that imports of the
same good that is supposedly being manufactured is qualitatively different than imports of intermediates.
The former represents a decision of the firm to outsource pieces of the supply chain that are traditionally
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done within the boundaries of the firm27 while the latter represents imports of intermediates that the firm
would need to source domestically if not abroad. Second, scaling the imports by the number of employees
versus just looking at imports gives a measure of the intensity of offshoring within the firm. Figures 13 and
14 plot the time series of average offshoring by firms. While there is some volatility in the measure, there is
broadly speaking an upward trend in offshoring that is increasing until about 2001, then settles down then
begins to climb again around 2004 and 2005 when the MFA ends. 28A similar pattern emerges when we
restrict ourselves to offshoring to China, except that the increase is substantially larger. Moreover, much of
the increase after 2007 when the EU’s special treatment of Chinese imports came to an end. Overall, there
is a .8 log point increase in overall offshoring activity in our sample and a 1 log point increase in offshoring
to China. Thus, despite the fact that much manufacturing activity had been sent abroad already, it’s clear
that firms still moved parts of their production processes abroad.

There are two immediate concerns with this measure of offshoring. First, more productive firms may
require less workers to generate the same amount of final output. Thus, our measure of offshoring will
be correlated with productivity, which could bias any results we have if quality and productivity are also
correlated. Second, we use the value of imports, which is by definition the product of the quantity and
the price of the various imported products. Price reflects input quality and so a higher quality firm will
mechanically offshore “more” if offshoring is measured in value.

To overcome the first source of bias, we include exports and intermediates as controls for productivity in
our regressions. Nearly all models with heterogeneous firms posit a positive correlation between exporting
and productivity (Melitz, 2003) and many papers find a correlation between the use of imported intermediates
and productivity (see e.g. Halpern, Koren and Szeidl, 2005; Kasahara and Rodrigue, 2008).

To address the second source of bias, we did two things. First, we used the wage bill instead of the
number of employees in constructing our measure and we find that our results below are ultimately robust
to this change in definition. Second, we use a proxy of input quality that we discuss below as a control for
the input quality of the firm. This has its limitations since it is a cross-country measure. Note that we posit
a decreasing relationship (in the cross-section at least) between offshoring and quality. And so, any positive
bias as discussed above actually works against us.

As a final caveat, it is important to remember that we can only look at how a firm’s quality changes
relative to other firms. In any differences regression, we are exploring how a product’s relative position
changed. As discussed in the previous section, we cannot actually identify aggregate changes in quality.
This automatically means that, in terms of magnitude, our coefficients will no doubt be smaller than the
actual correlations we are interested in. The reason is because our variation is only variation off of trend.
However, there is still substantial variation in access to and use of offshoring across products because of quotas
and price differences. Moreover, there is substantial heterogeneity in firms’ decision to engage in offshoring.
This leaves a great deal of variation in the data and thus still leaves plenty of room for quantitative analysis
of the correlation between offshoring and quality, in spite of our agnosticism about aggregate changes.

Keeping these issues in mind, we now test the most basic premise of our model – the relationship between
27While we don’t observe the boundaries of the firm abroad, discussions with people in the industry as well as the literature

on fashion suggests that outsourcing abroad, and not multinational production, is the dominant form of trade in the apparel
industry.

28One reason for the volatility is that reporting thresholds for imports change for Eastern European countries that entered
the EU. This is only mildly problematic since we employ time fixed effects. If one worries some bias is introduced in the
cross-section, the robustness of our results with Chinese imports only should alleviate concerns.
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offshoring intensity and output quality. We are primarily concerned with regressions of the form:

ljt = αg + β ×Offshoringft +Xftγ
′ + εjt (1)

where ljt is the relative ladder position of good j at time t, αg is a product (CN 8-digit) fixed effect,
Offshoring is our measure of offshoring activity of a firm and X is a set of controls and year fixed effects.
Since our measure of offshoring is constant across products within a firm, we follow the same clustering
strategy as we did for our original estimation. That is to say, we cluster at the firm-year level. The results
of this regression are in table 8. In the first regression, the coefficient on offshoring is positive. This is not
surprising in light of our discussion above that our offshoring measure may conflate other aspects of the firm
with actual offshoring intensity. In column 2, we report regression results with controls for firm productivity.
Once we control for productivity and intermediates, we see that the coefficient changes sign and becomes
insignificant. Intermediates on the other hand are positively and significantly related to our quality ladder.
Finally, column 3 has the full specification that includes controls for productivity and allows the correlation
between quality and productivity to depend on input quality. As for our measure of output quality, input
quality is not observable and we create a proxy variable. We use the fact that the literature on trade and
quality posits an increasing relationship between the mean quality of a country’s exports and the country’s
mean income (see e.g. Manova and Zhang, 2012). Using this idea, we construct the following proxy for the
level of the quality of a firm’s offshored inputs:

δft,input =
∑
c

sft,c log (gdpPerCapitac,t)

where sft,c is the share of imports of firm f at time t from country c (where we focus on offshoring imports)
and gdpPerCapitac,t is the GDP per capita of country c in year t. A drawback of this method is that
does not allow for within-country differentiation. Nevertheless, the results demonstrate that this is already
a powerful proxy even if it just relies on variation in firms’ sourcing strategies. The measure of quality
varies between roughly 8.7 and 9.8 - suggesting that the effect of offshoring varies between roughly between
-.044 and -.021. Moreover, when including this variable as control the effect is significant and negative –
albeit small in magnitude. The cross-section regression confirms the model’s predictions that all else held
constant, offshoring tends to be negatively correlated with quality. The important caveat being that this
can be tempered (and perhaps reversed) if the sourcing country itself produces sufficiently high quality
output. Of course, this latter possibility is not the focus of our work as we are predominantly interested in
developed nations offshoring to developing ones. The regressions above also highlight an important but often
ignored caveat in regards to assessing the impact of offshoring on many firm level outcomes, as has become
increasingly common in the literature. In particular, if firm level variables (e.g., wages) are correlated with
output quality then failing to control for quality adequately could produce spurious relationships in the data.
Keep in mind that the relationship is ultimately significant even in the presence of our caveats discussed
above. That is to say, the small magnitude should not be too disconcerting given the prevalence of offshoring
and the difficulty of assessing any absolute measures of quality. Contrary to skepticism, the fact that in
an industry that has been globalizing for decades we still find that offshoring matters for output quality
(regardless of whether this is a decision variable) underscores the likely importance of vertical differentiation
in a complete understanding of globalization. The results also underscore a point that when thinking about
trade policy and offshoring, the anticipated effects will not only hinge on country’s comparative advantages
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in terms of productivity along the supply chain, but also their differences in ability to produce different levels
of quality.

While we find a negative correlation between quality and offshoring in the cross-section of firms, the
more interesting implication of our model and of others in the trade and quality literature is the potential
for a heterogeneous response to new offshoring opportunities. To assess how cheaper offshored inputs induce
changes in firms’ relative position in the quality ladder we run regressions of the form:

∆ljt = β1 ×∆Offshoringft + β2 ×∆Offshoringft × lt−1 +Xftγ
′ + εjt (2)

where once again X is a set of controls that includes year fixed effects. We also now include lagged offshoring
as a control variable. The idea here is that increasing one’s offshoring activity becomes more difficult as the
level of offshoring is higher (this would naturally come out of a model of tasks where more complex tasks
become more difficult to offshore). To that end, small increases in offshoring might induce large changes in
quality (or vice versa) depending on how difficult it is for a firm to offshore the next portion of the supply
chain. In addition, looking at changes allows us to explore our model’s predictions for heterogeneity in
responses. In particular, the β2 in the above specification tests if movement on the quality ladder depends
on one’s initial position on it. As a reminder, our model predicts that lower quality firms ought to increase
their quality when they offshore more, while middle quality firms ought to downgrade their quality and
high end firms ought not to respond much. Thus our model implies that β1 > 0 and β2 < 0 in the full
specification.29 The results of these regressions are in table 9. In all specifications, the coefficient on growth
in offshoring is positive. This suggests that increasing one’s offshoring activity tends to increase one’s quality.
This does not conflict with the negative correlation in the cross-section. Importantly, our model predicts that
different kinds of firms will engage in offshoring and take up offshoring opportunities. What is happening
is that, in percentage growth, it is mostly low quality firms that increase their offshoring presence and low
quality firms that tend to upgrade. The result is the compression of the quality ladder that we noted in the
previous section.

In column 4, one can see the results of our regressions that allow for heterogeneity in how growth in
offshoring correlates to movement in the quality ladder. We find that, controlling for productivity, input
quality and initial amount of offshoring, the response of quality to offshoring is eventually negative for middle
and higher quality firms while remaining strongly positive for lower quality firms. This need not be the case
and in fact, our model demonstrates that what determines the response of firms to offshoring is both the
absolute cost of offshoring units and the slope of the cost of offshoring with respect to quality. Depending
on how these both move, firms may respond differently. As an important caveat, we again stress that our
analysis does not necessarily mean that the absolute level of quality is decreasing. It could indeed be the
case that all firms upgrade their quality but that low quality firms upgrade their quality more. That is, in
fact, consistent with our model which suggests that aggregate changes in quality are related to the aggregate
demand shock and physical productivity changes. Our results here are complementary to those of Bloom et
al. (2012). They find that offshoring seems to have a positive but imprecisely measured effect on product
innovation as measured by R&D, but find some evidence that offshoring matters for measured productivity.
Our results confirm that offshoring seems to induce changes in the products of firms. However, the structural
demand estimation allows us to examine products separately from physical measures of innovation such as

29Technically, it suggests a more complex relationship where there is yet a third quadratic term in lagged quality that is also
positive – i.e., the effect of offshoring ought to be increasingly negative but then eventually be positive again. We ran regressions
of this sort, but while all the signs were correct we could not separately identify the coefficients in such a large expansion.
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patents. It also lets us focus not just on physical productivity and process innovation, but on how the
good is actually perceived by consumers. Instead, we find a different channel for which offshoring matters
– namely that because of costs of output quality in sourcing countries, offshoring can change the output
quality ultimately offered by firms.

For the rest of the section, we turn our focus to China – a particularly important player in offshoring
discussions. Focusing on China will allow us to explore offshoring to a particular low quality country with its
own comparative advantages. Moreover, we can use the fall of the MFA to explore how quality determines
selection into offshoring activities. This is particularly important for our analysis because much of apparel
had already been offshored by the beginning of our sample. While we already focus on firms that at least
source inputs domestically, China’s entry to the WTO allows existing offshorers to change their sourcing
strategies which means that China’s entry to the WTO gives a source of variation even amongst existing
players.

As demonstrated above, understanding that input quality varies is an important control in determining
the importance of offshoring. While we find it difficult to control for input quality, controlling for the sourcing
nation goes a long way in alleviating these issues. Given this fact and also the rising prominence of China
in the global economy, we focus our attention there. We augment the regressions above as follows:

ljt = αg + β × ChinaOffshoringft +Xftγ
′ + εjt (3)

where we have moved our focus to narrow offshoring from China. The first two columns of table 10 repeat
our cross-sectional regressions. Again we find negative correlations and, when all the controls are added, a
significant negative relationship between offshoring intensity to China and quality. The magnitude is small,
reflecting the same caveats we had before. Nevertheless, the sum of our cross-sectional analysis sides with
common intuition that a large degree of offshoring is associated with a lower quality product. That being
said, we again turn to our more interesting predictions regarding changes and firms’ heterogeneous responses.
Here, a regression that ignores the possibility of heterogeneity finds that, even with a full set of controls
present, there is no relationship between increasing offshoring and changes in quality. However, when the
response is allowed to vary along the quality ladder the coefficients become significant and magnify previous
findings. Namely, there is a positive relationship between offshoring growth and ladder movement at the low
end that becomes muted and eventually changes sign. These results imply that understanding the impact of
China could be more nuanced than previously thought. If certain industries compress their quality ladders
in response to a China shock while others expand theirs, the implications for other variables such as wages
or prices can also vary across industries. This explains some of the cross-industry variation in how variables
respond to offshoring shocks from China.

In addition to elaborating on previous results, we can use China’s entry to the WTO and the dismantling
of the MFA to assess selection into offshoring. Typical models predict that intensity of trade (whether it
be exporting, importing intermediates or offshoring) is positively correlated with productivity and thus size.
Our model suggests a negative correlation between entry into offshoring to low quality countries and initial
quality. In fact, recent literature attempts to explore these two possible sources of heterogeneity (the quality
and the productivity margin) and see what this implies for selection into trade (Saravia and Voigtlaender,
2013; Holmes and Stevens, 2013). The sharp drop in quotas from China, paired with our measures of quality
and proxies for productivity allow us to identify the degree to which each margin is predictive of entry into
offshoring to a low-quality producing country. With this discussion in mind, we run variants of the following
probit regression:
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Y ∗offshoreToCN = β1 × qualityjt + β2 × qualityjt ×QuotaUtilizationjt +X ′ftγ + εjt

where Y ∗ is the latent propensity to offshore, quality refers to our quality ladder measure and quota utilization
is the number of licenses over the quota – i.e., the fill rate. The results of this regression are in table 11. In all
specifications, the coefficient on the ladder position is negative. It is significant in the regression that includes
all controls. This confirms the common intuition that, once productivity and size are controlled for, quality
determines a firm’s offshoring patterns. The inclusion of the quota terms sheds light on the response of firms
experiencing a large shock. Here the interaction term between ladder and quota is negative. This suggests
that higher quality firms are less responsive to drops in quotas than lower quality firms. While many firms
have posited such relationships, our papers is one of the few to demonstrate this fact empirically. Our final
specification, however, presents a comparison of whether quality or size (here measured by number of workers
and amount of intermediates) is more important in determining a firm’s decision to offshore. We find that the
size effect largely dominates the importance of quality. An apples-to-apples comparison of the magnitudes
are difficult because our quality measure has no real units, but even at the maximum levels of our quality
measure, the impact on offshoring probabilities is swamped by the coefficients on the size effects. Part of this
is because our “size” proxies naturally pick up the fact that firms with large employment shares may be more
able to offshore and firms that import many intermediates are naturally more open. Even with these caveats,
the disparity in coefficients is quite substantial. In some sense this helps explain the low correlation in the
cross-section between quality and offshoring and why it becomes stronger when productivity is controlled
for; in particular, it could be that much of the binary decision to engage in offshoring to China might be
determined by size considerations while still leaving room for quality of offshored production to play a role.
Even given this disparity in magnitudes, a firm’s position in the quality ladder is both a statistically and an
economically significant predictor of offshoring activity. As offshoring begins to take place in more vertically
differentiated settings, the two dimensions of heterogeneity – productivity and quality capability – will play
an important role in understanding offshoring’s full effects.

7 Conclusion

In this paper, we develop a model of offshoring and quality decisions by firms. We then use detailed
information about the products made, imported and exported by Danish apparel firms to estimate a demand
model and recover unobserved product quality. Our demand estimates are found to be in line with the
previous literature. For example, we find that our estimated quality differences between firms explain the
size-price relationship documented by Kugler and Verhoogen (2012). We use the aggregate responses to
MFA to test our model’s predictions and as a source of exogeneous variation to the Danish apparel industry’s
access to foreign input markets. We find that firms’ product quality is strongly affected by the change in the
competitive environment and offshoring opportunities. We observed a tightening of quality ladder together
with a change in the shape of the quality ladder. We also documented how offshoring was associated with
a decline in quality, especially when offshoring to countries with lower input quality. However, we also find
that there is a good degree of heterogeneity in this response along the quality ladder. Many papers posit
such relationships and ours demonstrates robust evidence of such a heterogeneous response. In particular,
higher quality firms tend to lower their quality more than already-low-quality firms as they begin to engage
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in offshoring. Our work therefore suggests that globalization has not only led to more competition, but has
also affected the quality of the products designed by Danish firms, as they have seized new opportunities to
take advantage of offshoring part of their production process.

Our work suggests a wide range of future research. In particular, while we have documented how offshoring
impacts the quality ladder, we have said nothing about the actual welfare changes induced by such a cost
shock. It would be interesting to determine how much of the cost savings induced by offshoring are passed
through into quality-adjusted prices. Also, we have focused here only on those firms that maintain some kind
of production operations in Denmark. Future work should bring in wholesale firms and firms that switch out
of manufacturing into wholesale; this would allow researchers to analyze how offshoring opportunities not
only change quality but the industrial structure and allocation of surplus in vertically differentiated markets.
Finally, our estimation procedure relies on income-independent tastes for price and quality. Future work
could attempt to estimate richer demand systems that would allow for more precise estimates of quality and
allow for realistic welfare calculations.
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Appendix A: More General Model of Offshoring and Quality

As before, assume a CES demand system so that the firm solves the following problem after concentrating
out price:

max
ψ

Aψα(σ−1)c(ψ, τ)1−σ − f(ψ)

where f(ψ) is a fixed cost and c(ψ, τ) is a cost function that depends on quality and trade costs τ . We
assume that τF > τH and that c(ψ, τ) is strictly log-supermodular. WLOG we fix τH = 0 and τF = τ . This
model does not strictly contain the model of section 4 – instead we will introduce firm heterogeneity through
fixed costs of design. This model will ultimately have many of the same features and properties of Section
4, but allows for some more precise statements about what we require of the production function to be met.

The first order condition with respect to quality is now given by,

dπ

dψ
: (σ − 1) r(ψ, τ)

[
α

ψ
− ∂c/∂ψ

c(ψ, τ)

]
= f ′(ψ)

where r(ψ, τ) refers to the non-fixed part of profit. If fixed costs are not a function of quality then this
reduces to the first order condition discussed in section 4. If f ′′(ψ) > 0 then a sufficient condition for
profit to be strictly concave is d

dψ (σ − 1) r(ψ, τ)
[
α
ψ −

∂c/∂ψ
c(ψ,τ)

]
≤ 0. This requires some restrictions on the

elasticity of costs with respect to quality and the elasticity of the derivative with respect to quality. For
example, for constant elasticity costs, Aψγ , the restriction is that (σ − 1)(α − γ) ∈ (0, 1]. Assuming these
restrictions hold then the profit function is strictly concave. We assume that an Inada condition holds such
that limψ→0 r

′(ψ) = ∞ and limψ→∞ r′(ψ, τ) = 0. In the case of constant elasticity costs it is sufficient to
assume that (σ − 1)(α− γ) < 1. This guarantees a unique maximum at some ψ∗ exists.

Now we can use the implicit function theorem to deduce how quality responds to trade cost changes.
First of all,

∂ψ

∂τ
= −∂

2π/ (∂ψ∂τ)

∂2π/∂ψ2

From the second order condition, the denominator is strictly negative. Hence, the sign of this derivative will
be equal to the sign of the numerator. The derivative of which is given by,

∂2π

∂ψ∂τ
= (1− σ)

(
f ′(ψ)

∂c

∂τ

1

c
+ r(ψ, τ)

∂ log c(ψ, τ)

∂ψ∂τ

)
Since f ′(ψ) > 0 and ∂c/∂τ > 0, log supermodularity of marginal cost is a sufficient condition to ensure that
the sign of the derivative is negative. Thus, lowering trade costs induces quality upgrading. Moreover, this
automatically implies that if a firm produces at home the quality will be higher ceteris paribus than if it
offshores.

To induce heterogeneity in sourcing options we allow firms to differ in their ability to do design:

π(ψ; τ, ω) = Aψα(σ−1)c(ψ, τ)1−σ − f(ψ, ω)
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where we assume that −f is supermodular and ∂f/∂ω < 0 while ∂f/∂ψ > 0. Now we have,

∂ψ

∂ω
= −∂

2π/ (∂ψ∂ω)

∂2π/∂ψ2

Once again, all that matters for the sign is the numerator given by,

∂2π

∂ψ∂ω
= −∂f(ψ, ω)

∂ψ∂ω

which, because of supermodularity of −f , implies that the optimal choice of ψ is increasing in ω. Finally,
suppose there are two countries that firm can source from. In this case ∂(πH−πF )

∂ω > 0 because −f is
supermodular, ψH > ψF , and the envelope theorem. We assume that there is a unique ω∗ ∈ [ω, ω̄] such that

π∗(τH , ω) = π∗(τF , ω)

Aψ
α(σ−1)
H c(ψH , 0)1−σ − f(ψH , ω) = Aψ

α(σ−1)
F c(ψF , τ)1−σ − f(ψF , ω)

Then this ω∗ will be a cutoff value such that firms with ω < ω∗ offshore and those above produce domestically.
Now assume that τ falls. It’s easy to see that the cutoff will rise – so that more firms will begin to offshore.
Hence, the drop in trade costs will induce an increase in quality by low quality producers who are already
offshoring, a decrease in quality by those middle quality firms that begin to offshore and a muted response
by high quality firms who continue not to offshore. Thus, the assumptions on costs above would yield a
proposition exactly like the first part of that presented in Section 4. As a final aside, one can show that
∂ψ/∂A ∝ f ′(ψ)/A. Hence, A is irrelevant in the absence of fixed costs but a decrease in A should lower
quality of all domestic producing firms if there are fixed costs. This also relates to our Section 4 model. In
particular, in demonstrates that in the absence of fixed costs a neutral shifter of marginal costs would not
impact the optimal choice of quality. Hence why in that model we required the exponent term which gives
us a non-neutral shifter that depends on sourcing.

Appendix B: Tables

Table 1: Most Popular Products

Top 5 Products (by # of Producers)
1997-2002 2002-2010

Cotton tee shirts Cotton tee shirts
Cotton women’s jerseys Cotton women’s jerseys

Syn. fiber women’s blouses Syn. fiber women’s jerseys
Syn. fiber women’s trousers Syn. fiber tee shirts
Syn. fiber women’s skirts Cotton women’s blouses
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Table 2: Description of Nests

Men’s Women’s Gender Neutral
Coats and jackets Coats and jackets Sweaters, jerseys, cardigans

Suits, jackets, blazers, trousers Suits, jackets, dresses, skirts, trousers t-shirts
Shirts Shirts, blouses Miscellaneous

Underwear, pajamas, gowns Underwear, lingerie, gowns Accessories
Sweaters, jerseys, cardigans Sweaters, Jerseys, Cardigans

Miscellaneous Miscellaneous

Table 3: Demand Estimation for Domestic Apparel

OLS IV: Logit IV: Nested Logit
Dep Var: log(sjft/s0t) log(sjft/s0t) log(sjft/s0t)
pfjt −.00013 −.02129∗ −.00768∗

(−1.16) (−1.82) (−1.89)
log sjgft .901∗∗∗ .321∗∗∗

(95.32) (3.43)
Fixed Effects: Firm-Product, Year Firm-Product, Year Firm-Product, Year
Clusters: Firm Product, Firm-Year Product, Firm-Year

(188) (1554,953) (1554,953)
n 8,378 7,586 7,586
1st Stage p-value - Price – .0928 .0369
1st Stage p-value - Nest – – .0000
2nd Stage p-value .0000 .0000 .0000
Standard errors clustered at the firm level. Point estimates reported with t-statistics in parentheses. ***-1%, **-5%, *-10%. All

estimation done using Stata’s xtivreg2 .

Table 4: Detail on Elasticity Estimates

Nest Mean Q25 Q50 Q75
Women’s Dresses 2.17 1.15 2.06 2.88
Women’s Shirts 1.65 .911 1.61 2.16
Men’s Suits 2.53 1.39 2.27 3.36
Women’s Sweaters 1.45 .690 1.24 1.99
Women’s Coats 3.43 2.07 3.33 4.82
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Table 5: Correlation between Price, Size and Quality

Quality log(Price) log(Employment) Elasticity
Quality 1

log(Price) .1408 1
log(Employment) .0978 .1785 1

Elasticity .2234 .9210 .1749 1

Table 6: Estimating the Size-Price Correlation

(KV) (1) (2)
Dep Var: logPjft
logEmpft .1130∗∗∗ .0989∗∗∗ .0123

(2.92) (2.72) (.44)
δfjt .0509∗∗∗ .1189∗∗∗

(12.92) (5.83)

Fixed Effects: Year, CN8 Year, CN8 Year, Firm-CN8
Cluster: Firm Firm Firm

177 177 177
N 8,132 8,132 8,132

Standard errors clustered at the firm level. Point estimates reported with t-statistics in parentheses. ***-1%, **-5%, *-10%.

Table 7: Offshoring and Quality Ladder Position in the Cross-Section

Length Measures Skewness
lmax − lmin lp99 − lp1 σl –

t −.130 −.054 -.009 -.027
(.002) (.001) (.0001) (.0001)

t post-MFA −.255 -.114 -.016 -.027
(.002) (.001) (.0002) (.0001)
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Table 8: Offshoring and Quality Ladder Position in the Cross-Section

Dependent Variable: ljt
(1) (2) (3)

log(Offshoring) .0599 -.0298 -.2356
(.0234) (.0228) (.0508)

δft,input × log(Offshoring) .0213
(.0053)

log(Intermediates) .0330 .0358
(.0152) (.0156)

log(Exports) .1351 .1448
(.0251) (.0274)

Fixed Effects: Product, Year Product, Year Product, Year
Cluster: Firm-Year Firm-Year Firm-Year

890 785 785
N 7,905 7,397 6,836

Standard errors clustered by Stata’s xtreg command. Point estimates reported with t-statistics in parentheses. ***-1%, **-5%, *-10%.

Table 9: Offshoring and Ladder Movement - Overall and Heterogeneous Effects

Dependent Variable: ∆ljt
(1) (2) (3) (4)

∆ log(Offshoring) .0596 .0620 .0623 .0885
(.0293) (.0323) (.0325) (.0329)

∆ log(Offshoring)× ljt−1 -.0827
(.0258)

δft,input -.0202 -.0103
(.0391) (.0378)

log(Intermediates) .0069 .0065 .0074
(.0082) (.0084) (.0075)

log(Exports) .0107 .0099 .0125
(.0139) (.0137) (.0131)

log(Offshoring)t−1 -.0275 -.0269 -.0228
(.0214) (.0213) (.0200)

Fixed Effects: CN8, Year CN8, Year CN8, Year CN8, Year
Cluster: Firm-Year Firm-Year Firm-Year Firm-Year

701 631 631 631
N 5,199 4,923 4,923 4,923

Standard errors clustered by Stata’s xtreg command. Point estimates reported with t-statistics in parentheses. ***-1%, **-5%, *-10%.
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Table 10: Offshoring and Ladder Movement - Overall and Heterogeneous Effects

Dependent Variable: ljt Dependent Variable: ∆ljt
(1) (2) (3) (4) (5)

log(OffshoringCN ) -.0230 -.0290
(.0154) (.0153)

∆ log(OffshoringCN ) -.0044 -.0040 .0129
(.0144) (.0124) (.0134)

∆ log(OffshoringCN )× ljt−1 -.0517
(.0141)

log(Intermediates) .0246 .0047 .0099
(.0213) (.0156) (.0137)

log(Exports) .1373 .0338 .0310
(.0453) (.0220) (.0203)

log(OffshoringCN )t−1 -.0569 -.0535
(.0480) (.0421)

Fixed Effects: CN8, Year CN8, Year CN8, Year CN8, Year CN8, Year
Cluster: Firm-Year Firm-Year Firm-Year Firm-Year Firm-Year

397 366 287 269 269
N 5,173 5,006 3,159 3,107 3,107
Standard errors clustered by Stata’s xtreg command. Point estimates reported with t-statistics in parentheses. ***-1%, **-5%, *-10%.

Table 11: Probit Regression: Probability of Offshoring Projected on Quality

(1) (2) (3) (4)
δjt −.0313 −.0305 −.0233 −.0757

(.0188) (.0188) (.0191) (.0203)
quotaF ill −.2189 −.2016 −.1765

(.0633) (.0629) (.0749)
δjt × quotaF ill −.1161 −.0976

(.0454) (.0530)
log(Employees) .5736

(.1145)
log(Intermediates) .1115

(.0428)

Fixed Effecs: Year Year Year Year
Cluster: Firm-Year Firm-Year Firm-Year Firm-Year

941 941 185 173
N 8071 8071 8235 8057

Standard errors clustered by Stata’s xtreg command. Point estimates reported with robust standard errors in parentheses. ***-1%,

**-5%, *-10%.
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Appendix C: Figures
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Figure 1: Time Series of Danish Apparel Import
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Figure 2: Changes in the Danish Apparel Industry
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Figure 3: Growth of Chinese Share in Apparel Imports
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Figure 4: Density of Elasticities
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Figure 9: Entry and Exit Component of Quality Growth
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Figure 10: Market Share-Quality Covariance Evolution
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Figure 11: Evolution of Ladder Length
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Figure 12: Evolution of Skew in Quality Ladder Distribution
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Figure 14: Evolution of Offshoring Activity in China

42


